drivers/intel/fsp1_1: split relocation code for tool use
In order for easier consumption in userland tools split the FSP 1.1 relocation logic into a single file w/ an aptly named function name. BUG=chrome-os-partner:44827 BRANCH=None TEST=Built and booted glados. Change-Id: I49998b8621611c638375bc90884e80d0cd3bdf78 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Original-Commit-Id: bc898e1c528df60683575d553d6194a1e8200afa Original-Change-Id: I736c0059d43f6d0be4fdb6e6f47cdb5c189a7ae8 Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org> Original-Reviewed-on: https://chromium-review.googlesource.com/298833 Original-Reviewed-by: Duncan Laurie <dlaurie@chromium.org> Reviewed-on: http://review.coreboot.org/11665 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@chromium.org>
This commit is contained in:
parent
a77d0d6b39
commit
a5be7fa5c1
|
@ -23,6 +23,7 @@ romstage-y += hob.c
|
|||
|
||||
ramstage-$(CONFIG_GOP_SUPPORT) += fsp_gop.c
|
||||
ramstage-y += fsp_relocate.c
|
||||
ramstage-y += fsp1_1_relocate.c
|
||||
ramstage-y += fsp_util.c
|
||||
ramstage-y += hob.c
|
||||
|
||||
|
|
|
@ -0,0 +1,539 @@
|
|||
/*
|
||||
* This file is part of the coreboot project.
|
||||
*
|
||||
* Copyright 2015 Google Inc
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; version 2 of the License.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc.
|
||||
*/
|
||||
|
||||
#include <console/console.h>
|
||||
#include <endian.h>
|
||||
#include <fsp/api.h>
|
||||
#include <fsp/util.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#define FSP_DBG_LVL BIOS_NEVER
|
||||
|
||||
/*
|
||||
* UEFI defines everything as little endian. However, this piece of code
|
||||
* can be integrated in a userland tool. That tool could be on a big endian
|
||||
* machine so one needs to access the fields within UEFI structures using
|
||||
* endian-aware accesses.
|
||||
*/
|
||||
|
||||
/* Return 0 if equal. Non-zero if not equal. */
|
||||
static int guid_compare(const EFI_GUID *le_guid, const EFI_GUID *native_guid)
|
||||
{
|
||||
if (le32toh(le_guid->Data1) != native_guid->Data1)
|
||||
return 1;
|
||||
if (le16toh(le_guid->Data2) != native_guid->Data2)
|
||||
return 1;
|
||||
if (le16toh(le_guid->Data3) != native_guid->Data3)
|
||||
return 1;
|
||||
return memcmp(le_guid->Data4, native_guid->Data4,
|
||||
ARRAY_SIZE(le_guid->Data4));
|
||||
}
|
||||
|
||||
/* Provide this for symmetry when accessing UEFI fields. */
|
||||
static inline uint8_t le8toh(uint8_t byte)
|
||||
{
|
||||
return byte;
|
||||
}
|
||||
|
||||
static const EFI_GUID ffs2_guid = EFI_FIRMWARE_FILE_SYSTEM2_GUID;
|
||||
static const EFI_GUID fih_guid = FSP_INFO_HEADER_GUID;
|
||||
|
||||
struct fsp_patch_table {
|
||||
uint32_t signature;
|
||||
uint16_t header_length;
|
||||
uint8_t header_revision;
|
||||
uint8_t reserved;
|
||||
uint32_t patch_entry_num;
|
||||
uint32_t patch_entries[0];
|
||||
} __attribute__((packed));
|
||||
|
||||
#define FSPP_SIG 0x50505346
|
||||
|
||||
static void *relative_offset(void *base, ssize_t offset)
|
||||
{
|
||||
uintptr_t loc;
|
||||
|
||||
loc = (uintptr_t)base;
|
||||
loc += offset;
|
||||
|
||||
return (void *)loc;
|
||||
}
|
||||
|
||||
static uint32_t *fspp_reloc(void *fsp, size_t fsp_size, uint32_t e)
|
||||
{
|
||||
size_t offset;
|
||||
|
||||
/* Offsets live in bits 23:0. */
|
||||
offset = e & 0xffffff;
|
||||
|
||||
/* If bit 31 is set then the offset is considered a negative value
|
||||
* relative to the end of the image using 16MiB as the offset's
|
||||
* reference. */
|
||||
if (e & (1 << 31))
|
||||
offset = fsp_size - (16 * MiB - offset);
|
||||
|
||||
/* Determine if offset falls within fsp_size for a 32 bit relocation. */
|
||||
if (offset > fsp_size - sizeof(uint32_t))
|
||||
return NULL;
|
||||
|
||||
return relative_offset(fsp, offset);
|
||||
}
|
||||
|
||||
static int reloc_type(uint16_t reloc_entry)
|
||||
{
|
||||
/* Reloc type in upper 4 bits */
|
||||
return reloc_entry >> 12;
|
||||
}
|
||||
|
||||
static size_t reloc_offset(uint16_t reloc_entry)
|
||||
{
|
||||
/* Offsets are in low 12 bits. */
|
||||
return reloc_entry & ((1 << 12) - 1);
|
||||
}
|
||||
|
||||
static int te_relocate(uintptr_t new_addr, void *te, size_t size)
|
||||
{
|
||||
EFI_TE_IMAGE_HEADER *teih;
|
||||
EFI_IMAGE_DATA_DIRECTORY *relocd;
|
||||
EFI_IMAGE_BASE_RELOCATION *relocb;
|
||||
uintptr_t image_base;
|
||||
size_t fixup_offset;
|
||||
size_t num_relocs;
|
||||
uint16_t *reloc;
|
||||
size_t relocd_offset;
|
||||
uint8_t *te_base;
|
||||
uint32_t adj;
|
||||
|
||||
teih = te;
|
||||
|
||||
if (le16toh(teih->Signature) != EFI_TE_IMAGE_HEADER_SIGNATURE) {
|
||||
printk(BIOS_ERR, "TE Signature mismatch: %x vs %x\n",
|
||||
le16toh(teih->Signature),
|
||||
EFI_TE_IMAGE_HEADER_SIGNATURE);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* A TE image is created by converting a PE file. Because of this
|
||||
* the offsets within the headers are off. In order to calculate
|
||||
* the correct releative offets one needs to subtract fixup_offset
|
||||
* from the encoded offets. Similarly, the linked address of the
|
||||
* program is found by adding the fixup_offset to the ImageBase.
