Overhaul speedstep code

This adds proper support for turbo and super-low-frequency modes.
Calculation of the p-states has been rewritten and moved into an
extra file speedstep.c so it can be used for non-acpi stuff like
EMTTM table generation.

It has been tested with a Core2Duo T9400 (Penryn) and a Core Duo T2300
(Yonah) processor.

Change-Id: I5f7104fc921ba67d85794254f11d486b6688ecec
Signed-off-by: Nico Huber <nico.huber@secunet.com>
Reviewed-on: http://review.coreboot.org/1658
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
This commit is contained in:
Nico Huber 2012-10-02 11:11:42 +02:00 committed by Stefan Reinauer
parent 252d39bb15
commit a74af56dc1
4 changed files with 376 additions and 78 deletions

View File

@ -1 +1 @@
ramstage-$(CONFIG_GENERATE_ACPI_TABLES) += acpi.c ramstage-$(CONFIG_GENERATE_ACPI_TABLES) += acpi.c speedstep.c

View File

@ -2,6 +2,7 @@
* This file is part of the coreboot project. * This file is part of the coreboot project.
* *
* Copyright (C) 2009 coresystems GmbH * Copyright (C) 2009 coresystems GmbH
* 2012 secunet Security Networks AG
* *
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as * modify it under the terms of the GNU General Public License as
@ -28,7 +29,18 @@
#include <cpu/intel/speedstep.h> #include <cpu/intel/speedstep.h>
#include <device/device.h> #include <device/device.h>
// XXX: PSS table values for power consumption are for Merom only /**
* @brief Returns c-state entries for this system
*
* This function is usually overwritten in mainboard code.
*
* @return Number of c-states *entries will point to.
*/
int __attribute__((weak)) get_cst_entries(acpi_cstate_t **entries
__attribute__((unused)))
{
return 0;
}
static int determine_total_number_of_cores(void) static int determine_total_number_of_cores(void)
{ {
@ -47,110 +59,133 @@ static int determine_total_number_of_cores(void)
return count; return count;
} }
/**
* @brief Returns three times the FSB clock in MHz
*
* The result of calculations with the returned value shall be divided by 3.
* This helps to avoid rounding errors.
*/
static int get_fsb(void) static int get_fsb(void)
{ {
const u32 fsbcode = rdmsr(0xcd).lo & 7; const u32 fsbcode = rdmsr(0xcd).lo & 7;
switch (fsbcode) { switch (fsbcode) {
case 0: return 266; case 0: return 800; /* / 3 == 266 */
case 1: return 133; case 1: return 400; /* / 3 == 133 */
case 2: return 200; case 2: return 600; /* / 3 == 200 */
case 3: return 166; case 3: return 500; /* / 3 == 166 */
case 4: return 333; case 4: return 1000; /* / 3 == 333 */
case 5: return 100; case 5: return 300; /* / 3 == 100 */
case 6: return 400; case 6: return 1200; /* / 3 == 400 */
} }
printk(BIOS_DEBUG, "Warning: No supported FSB frequency. Assuming 200MHz\n"); printk(BIOS_WARNING,
return 200; "Warning: No supported FSB frequency. Assuming 200MHz\n");
return 600;
} }
int __attribute__((weak)) get_cst_entries(acpi_cstate_t **entries __attribute__((unused))) static int gen_pstate_entries(const sst_table_t *const pstates,
const int cpuID, const int cores_per_package,
const uint8_t coordination)
{ {
return 0; int i;
int len, len_ps;
int frequency;
len = acpigen_write_empty_PCT();
len += acpigen_write_PSD_package(
cpuID, cores_per_package, coordination);
len += acpigen_write_name("_PSS");
const int fsb3 = get_fsb();
const int min_ratio2 = SPEEDSTEP_DOUBLE_RATIO(
pstates->states[pstates->num_states - 1]);
const int max_ratio2 = SPEEDSTEP_DOUBLE_RATIO(pstates->states[0]);
printk(BIOS_DEBUG, "clocks between %d and %d MHz.\n",
(min_ratio2 * fsb3)
/ (pstates->states[pstates->num_states - 1].is_slfm ? 12 : 6),
(max_ratio2 * fsb3) / 6);
printk(BIOS_DEBUG, "adding %x P-States between "
"busratio %x and %x, ""incl. P0\n",
pstates->num_states, min_ratio2 / 2, max_ratio2 / 2);
len_ps = acpigen_write_package(pstates->num_states);
for (i = 0; i < pstates->num_states; ++i) {
const sst_state_t *const pstate = &pstates->states[i];
/* Report frequency of turbo mode as that of HFM + 1. */
if (pstate->is_turbo)
frequency = (SPEEDSTEP_DOUBLE_RATIO(
pstates->states[i + 1]) * fsb3) / 6 + 1;
/* Super-LFM runs at half frequency. */
else if (pstate->is_slfm)
frequency = (SPEEDSTEP_DOUBLE_RATIO(*pstate)*fsb3)/12;
else
frequency = (SPEEDSTEP_DOUBLE_RATIO(*pstate)*fsb3)/6;
len_ps += acpigen_write_PSS_package(
frequency, pstate->power, 0, 0,
SPEEDSTEP_ENCODE_STATE(*pstate),