|
||||
*/
|
||||
fixup_offset = le16toh(teih->StrippedSize);
|
||||
fixup_offset -= sizeof(EFI_TE_IMAGE_HEADER);
|
||||
/* Keep track of a base that is correctly adjusted so that offsets
|
||||
* can be used directly. */
|
||||
te_base = te;
|
||||
te_base -= fixup_offset;
|
||||
|
||||
image_base = le64toh(teih->ImageBase);
|
||||
adj = new_addr - (image_base + fixup_offset);
|
||||
|
||||
printk(FSP_DBG_LVL, "TE Image %p -> %p adjust value: %x\n",
|
||||
(void *)image_base, (void *)new_addr, adj);
|
||||
|
||||
/* Adjust ImageBase for consistency. */
|
||||
teih->ImageBase = htole32(image_base + adj);
|
||||
|
||||
relocd = &teih->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC];
|
||||
|
||||
relocd_offset = 0;
|
||||
/* Though the field name is VirtualAddress it's actually relative to
|
||||
* the beginning of the image which is linked at ImageBase. */
|
||||
relocb = relative_offset(te,
|
||||
le32toh(relocd->VirtualAddress) - fixup_offset);
|
||||
while (relocd_offset < relocd->Size) {
|
||||
size_t rva_offset = le32toh(relocb->VirtualAddress);
|
||||
|
||||
printk(FSP_DBG_LVL, "Relocs for RVA offset %zx\n", rva_offset);
|
||||
num_relocs = le32toh(relocb->SizeOfBlock) - sizeof(*relocb);
|
||||
num_relocs /= sizeof(uint16_t);
|
||||
reloc = relative_offset(relocb, sizeof(*relocb));
|
||||
|
||||
printk(FSP_DBG_LVL, "Num relocs in block: %zx\n", num_relocs);
|
||||
|
||||
while (num_relocs > 0) {
|
||||
uint16_t reloc_val = le16toh(*reloc);
|
||||
int type = reloc_type(reloc_val);
|
||||
size_t offset = reloc_offset(reloc_val);
|
||||
|
||||
printk(FSP_DBG_LVL, "reloc type %x offset %zx\n",
|
||||
type, offset);
|
||||
|
||||
if (type == EFI_IMAGE_REL_BASED_HIGHLOW) {
|
||||
uint32_t *reloc_addr;
|
||||
uint32_t val;
|
||||
|
||||
offset += rva_offset;
|
||||
reloc_addr = (void *)&te_base[offset];
|
||||
val = le32toh(*reloc_addr);
|
||||
|
||||
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
|
||||
reloc_addr, val, val + adj);
|
||||
*reloc_addr = htole32(val + adj);
|
||||
} else if (type != EFI_IMAGE_REL_BASED_ABSOLUTE) {
|
||||
printk(BIOS_ERR, "Unknown reloc type: %x\n",
|
||||
type);
|
||||
return -1;
|
||||
}
|
||||
num_relocs--;
|
||||
reloc++;
|
||||
}
|
||||
|
||||
/* Track consumption of relocation directory contents. */
|
||||
relocd_offset += le32toh(relocb->SizeOfBlock);
|
||||
/* Get next relocation block to process. */
|
||||
relocb = relative_offset(relocb, le32toh(relocb->SizeOfBlock));
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static size_t csh_size(const EFI_COMMON_SECTION_HEADER *csh)
|
||||
{
|
||||
size_t size;
|
||||
|
||||
/* Unpack the array into a type that can be used. */
|
||||
size = 0;
|
||||
size |= le8toh(csh->Size[0]) << 0;
|
||||
size |= le8toh(csh->Size[1]) << 8;
|
||||
size |= le8toh(csh->Size[2]) << 16;
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
static size_t section_data_offset(const EFI_COMMON_SECTION_HEADER *csh)
|
||||
{
|
||||
if (csh_size(csh) == 0x00ffffff)
|
||||
return sizeof(EFI_COMMON_SECTION_HEADER2);
|
||||
else
|
||||
return sizeof(EFI_COMMON_SECTION_HEADER);
|
||||
}
|
||||
|
||||
static size_t section_data_size(const EFI_COMMON_SECTION_HEADER *csh)
|
||||
{
|
||||
size_t section_size;
|
||||
|
||||
if (csh_size(csh) == 0x00ffffff)
|
||||
section_size = le32toh(SECTION2_SIZE(csh));
|
||||
else
|
||||
section_size = csh_size(csh);
|
||||
|
||||
return section_size - section_data_offset(csh);
|
||||
}
|
||||
|
||||
static size_t file_section_offset(const EFI_FFS_FILE_HEADER *ffsfh)
|
||||
{
|
||||
if (IS_FFS_FILE2(ffsfh))
|
||||
return sizeof(EFI_FFS_FILE_HEADER2);
|
||||
else
|
||||
return sizeof(EFI_FFS_FILE_HEADER);
|
||||
}
|
||||
|
||||
static size_t ffs_file_size(const EFI_FFS_FILE_HEADER *ffsfh)
|
||||
{
|
||||
size_t size;
|
||||
|
||||
if (IS_FFS_FILE2(ffsfh))
|
||||
size = le32toh(FFS_FILE2_SIZE(ffsfh));
|
||||
else {
|
||||
size = le8toh(ffsfh->Size[0]) << 0;
|
||||
size |= le8toh(ffsfh->Size[1]) << 8;
|
||||
size |= le8toh(ffsfh->Size[2]) << 16;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
static int relocate_patch_table(void *fsp, size_t size, size_t offset,
|
||||
ssize_t adjustment)
|
||||
{
|
||||
struct fsp_patch_table *table;
|
||||
size_t num;
|
||||
size_t num_entries;
|
||||
|
||||
table = relative_offset(fsp, offset);
|
||||
|
||||
if ((offset + sizeof(*table) > size) ||
|
||||
(le16toh(table->header_length) + offset) > size) {
|
||||
printk(BIOS_ERR, "FSPP not entirely contained in region.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
num_entries = le32toh(table->patch_entry_num);
|
||||
printk(FSP_DBG_LVL, "FSPP relocs: %zx\n", num_entries);
|
||||
|
||||
for (num = 0; num < table->patch_entry_num; num++) {
|
||||
uint32_t *reloc;
|
||||
uint32_t reloc_val;
|
||||
|
||||
reloc = fspp_reloc(fsp, size,
|
||||
le32toh(table->patch_entries[num]));
|
||||
|
||||
if (reloc == NULL) {
|
||||
printk(BIOS_ERR, "Ignoring FSPP entry: %x\n",
|
||||
le32toh(table->patch_entries[num]));
|
||||
continue;
|
||||
}
|
||||
|
||||
reloc_val = le32toh(*reloc);
|
||||
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
|
||||
reloc, reloc_val,
|
||||
(unsigned int)(reloc_val + adjustment));
|
||||
|
||||
*reloc = htole32(reloc_val + adjustment);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static ssize_t relocate_remaining_items(void *fsp, size_t size,
|
||||
uintptr_t new_addr, size_t fih_offset)
|
||||
{
|
||||
EFI_FFS_FILE_HEADER *ffsfh;
|
||||
EFI_COMMON_SECTION_HEADER *csh;
|
||||
FSP_INFO_HEADER *fih;
|
||||
ssize_t adjustment;
|
||||
size_t offset;
|
||||
|
||||
printk(FSP_DBG_LVL, "FSP_INFO_HEADER offset is %zx\n", fih_offset);
|
||||
|
||||
if (fih_offset == 0) {
|
||||
printk(BIOS_ERR, "FSP_INFO_HEADER offset is 0.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* FSP_INFO_HEADER at first file in FV within first RAW section. */
|
||||
ffsfh = relative_offset(fsp, fih_offset);
|
||||
fih_offset += file_section_offset(ffsfh);
|
||||
csh = relative_offset(fsp, fih_offset);
|
||||
fih_offset += section_data_offset(csh);
|
||||
fih = relative_offset(fsp, fih_offset);
|
||||
|
||||
if (guid_compare(&ffsfh->Name, &fih_guid)) {
|
||||
printk(BIOS_ERR, "Bad FIH GUID.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (le8toh(csh->Type) != EFI_SECTION_RAW) {
|
||||
printk(BIOS_ERR, "FIH file should have raw section: %x\n",
|
||||
csh->Type);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (le32toh(fih->Signature) != FSP_SIG) {
|
||||
printk(BIOS_ERR, "Unexpected FIH signature: %08x\n",
|
||||
le32toh(fih->Signature));
|
||||
return -1;
|
||||
}
|
||||
|
||||
adjustment = (intptr_t)new_addr - le32toh(fih->ImageBase);
|
||||
|
||||
/* Update ImageBase to reflect FSP's new home. */
|
||||
fih->ImageBase = htole32(adjustment + le32toh(fih->ImageBase));
|
||||
|
||||
/* Need to find patch table and adjust each entry. The tables
|
||||
* following FSP_INFO_HEADER have a 32-bit signature and header
|
||||
* length. The patch table is denoted as having a 'FSPP' signature;
|
||||
* the table format doesn't follow the other tables. */
|
||||
offset = fih_offset + le32toh(fih->HeaderLength);
|
||||
while (offset + 2 * sizeof(uint32_t) <= size) {
|
||||
uint32_t *table_headers;
|
||||
|
||||
table_headers = relative_offset(fsp, offset);
|
||||
|
||||
printk(FSP_DBG_LVL, "Checking offset %zx for 'FSPP'\n",
|
||||
offset);
|
||||
|
||||
if (le32toh(table_headers[0]) != FSPP_SIG) {
|
||||
offset += le32toh(table_headers[1]);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (relocate_patch_table(fsp, size, offset, adjustment)) {
|
||||
printk(BIOS_ERR, "FSPP relocation failed.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return fih_offset;
|
||||
}
|
||||
|
||||
printk(BIOS_ERR, "Could not find the FSP patch table.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
|
||||
size_t fvh_offset, size_t *fih_offset)
|
||||
{
|
||||
EFI_FIRMWARE_VOLUME_HEADER *fvh;
|
||||
EFI_FFS_FILE_HEADER *ffsfh;
|
||||
EFI_COMMON_SECTION_HEADER *csh;
|
||||
size_t offset;
|
||||
size_t file_offset;
|
||||
size_t size;
|
||||
size_t fv_length;
|
||||
|
||||
offset = fvh_offset;
|
||||
fvh = relative_offset(fsp, offset);
|
||||
|
||||
if (le32toh(fvh->Signature) != EFI_FVH_SIGNATURE)
|
||||
return -1;
|
||||
|
||||
fv_length = le64toh(fvh->FvLength);
|
||||
|
||||
printk(FSP_DBG_LVL, "FVH length: %zx Offset: %zx Mapping length: %zx\n",
|
||||
fv_length, offset, fsp_size);
|
||||
|
||||
if (fvh->FvLength + offset > fsp_size)
|
||||
return -1;
|
||||
|
||||
/* Parse only this FV. However, the algorithm uses offsets into the
|
||||
* entire FSP region so make size include the starting offset. */
|
||||
size = fv_length + offset;
|
||||
|
||||
if (guid_compare(&fvh->FileSystemGuid, &ffs2_guid)) {
|
||||
printk(BIOS_ERR, "FVH not an FFS2 type.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (le16toh(fvh->ExtHeaderOffset) != 0) {
|
||||
EFI_FIRMWARE_VOLUME_EXT_HEADER *fveh;
|
||||