SPEEDSTEP_ENCODE_STATE(*pstate));
}
len_ps--;
acpigen_patch_len(len_ps);
len += acpigen_write_PPC(0);
len += len_ps;
return len;
} }
/**
* @brief Generate ACPI entries for Speedstep for each cpu
*/
void generate_cpu_entries(void) void generate_cpu_entries(void)
{ {
int len_pr, len_ps; int len_pr;
int coreID, cpuID, pcontrol_blk = PMB0_BASE, plen = 6; int coreID, cpuID, pcontrol_blk = PMB0_BASE, plen = 6;
msr_t msr;
int totalcores = determine_total_number_of_cores(); int totalcores = determine_total_number_of_cores();
int cores_per_package = (cpuid_ebx(1)>>16) & 0xff; int cores_per_package = (cpuid_ebx(1)>>16) & 0xff;
int numcpus = totalcores/cores_per_package; // this assumes that all CPUs share the same layout int numcpus = totalcores/cores_per_package; /* This assumes that all
int count; CPUs share the same
acpi_cstate_t *cst_entries; layout. */
int num_cstates;
acpi_cstate_t *cstates;
sst_table_t pstates;
uint8_t coordination;
printk(BIOS_DEBUG, "Found %d CPU(s) with %d core(s) each.\n", numcpus, cores_per_package); printk(BIOS_DEBUG, "Found %d CPU(s) with %d core(s) each.\n",
numcpus, cores_per_package);
for (cpuID=1; cpuID <=numcpus; cpuID++) { num_cstates = get_cst_entries(&cstates);
speedstep_gen_pstates(&pstates);
if (((cpuid_eax(1) >> 4) & 0xffff) == 0x1067)
/* For Penryn use HW_ALL. */
coordination = HW_ALL;
else
/* Use SW_ANY as that was the default. */
coordination = SW_ANY;
for (cpuID = 0; cpuID < numcpus; ++cpuID) {
for (coreID=1; coreID<=cores_per_package; coreID++) { for (coreID=1; coreID<=cores_per_package; coreID++) {
if (coreID>1) { if (coreID>1) {
pcontrol_blk = 0; pcontrol_blk = 0;
plen = 0; plen = 0;
} }
/* Generate processor \_PR.CPUx. */
len_pr = acpigen_write_processor( len_pr = acpigen_write_processor(
(cpuID - 1) * cores_per_package + coreID - 1, pcontrol_blk, plen); cpuID * cores_per_package + coreID - 1,
len_pr += acpigen_write_empty_PCT(); pcontrol_blk, plen);
len_pr += acpigen_write_PSD_package(cpuID-1,cores_per_package,SW_ANY);
if ((count = get_cst_entries(&cst_entries)) > 0)
len_pr += acpigen_write_CST_package(cst_entries, count);
len_pr += acpigen_write_name("_PSS");
int max_states=8; /* Generate p-state entries. */
int busratio_step=2; len_pr += gen_pstate_entries(&pstates, cpuID,
msr = rdmsr(IA32_PERF_STS); cores_per_package, coordination);
int busratio_min=(msr.lo >> 24) & 0x1f;
int busratio_max=(msr.hi >> (40-32)) & 0x1f;
int vid_min=msr.lo & 0x3f;
msr = rdmsr(IA32_PLATFORM_ID);
int vid_max=msr.lo & 0x3f;
int clock_max=get_fsb()*busratio_max;
int clock_min=get_fsb()*busratio_min;
printk(BIOS_DEBUG, "clocks between %d and %d MHz.\n", clock_min, clock_max);
#define MEROM_MIN_POWER 16000
#define MEROM_MAX_POWER 35000
int power_max=MEROM_MAX_POWER;
int power_min=MEROM_MIN_POWER;
int num_states=(busratio_max-busratio_min)/busratio_step; /* Generate c-state entries. */
while (num_states > max_states-1) { if (num_cstates > 0)
busratio_step <<= 1; len_pr += acpigen_write_CST_package(
num_states >>= 1; cstates, num_cstates);
}
printk(BIOS_DEBUG, "adding %x P-States between busratio %x and %x, incl. P0\n",
num_states+1, busratio_min, busratio_max);
int vid_step=(vid_max-vid_min)/num_states;
int power_step=(power_max-power_min)/num_states;
int clock_step=(clock_max-clock_min)/num_states;
len_ps = acpigen_write_package(num_states + 1); /* For Super LFM, this must
be increases by another one. */
len_ps += acpigen_write_PSS_package(
clock_max /*mhz*/, power_max /*mW*/, 0 /*lat1*/, 0 /*lat2*/,
(busratio_max << 8) | vid_max /*control*/,
(busratio_max << 8) | vid_max /*status*/);
int current_busratio=busratio_min+((num_states-1)*busratio_step);
int current_vid=vid_min+((num_states-1)*vid_step);
int current_power=power_min+((num_states-1)*power_step);
int current_clock=clock_min+((num_states-1)*clock_step);
int i;
for (i=0;i<num_states; i++) {
len_ps += acpigen_write_PSS_package(
current_clock /*mhz*/, current_power /*mW*/,
0 /*lat1*/, 0 /*lat2*/,
(current_busratio << 8) | current_vid /*control*/,
(current_busratio << 8) | current_vid /*status*/);
current_busratio -= busratio_step;
current_vid -= vid_step;
current_power -= power_step;
current_clock -= clock_step;
}
len_ps--;
acpigen_patch_len(len_ps);
len_pr += acpigen_write_PPC(0);
len_pr += len_ps;
len_pr--; len_pr--;
acpigen_patch_len(len_pr); acpigen_patch_len(len_pr);
} }
} }
} }