|
||||
offset += le16toh(fvh->ExtHeaderOffset);
|
||||
fveh = relative_offset(fsp, offset);
|
||||
printk(FSP_DBG_LVL, "Extended Header Offset: %zx Size: %zx\n",
|
||||
(size_t)le16toh(fvh->ExtHeaderOffset),
|
||||
(size_t)le32toh(fveh->ExtHeaderSize));
|
||||
offset += le32toh(fveh->ExtHeaderSize);
|
||||
/* FFS files are 8 byte aligned after extended header. */
|
||||
offset = ALIGN_UP(offset, 8);
|
||||
} else {
|
||||
offset += le16toh(fvh->HeaderLength);
|
||||
}
|
||||
|
||||
file_offset = offset;
|
||||
while (file_offset + sizeof(*ffsfh) < size) {
|
||||
offset = file_offset;
|
||||
printk(FSP_DBG_LVL, "file offset: %zx\n", file_offset);
|
||||
|
||||
/* First file and section should be FSP info header. */
|
||||
if (fih_offset != NULL && *fih_offset == 0)
|
||||
*fih_offset = file_offset;
|
||||
|
||||
ffsfh = relative_offset(fsp, file_offset);
|
||||
|
||||
printk(FSP_DBG_LVL, "file type = %x\n", le8toh(ffsfh->Type));
|
||||
printk(FSP_DBG_LVL, "file attribs = %x\n",
|
||||
le8toh(ffsfh->Attributes));
|
||||
|
||||
/* Exit FV relocation when empty space found */
|
||||
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_MAX)
|
||||
break;
|
||||
|
||||
/* Next file on 8 byte alignment. */
|
||||
file_offset += ffs_file_size(ffsfh);
|
||||
file_offset = ALIGN_UP(file_offset, 8);
|
||||
|
||||
/* Padding files have no section information. */
|
||||
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_PAD)
|
||||
continue;
|
||||
|
||||
offset += file_section_offset(ffsfh);
|
||||
|
||||
while (offset + sizeof(*csh) < file_offset) {
|
||||
size_t data_size;
|
||||
size_t data_offset;
|
||||
|
||||
csh = relative_offset(fsp, offset);
|
||||
|
||||
printk(FSP_DBG_LVL, "section offset: %zx\n", offset);
|
||||
printk(FSP_DBG_LVL, "section type: %x\n",
|
||||
le8toh(csh->Type));
|
||||
|
||||
data_size = section_data_size(csh);
|
||||
data_offset = section_data_offset(csh);
|
||||
|
||||
if (data_size + data_offset + offset > file_offset) {
|
||||
printk(BIOS_ERR, "Section exceeds FV size.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The entire FSP 1.1 image can be thought of as one
|
||||
* program with a single link address even though there
|
||||
* are multiple TEs linked separately. The reason is
|
||||
* that each TE is linked for XIP. So in order to
|
||||
* relocate the TE properly we need to form the
|
||||
* relocated address based on the TE offset within
|
||||
* FSP proper.
|
||||
*/
|
||||
if (le8toh(csh->Type) == EFI_SECTION_TE) {
|
||||
void *te;
|
||||
size_t te_offset = offset + data_offset;
|
||||
uintptr_t te_addr = new_addr + te_offset;
|
||||
|
||||
printk(FSP_DBG_LVL, "TE image at offset %zx\n",
|
||||
te_offset);
|
||||
te = relative_offset(fsp, te_offset);
|
||||
te_relocate(te_addr, te, data_size);
|
||||
}
|
||||
|
||||
offset += data_size + data_offset;
|
||||
/* Sections are aligned to 4 bytes. */
|
||||
offset = ALIGN_UP(offset, 4);
|
||||
}
|
||||
}
|
||||
|
||||
/* Return amount of buffer parsed: FV size. */
|
||||
return fv_length;
|
||||
}
|
||||
|
||||
ssize_t fsp1_1_relocate(uintptr_t new_addr, void *fsp, size_t size)
|
||||
{
|
||||
size_t offset;
|
||||
size_t fih_offset;
|
||||
|
||||
offset = 0;
|
||||
fih_offset = 0;
|
||||
while (offset < size) {
|
||||
ssize_t nparsed;
|
||||
|
||||
/* Relocate each FV within the FSP region. The FSP_INFO_HEADER
|
||||
* should only be located in the first FV. */
|
||||
if (offset == 0)
|
||||
nparsed = relocate_fvh(new_addr, fsp, size, offset,
|
||||
&fih_offset);
|
||||
else
|
||||
nparsed = relocate_fvh(new_addr, fsp, size, offset,
|
||||
NULL);
|
||||
|
||||
/* FV should be larger than 0 or failed to parse. */
|
||||
if (nparsed <= 0) {
|
||||
printk(BIOS_ERR, "FV @ offset %zx relocation failed\n",
|
||||
offset);
|
||||
return -1;
|
||||
}
|
||||
|
||||
offset += nparsed;
|
||||
}
|
||||
|
||||
return relocate_remaining_items(fsp, size, new_addr, fih_offset);
|
||||
}
|
|
@ -19,524 +19,7 @@
|
|||
|
||||
#include <console/console.h>
|
||||
#include <cbmem.h>
|
||||
#include <endian.h>
|
||||
#include <fsp/util.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <string.h>
|
||||
|
||||
#define FSP_DBG_LVL BIOS_NEVER
|
||||
|
||||
/*
|
||||
* UEFI defines everything as little endian. However, this piece of code
|
||||
* can be integrated in a userland tool. That tool could be on a big endian
|
||||
* machine so one needs to access the fields within UEFI structures using
|
||||
* endian-aware accesses.
|
||||
*/
|
||||
|
||||
/* Return 0 if equal. Non-zero if not equal. */
|
||||
static int guid_compare(const EFI_GUID *le_guid, const EFI_GUID *native_guid)
|
||||
{
|
||||
if (le32toh(le_guid->Data1) != native_guid->Data1)
|
||||
return 1;
|
||||
if (le16toh(le_guid->Data2) != native_guid->Data2)
|
||||
return 1;
|
||||
if (le16toh(le_guid->Data3) != native_guid->Data3)
|
||||
return 1;
|
||||
return memcmp(le_guid->Data4, native_guid->Data4,
|
||||
ARRAY_SIZE(le_guid->Data4));
|
||||
}
|
||||
|
||||
/* Provide this for symmetry when accessing UEFI fields. */
|
||||
static inline uint8_t le8toh(uint8_t byte)
|
||||
{
|
||||
return byte;
|
||||
}
|
||||
|
||||
static const EFI_GUID ffs2_guid = EFI_FIRMWARE_FILE_SYSTEM2_GUID;
|
||||
static const EFI_GUID fih_guid = FSP_INFO_HEADER_GUID;
|
||||
|
||||
struct fsp_patch_table {
|
||||
uint32_t signature;
|
||||
uint16_t header_length;
|
||||
uint8_t header_revision;
|
||||
uint8_t reserved;
|
||||
uint32_t patch_entry_num;
|
||||
uint32_t patch_entries[0];
|
||||
} __attribute__((packed));
|
||||
|
||||
#define FSPP_SIG 0x50505346
|
||||
|
||||
static void *relative_offset(void *base, ssize_t offset)
|
||||
{
|
||||
uintptr_t loc;
|
||||
|
||||
loc = (uintptr_t)base;
|
||||
loc += offset;
|
||||
|
||||
return (void *)loc;
|
||||
}
|
||||
|
||||
static uint32_t *fspp_reloc(void *fsp, size_t fsp_size, uint32_t e)
|
||||
{
|
||||
size_t offset;
|
||||
|
||||
/* Offsets live in bits 23:0. */
|
||||
offset = e & 0xffffff;
|
||||
|
||||
/* If bit 31 is set then the offset is considered a negative value
|
||||
* relative to the end of the image using 16MiB as the offset's
|
||||
* reference. */
|
||||
if (e & (1 << 31))
|
||||
offset = fsp_size - (16 * MiB - offset);
|
||||
|
||||
/* Determine if offset falls within fsp_size for a 32 bit relocation. */
|
||||
if (offset > fsp_size - sizeof(uint32_t))
|
||||
return NULL;
|
||||
|
||||
return relative_offset(fsp, offset);
|
||||
}
|
||||
|
||||
static int reloc_type(uint16_t reloc_entry)
|
||||
{
|
||||
/* Reloc type in upper 4 bits */
|
||||
return reloc_entry >> 12;
|
||||
}
|
||||
|
||||
static size_t reloc_offset(uint16_t reloc_entry)
|
||||
{
|
||||
/* Offsets are in low 12 bits. */
|
||||
return reloc_entry & ((1 << 12) - 1);
|
||||
}
|
||||
|
||||
static int te_relocate(uintptr_t new_addr, void *te, size_t size)
|
||||
{
|
||||
EFI_TE_IMAGE_HEADER *teih;
|
||||
EFI_IMAGE_DATA_DIRECTORY *relocd;
|
||||
EFI_IMAGE_BASE_RELOCATION *relocb;
|
||||
uintptr_t image_base;
|
||||
size_t fixup_offset;
|
||||
size_t num_relocs;
|
||||
uint16_t *reloc;
|
||||
size_t relocd_offset;
|
||||
uint8_t *te_base;
|
||||
uint32_t adj;
|
||||
|
||||
teih = te;
|
||||
|
||||
if (le16toh(teih->Signature) != EFI_TE_IMAGE_HEADER_SIGNATURE) {
|
||||
printk(BIOS_ERR, "TE Signature mismatch: %x vs %x\n",
|
||||
le16toh(teih->Signature),
|
||||
EFI_TE_IMAGE_HEADER_SIGNATURE);
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* A TE image is created by converting a PE file. Because of this
|
||||
* the offsets within the headers are off. In order to calculate
|
||||
* the correct releative offets one needs to subtract fixup_offset
|
||||
* from the encoded offets. Similarly, the linked address of the
|
||||
* program is found by adding the fixup_offset to the ImageBase.