View File

@ -0,0 +1,189 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2012 secunet Security Networks AG
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
* MA 02110-1301 USA
*/
#include <types.h>
#include <string.h>
#include <arch/cpu.h>
#include <cpu/x86/msr.h>
#include <console/console.h>
#include <cpu/intel/speedstep.h>
/**
* @brief Gather speedstep limits for current processor
*
* At least power limits are processor type specific. Penryn introduced half
* steps in bus ratios. Don't know about Atom processors.
*/
static void speedstep_get_limits(sst_params_t *const params)
{
msr_t msr;
const uint16_t cpu_id = (cpuid_eax(1) >> 4) & 0xffff;
const uint32_t state_mask =
/* Penryn supports non integer (i.e. half) ratios. */
((cpu_id == 0x1067) ? SPEEDSTEP_RATIO_NONINT : 0)
| SPEEDSTEP_RATIO_VALUE_MASK | SPEEDSTEP_VID_MASK;
/* Initialize params to zero. */
memset(params, '\0', sizeof(*params));
/* Read Super-LFM parameters. */
if (((rdmsr(MSR_EXTENDED_CONFIG).lo >> 27) & 3) == 3) {/*supported and
enabled bits */
msr = rdmsr(MSR_FSB_CLOCK_VCC);
params->slfm = SPEEDSTEP_STATE_FROM_MSR(msr.lo, state_mask);
params->slfm.dynfsb = 1;
params->slfm.is_slfm = 1;
}
/* Read normal minimum parameters. */
msr = rdmsr(MSR_THERM2_CTL);
params->min = SPEEDSTEP_STATE_FROM_MSR(msr.lo, state_mask);
/* Read normal maximum parameters. */
/* Newer CPUs provide the normal maximum settings in
IA32_PLATFORM_ID. The values in IA32_PERF_STS change
when using turbo mode. */
msr = rdmsr(IA32_PLATFORM_ID);
params->max = SPEEDSTEP_STATE_FROM_MSR(msr.lo, state_mask);
if (cpu_id == 0x006e) {
/* Looks like Yonah CPUs don't have the frequency ratio in
IA32_PLATFORM_ID. Use IA32_PERF_STS instead, the reading
should be reliable as those CPUs don't have turbo mode. */
msr = rdmsr(IA32_PERF_STS);
params->max.ratio = (msr.hi & SPEEDSTEP_RATIO_VALUE_MASK)
>> SPEEDSTEP_RATIO_SHIFT;
}
/* Read turbo parameters. */
msr = rdmsr(MSR_FSB_CLOCK_VCC);
if ((msr.hi & (1 << (63 - 32))) &&
/* supported and */
!(rdmsr(IA32_MISC_ENABLES).hi & (1 << (38 - 32)))) {
/* not disabled */
params->turbo = SPEEDSTEP_STATE_FROM_MSR(msr.hi, state_mask);
params->turbo.is_turbo = 1;
}
/* Set power limits by processor type. */
/* Defined values match the normal voltage versions only. But
they are only a hint for OSPM, so this should not hurt much. */
switch (cpu_id) {
case 0x006e:
/* Yonah */
params->min.power = SPEEDSTEP_MIN_POWER_YONAH;
params->max.power = SPEEDSTEP_MAX_POWER_YONAH;
break;
case 0x1067:
/* Penryn */
params->slfm.power = SPEEDSTEP_SLFM_POWER_PENRYN;
params->min.power = SPEEDSTEP_MIN_POWER_PENRYN;
params->max.power = SPEEDSTEP_MAX_POWER_PENRYN;
params->turbo.power = SPEEDSTEP_MAX_POWER_PENRYN;
break;
case 0x006f:
/* Merom */
default:
/* Use Merom values by default (as before). */
params->slfm.power = SPEEDSTEP_SLFM_POWER_MEROM;
params->min.power = SPEEDSTEP_MIN_POWER_MEROM;
params->max.power = SPEEDSTEP_MAX_POWER_MEROM;
params->turbo.power = SPEEDSTEP_MAX_POWER_MEROM;
break;
}
}
/**
* @brief Generate full p-states table from processor parameters
*
* This is generic code and should work at least for Merom and Penryn
* processors. It is used to generate acpi tables and configure EMTTM.
*/
void speedstep_gen_pstates(sst_table_t *const table)
{
sst_params_t params;
/* Gather speedstep limits. */
speedstep_get_limits(&params);
/*\ First, find the number of normal states: \*/
/* Calculate with doubled values to work
around non-integer (.5) bus ratios. */
const int power_diff2 = (params.max.power - params.min.power) * 2;
const int vid_diff2 = (params.max.vid - params.min.vid) * 2;
const int max_ratio2 = SPEEDSTEP_DOUBLE_RATIO(params.max);
const int min_ratio2 = SPEEDSTEP_DOUBLE_RATIO(params.min);
const int ratio_diff2 = max_ratio2 - min_ratio2;
/* Calculate number of normal states (LFM to HFM, min to max). */
/* Increase step size, until all states fit into the table.
(Note: First try should always work, if
SPEEDSTEP_MAX_NORMAL_STATES is set correctly.) */
int states, step2 = 0;
do {
step2 += 2 * 2; /* Must be a multiple of 2 (doubled). */
states = ratio_diff2 / step2 + 1;
} while (states > SPEEDSTEP_MAX_NORMAL_STATES);
if (step2 > 4)
printk(BIOS_INFO, "Enhanced Speedstep processor with "
"more than %d possible p-states.\n",
SPEEDSTEP_MAX_NORMAL_STATES);
if (states < 2) /* Report at least two normal states. */
states = 2;
/*\ Now, fill the table: \*/
table->num_states = 0;
/* Add turbo state if supported. */
if (params.turbo.is_turbo)
table->states[table->num_states++] = params.turbo;
/* Add HFM first. */
table->states[table->num_states] = params.max;
/* Work around HFM and LFM having the same bus ratio. */
if ((params.max.dynfsb == params.min.dynfsb) &&
(params.max.nonint == params.min.nonint) &&
(params.max.ratio == params.min.ratio))
table->states[table->num_states].vid = params.min.vid;
++table->num_states;
--states;
/* Now, add all other normal states based on LFM (min). */
const int power_step = (power_diff2 / states) / 2;
const int vid_step = (vid_diff2 / states) / 2;
const int ratio_step = step2 / 2;
int power = params.min.power + (states - 1) * power_step;
int vid = params.min.vid + (states - 1) * vid_step;
int ratio = params.min.ratio + (states - 1) * ratio_step;
for (; states > 0; --states) {
table->states[table->num_states++] =
(sst_state_t){ 0, 0, ratio, vid, 0, 0, power };
power -= power_step;
vid -= vid_step;
ratio -= ratio_step;
}
/* At last, add Super-LFM state if supported. */
if (params.slfm.is_slfm)
table->states[table->num_states++] = params.slfm;
}