|
||||
*/
|
||||
fixup_offset = le16toh(teih->StrippedSize);
|
||||
fixup_offset -= sizeof(EFI_TE_IMAGE_HEADER);
|
||||
/* Keep track of a base that is correctly adjusted so that offsets
|
||||
* can be used directly. */
|
||||
te_base = te;
|
||||
te_base -= fixup_offset;
|
||||
|
||||
image_base = le64toh(teih->ImageBase);
|
||||
adj = new_addr - (image_base + fixup_offset);
|
||||
|
||||
printk(FSP_DBG_LVL, "TE Image %p -> %p adjust value: %x\n",
|
||||
(void *)image_base, (void *)new_addr, adj);
|
||||
|
||||
/* Adjust ImageBase for consistency. */
|
||||
teih->ImageBase = htole32(image_base + adj);
|
||||
|
||||
relocd = &teih->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC];
|
||||
|
||||
relocd_offset = 0;
|
||||
/* Though the field name is VirtualAddress it's actually relative to
|
||||
* the beginning of the image which is linked at ImageBase. */
|
||||
relocb = relative_offset(te,
|
||||
le32toh(relocd->VirtualAddress) - fixup_offset);
|
||||
while (relocd_offset < relocd->Size) {
|
||||
size_t rva_offset = le32toh(relocb->VirtualAddress);
|
||||
|
||||
printk(FSP_DBG_LVL, "Relocs for RVA offset %zx\n", rva_offset);
|
||||
num_relocs = le32toh(relocb->SizeOfBlock) - sizeof(*relocb);
|
||||
num_relocs /= sizeof(uint16_t);
|
||||
reloc = relative_offset(relocb, sizeof(*relocb));
|
||||
|
||||
printk(FSP_DBG_LVL, "Num relocs in block: %zx\n", num_relocs);
|
||||
|
||||
while (num_relocs > 0) {
|
||||
uint16_t reloc_val = le16toh(*reloc);
|
||||
int type = reloc_type(reloc_val);
|
||||
size_t offset = reloc_offset(reloc_val);
|
||||
|
||||
printk(FSP_DBG_LVL, "reloc type %x offset %zx\n",
|
||||
type, offset);
|
||||
|
||||
if (type == EFI_IMAGE_REL_BASED_HIGHLOW) {
|
||||
uint32_t *reloc_addr;
|
||||
uint32_t val;
|
||||
|
||||
offset += rva_offset;
|
||||
reloc_addr = (void *)&te_base[offset];
|
||||
val = le32toh(*reloc_addr);
|
||||
|
||||
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
|
||||
reloc_addr, val, val + adj);
|
||||
*reloc_addr = htole32(val + adj);
|
||||
} else if (type != EFI_IMAGE_REL_BASED_ABSOLUTE) {
|
||||
printk(BIOS_ERR, "Unknown reloc type: %x\n",
|
||||
type);
|
||||
return -1;
|
||||
}
|
||||
num_relocs--;
|
||||
reloc++;
|
||||
}
|
||||
|
||||
/* Track consumption of relocation directory contents. */
|
||||
relocd_offset += le32toh(relocb->SizeOfBlock);
|
||||
/* Get next relocation block to process. */
|
||||
relocb = relative_offset(relocb, le32toh(relocb->SizeOfBlock));
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static size_t csh_size(const EFI_COMMON_SECTION_HEADER *csh)
|
||||
{
|
||||
size_t size;
|
||||
|
||||
/* Unpack the array into a type that can be used. */
|
||||
size = 0;
|
||||
size |= le8toh(csh->Size[0]) << 0;
|
||||
size |= le8toh(csh->Size[1]) << 8;
|
||||
size |= le8toh(csh->Size[2]) << 16;
|
||||
|
||||
return size;
|
||||
}
|
||||
|
||||
static size_t section_data_offset(const EFI_COMMON_SECTION_HEADER *csh)
|
||||
{
|
||||
if (csh_size(csh) == 0x00ffffff)
|
||||
return sizeof(EFI_COMMON_SECTION_HEADER2);
|
||||
else
|
||||
return sizeof(EFI_COMMON_SECTION_HEADER);
|
||||
}
|
||||
|
||||
static size_t section_data_size(const EFI_COMMON_SECTION_HEADER *csh)
|
||||
{
|
||||
size_t section_size;
|
||||
|
||||
if (csh_size(csh) == 0x00ffffff)
|
||||
section_size = le32toh(SECTION2_SIZE(csh));
|
||||
else
|
||||
section_size = csh_size(csh);
|
||||
|
||||
return section_size - section_data_offset(csh);
|
||||
}
|
||||
|
||||
static size_t file_section_offset(const EFI_FFS_FILE_HEADER *ffsfh)
|
||||
{
|
||||
if (IS_FFS_FILE2(ffsfh))
|
||||
return sizeof(EFI_FFS_FILE_HEADER2);
|
||||
else
|
||||
return sizeof(EFI_FFS_FILE_HEADER);
|
||||
}
|
||||
|
||||
static size_t ffs_file_size(const EFI_FFS_FILE_HEADER *ffsfh)
|
||||
{
|
||||
size_t size;
|
||||
|
||||
if (IS_FFS_FILE2(ffsfh))
|
||||
size = le32toh(FFS_FILE2_SIZE(ffsfh));
|
||||
else {
|
||||
size = le8toh(ffsfh->Size[0]) << 0;
|
||||
size |= le8toh(ffsfh->Size[1]) << 8;
|
||||
size |= le8toh(ffsfh->Size[2]) << 16;
|
||||
}
|
||||
return size;
|
||||
}
|
||||
|
||||
static int relocate_patch_table(void *fsp, size_t size, size_t offset,
|
||||
ssize_t adjustment)
|
||||
{
|
||||
struct fsp_patch_table *table;
|
||||
size_t num;
|
||||
size_t num_entries;
|
||||
|
||||
table = relative_offset(fsp, offset);
|
||||
|
||||
if ((offset + sizeof(*table) > size) ||
|
||||
(le16toh(table->header_length) + offset) > size) {
|
||||
printk(BIOS_ERR, "FSPP not entirely contained in region.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
num_entries = le32toh(table->patch_entry_num);
|
||||
printk(FSP_DBG_LVL, "FSPP relocs: %zx\n", num_entries);
|
||||
|
||||
for (num = 0; num < table->patch_entry_num; num++) {
|
||||
uint32_t *reloc;
|
||||
uint32_t reloc_val;
|
||||
|
||||
reloc = fspp_reloc(fsp, size,
|
||||
le32toh(table->patch_entries[num]));
|
||||
|
||||
if (reloc == NULL) {
|
||||
printk(BIOS_ERR, "Ignoring FSPP entry: %x\n",
|
||||
le32toh(table->patch_entries[num]));
|
||||
continue;
|
||||
}
|
||||
|
||||
reloc_val = le32toh(*reloc);
|
||||
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
|
||||
reloc, reloc_val,
|
||||
(unsigned int)(reloc_val + adjustment));
|
||||
|
||||
*reloc = htole32(reloc_val + adjustment);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static ssize_t relocate_remaining_items(void *fsp, size_t size,
|
||||
uintptr_t new_addr, size_t fih_offset)
|
||||
{
|
||||
EFI_FFS_FILE_HEADER *ffsfh;
|
||||
EFI_COMMON_SECTION_HEADER *csh;
|
||||
FSP_INFO_HEADER *fih;
|
||||
ssize_t adjustment;
|
||||
size_t offset;
|
||||
|
||||
printk(FSP_DBG_LVL, "FSP_INFO_HEADER offset is %zx\n", fih_offset);
|
||||
|
||||
if (fih_offset == 0) {
|
||||
printk(BIOS_ERR, "FSP_INFO_HEADER offset is 0.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/* FSP_INFO_HEADER at first file in FV within first RAW section. */
|
||||
ffsfh = relative_offset(fsp, fih_offset);
|
||||
fih_offset += file_section_offset(ffsfh);
|
||||
csh = relative_offset(fsp, fih_offset);
|
||||
fih_offset += section_data_offset(csh);
|
||||
fih = relative_offset(fsp, fih_offset);
|
||||
|
||||
if (guid_compare(&ffsfh->Name, &fih_guid)) {
|
||||
printk(BIOS_ERR, "Bad FIH GUID.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (le8toh(csh->Type) != EFI_SECTION_RAW) {
|
||||
printk(BIOS_ERR, "FIH file should have raw section: %x\n",
|
||||
csh->Type);
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (le32toh(fih->Signature) != FSP_SIG) {
|
||||
printk(BIOS_ERR, "Unexpected FIH signature: %08x\n",
|
||||
le32toh(fih->Signature));
|
||||
return -1;
|
||||
}
|
||||
|
||||
adjustment = (intptr_t)new_addr - le32toh(fih->ImageBase);
|
||||
|
||||
/* Update ImageBase to reflect FSP's new home. */
|
||||
fih->ImageBase = htole32(adjustment + le32toh(fih->ImageBase));
|
||||
|
||||
/* Need to find patch table and adjust each entry. The tables
|
||||
* following FSP_INFO_HEADER have a 32-bit signature and header
|
||||
* length. The patch table is denoted as having a 'FSPP' signature;
|
||||
* the table format doesn't follow the other tables. */
|
||||
offset = fih_offset + le32toh(fih->HeaderLength);
|
||||
while (offset + 2 * sizeof(uint32_t) <= size) {
|
||||
uint32_t *table_headers;
|
||||
|
||||
table_headers = relative_offset(fsp, offset);
|
||||
|
||||
printk(FSP_DBG_LVL, "Checking offset %zx for 'FSPP'\n",
|
||||
offset);
|
||||
|
||||
if (le32toh(table_headers[0]) != FSPP_SIG) {
|
||||
offset += le32toh(table_headers[1]);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (relocate_patch_table(fsp, size, offset, adjustment)) {
|
||||
printk(BIOS_ERR, "FSPP relocation failed.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
return fih_offset;
|
||||
}
|
||||
|
||||
printk(BIOS_ERR, "Could not find the FSP patch table.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
|
||||
size_t fvh_offset, size_t *fih_offset)
|
||||
{
|
||||
EFI_FIRMWARE_VOLUME_HEADER *fvh;
|
||||
EFI_FFS_FILE_HEADER *ffsfh;
|
||||
EFI_COMMON_SECTION_HEADER *csh;
|
||||
size_t offset;
|
||||
size_t file_offset;
|
||||
size_t size;
|
||||
size_t fv_length;
|
||||
|
||||
offset = fvh_offset;
|
||||
fvh = relative_offset(fsp, offset);
|
||||
|
||||
if (le32toh(fvh->Signature) != EFI_FVH_SIGNATURE)
|
||||
return -1;
|
||||
|
||||
fv_length = le64toh(fvh->FvLength);
|
||||
|
||||
printk(FSP_DBG_LVL, "FVH length: %zx Offset: %zx Mapping length: %zx\n",
|
||||
fv_length, offset, fsp_size);
|
||||
|
||||
if (fvh->FvLength + offset > fsp_size)
|
||||
return -1;
|
||||
|
||||
/* Parse only this FV. However, the algorithm uses offsets into the
|
||||
* entire FSP region so make size include the starting offset. */
|
||||
size = fv_length + offset;
|
||||
|
||||
if (guid_compare(&fvh->FileSystemGuid, &ffs2_guid)) {
|
||||
printk(BIOS_ERR, "FVH not an FFS2 type.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (le16toh(fvh->ExtHeaderOffset) != 0) {
|
||||
EFI_FIRMWARE_VOLUME_EXT_HEADER *fveh;
|
||||
|
||||
offset += le16toh(fvh->ExtHeaderOffset);
|
||||
fveh = relative_offset(fsp, offset);
|
||||
printk(FSP_DBG_LVL, "Extended Header Offset: %zx Size: %zx\n",
|
||||
(size_t)le16toh(fvh->ExtHeaderOffset),
|
||||
(size_t)le32toh(fveh->ExtHeaderSize));
|
||||
offset += le32toh(fveh->ExtHeaderSize);
|
||||
/* FFS files are 8 byte aligned after extended header. */
|