View File

@ -2,6 +2,7 @@
* This file is part of the coreboot project. * This file is part of the coreboot project.
* *
* Copyright (C) 2007-2009 coresystems GmbH * Copyright (C) 2007-2009 coresystems GmbH
* 2012 secunet Security Networks AG
* *
* This program is free software; you can redistribute it and/or * This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as * modify it under the terms of the GNU General Public License as
@ -19,6 +20,11 @@
* MA 02110-1301 USA * MA 02110-1301 USA
*/ */
#ifndef CPU_INTEL_SPEEDSTEP_H
#define CPU_INTEL_SPEEDSTEP_H
#include <stdint.h>
/* Magic value used to locate speedstep configuration in the device tree */ /* Magic value used to locate speedstep configuration in the device tree */
#define SPEEDSTEP_APIC_MAGIC 0xACAC #define SPEEDSTEP_APIC_MAGIC 0xACAC
@ -39,3 +45,71 @@
#define IA32_PERF_CTL 0x199 #define IA32_PERF_CTL 0x199
#define MSR_THERM2_CTL 0x19D #define MSR_THERM2_CTL 0x19D
#define IA32_MISC_ENABLES 0x1A0 #define IA32_MISC_ENABLES 0x1A0
#define MSR_FSB_CLOCK_VCC 0xce
#define MSR_EXTENDED_CONFIG 0xee
typedef struct {
uint8_t dynfsb : 1; /* whether this is SLFM */
uint8_t nonint : 1; /* add .5 to ratio */
uint8_t ratio : 6;
uint8_t vid;
uint8_t is_turbo;
uint8_t is_slfm;
uint32_t power;
} sst_state_t;
#define SPEEDSTEP_RATIO_SHIFT 8
#define SPEEDSTEP_RATIO_DYNFSB_SHIFT (7 + SPEEDSTEP_RATIO_SHIFT)
#define SPEEDSTEP_RATIO_DYNFSB (1 << SPEEDSTEP_RATIO_DYNFSB_SHIFT)
#define SPEEDSTEP_RATIO_NONINT_SHIFT (6 + SPEEDSTEP_RATIO_SHIFT)
#define SPEEDSTEP_RATIO_NONINT (1 << SPEEDSTEP_RATIO_NONINT_SHIFT)
#define SPEEDSTEP_RATIO_VALUE_MASK (0x1f << SPEEDSTEP_RATIO_SHIFT)
#define SPEEDSTEP_VID_MASK 0x3f
#define SPEEDSTEP_STATE_FROM_MSR(val, mask) ((sst_state_t){ \
0, /* dynfsb won't be read. */ \
((val & mask) & SPEEDSTEP_RATIO_NONINT) ? 1 : 0, \
(((val & mask) & SPEEDSTEP_RATIO_VALUE_MASK) \
>> SPEEDSTEP_RATIO_SHIFT), \
(val & mask) & SPEEDSTEP_VID_MASK, \
0, /* not turbo by default */ \
0, /* not slfm by default */ \
0 /* power is hardcoded in software. */ \
})
#define SPEEDSTEP_ENCODE_STATE(state) ( \
((uint16_t)(state).dynfsb << SPEEDSTEP_RATIO_DYNFSB_SHIFT) | \
((uint16_t)(state).nonint << SPEEDSTEP_RATIO_NONINT_SHIFT) | \
((uint16_t)(state).ratio << SPEEDSTEP_RATIO_SHIFT) | \
((uint16_t)(state).vid & SPEEDSTEP_VID_MASK))
#define SPEEDSTEP_DOUBLE_RATIO(state) ( \
((uint8_t)(state).ratio * 2) + (state).nonint)
typedef struct {
sst_state_t slfm;
sst_state_t min;
sst_state_t max;
sst_state_t turbo;
} sst_params_t;
/* Looking at core2's spec, the highest normal bus ratio for an eist enabled
processor is 14, the lowest is always 6. This makes 5 states with the
minimal step width of 2. With turbo mode and super LFM we have at most 7. */
#define SPEEDSTEP_MAX_NORMAL_STATES 5
#define SPEEDSTEP_MAX_STATES (SPEEDSTEP_MAX_NORMAL_STATES + 2)
typedef struct {
/* Table of p-states for EMTTM and ACPI by decreasing performance. */
sst_state_t states[SPEEDSTEP_MAX_STATES];
int num_states;
} sst_table_t;
void speedstep_gen_pstates(sst_table_t *);
#define SPEEDSTEP_MAX_POWER_YONAH 31000
#define SPEEDSTEP_MIN_POWER_YONAH 13100
#define SPEEDSTEP_MAX_POWER_MEROM 35000
#define SPEEDSTEP_MIN_POWER_MEROM 25000
#define SPEEDSTEP_SLFM_POWER_MEROM 12000
#define SPEEDSTEP_MAX_POWER_PENRYN 35000
#define SPEEDSTEP_MIN_POWER_PENRYN 15000
#define SPEEDSTEP_SLFM_POWER_PENRYN 12000
#endif /* CPU_INTEL_SPEEDSTEP_H */