||||
offset = ALIGN_UP(offset, 8);
|
||||
} else {
|
||||
offset += le16toh(fvh->HeaderLength);
|
||||
}
|
||||
|
||||
file_offset = offset;
|
||||
while (file_offset + sizeof(*ffsfh) < size) {
|
||||
offset = file_offset;
|
||||
printk(FSP_DBG_LVL, "file offset: %zx\n", file_offset);
|
||||
|
||||
/* First file and section should be FSP info header. */
|
||||
if (fih_offset != NULL && *fih_offset == 0)
|
||||
*fih_offset = file_offset;
|
||||
|
||||
ffsfh = relative_offset(fsp, file_offset);
|
||||
|
||||
printk(FSP_DBG_LVL, "file type = %x\n", le8toh(ffsfh->Type));
|
||||
printk(FSP_DBG_LVL, "file attribs = %x\n",
|
||||
le8toh(ffsfh->Attributes));
|
||||
|
||||
/* Exit FV relocation when empty space found */
|
||||
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_MAX)
|
||||
break;
|
||||
|
||||
/* Next file on 8 byte alignment. */
|
||||
file_offset += ffs_file_size(ffsfh);
|
||||
file_offset = ALIGN_UP(file_offset, 8);
|
||||
|
||||
/* Padding files have no section information. */
|
||||
if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_PAD)
|
||||
continue;
|
||||
|
||||
offset += file_section_offset(ffsfh);
|
||||
|
||||
while (offset + sizeof(*csh) < file_offset) {
|
||||
size_t data_size;
|
||||
size_t data_offset;
|
||||
|
||||
csh = relative_offset(fsp, offset);
|
||||
|
||||
printk(FSP_DBG_LVL, "section offset: %zx\n", offset);
|
||||
printk(FSP_DBG_LVL, "section type: %x\n",
|
||||
le8toh(csh->Type));
|
||||
|
||||
data_size = section_data_size(csh);
|
||||
data_offset = section_data_offset(csh);
|
||||
|
||||
if (data_size + data_offset + offset > file_offset) {
|
||||
printk(BIOS_ERR, "Section exceeds FV size.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
/*
|
||||
* The entire FSP 1.1 image can be thought of as one
|
||||
* program with a single link address even though there
|
||||
* are multiple TEs linked separately. The reason is
|
||||
* that each TE is linked for XIP. So in order to
|
||||
* relocate the TE properly we need to form the
|
||||
* relocated address based on the TE offset within
|
||||
* FSP proper.
|
||||
*/
|
||||
if (le8toh(csh->Type) == EFI_SECTION_TE) {
|
||||
void *te;
|
||||
size_t te_offset = offset + data_offset;
|
||||
uintptr_t te_addr = new_addr + te_offset;
|
||||
|
||||
printk(FSP_DBG_LVL, "TE image at offset %zx\n",
|
||||
te_offset);
|
||||
te = relative_offset(fsp, te_offset);
|
||||
te_relocate(te_addr, te, data_size);
|
||||
}
|
||||
|
||||
offset += data_size + data_offset;
|
||||
/* Sections are aligned to 4 bytes. */
|
||||
offset = ALIGN_UP(offset, 4);
|
||||
}
|
||||
}
|
||||
|
||||
/* Return amount of buffer parsed: FV size. */
|
||||
return fv_length;
|
||||
}
|
||||
|
||||
static ssize_t fsp1_1_relocate(uintptr_t new_addr, void *fsp, size_t size)
|
||||
{
|
||||
size_t offset;
|
||||
size_t fih_offset;
|
||||
|
||||
offset = 0;
|
||||
fih_offset = 0;
|
||||
while (offset < size) {
|
||||
ssize_t nparsed;
|
||||
|
||||
/* Relocate each FV within the FSP region. The FSP_INFO_HEADER
|
||||
* should only be located in the first FV. */
|
||||
if (offset == 0)
|
||||
nparsed = relocate_fvh(new_addr, fsp, size, offset,
|
||||
&fih_offset);
|
||||
else
|
||||
nparsed = relocate_fvh(new_addr, fsp, size, offset,
|
||||
NULL);
|
||||
|
||||
/* FV should be larger than 0 or failed to parse. */
|
||||
if (nparsed <= 0) {
|
||||
printk(BIOS_ERR, "FV @ offset %zx relocation failed\n",
|
||||
offset);
|
||||
return -1;
|
||||
}
|
||||
|
||||
offset += nparsed;
|
||||
}
|
||||
|
||||
return relocate_remaining_items(fsp, size, new_addr, fih_offset);
|
||||
}
|
||||
|
||||
int fsp_relocate(struct prog *fsp_relocd, const struct region_device *fsp_src)
|
||||
{
|
||||
|
@ -564,7 +47,7 @@ int fsp_relocate(struct prog *fsp_relocd, const struct region_device *fsp_src)
|
|||
return -1;
|
||||
}
|
||||
|
||||
fih = relative_offset(new_loc, fih_offset);
|
||||
fih = (void *)((uint8_t *)new_loc + fih_offset);
|
||||
|
||||
prog_set_area(fsp_relocd, new_loc, size);
|
||||
prog_set_entry(fsp_relocd, fih, NULL);
|
||||
|
|
|
@ -53,6 +53,12 @@ void *get_first_resource_hob(const EFI_GUID *guid);
|
|||
*/
|
||||
int fsp_relocate(struct prog *fsp_relocd, const struct region_device *fsp_src);
|
||||
|
||||
/*
|
||||
* Relocate FSP held within buffer defined by size to new_addr. Returns < 0
|
||||
* on error, offset to FSP_INFO_HEADER on success.
|
||||
*/
|
||||
ssize_t fsp1_1_relocate(uintptr_t new_addr, void *fsp, size_t size);
|
||||
|
||||
/* Additional HOB types not included in the FSP:
|
||||
* #define EFI_HOB_TYPE_HANDOFF 0x0001
|
||||
* #define EFI_HOB_TYPE_MEMORY_ALLOCATION 0x0002
|
||||
|
|
Loading…
Reference in New Issue