drivers/intel/fsp1_1: handle UEFI endianness

UEFI defines everything as little endian. Additionally the
EDK II header files assume they are used on machines
which are running UEFI -- thus little endian. This patch
attempts to fix up all the possible endian violations
when running on a big endian machine. This is for
in preparation of using the FSP 1.1 code in userland
for relocating FSP images.

BUG=chrome-os-partner:44827
BRANCH=None
TEST=Built and booted glados.

Change-Id: I39f4de84688e48978a4650303b8af8345f44fd03
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Original-Commit-Id: 3c7eab9b7c10765355feffa3c3cac403275f9479
Original-Change-Id: I33a7661281307cf31ae33899d1a4eb6a2fbd01a1
Original-Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Original-Reviewed-on: https://chromium-review.googlesource.com/298832
Original-Reviewed-by: Duncan Laurie <dlaurie@chromium.org>
Reviewed-on: http://review.coreboot.org/11664
Tested-by: build bot (Jenkins)
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
This commit is contained in:
Aaron Durbin 2015-09-10 22:36:20 -05:00 committed by Patrick Georgi
parent 8007c6b6e8
commit a77d0d6b39
1 changed files with 102 additions and 58 deletions

View File

@ -19,6 +19,7 @@
#include <console/console.h> #include <console/console.h>
#include <cbmem.h> #include <cbmem.h>
#include <endian.h>
#include <fsp/util.h> #include <fsp/util.h>
#include <stdlib.h> #include <stdlib.h>
#include <stdint.h> #include <stdint.h>
@ -26,6 +27,32 @@
#define FSP_DBG_LVL BIOS_NEVER #define FSP_DBG_LVL BIOS_NEVER
/*
* UEFI defines everything as little endian. However, this piece of code
* can be integrated in a userland tool. That tool could be on a big endian
* machine so one needs to access the fields within UEFI structures using
* endian-aware accesses.
*/
/* Return 0 if equal. Non-zero if not equal. */
static int guid_compare(const EFI_GUID *le_guid, const EFI_GUID *native_guid)
{
if (le32toh(le_guid->Data1) != native_guid->Data1)
return 1;
if (le16toh(le_guid->Data2) != native_guid->Data2)
return 1;
if (le16toh(le_guid->Data3) != native_guid->Data3)
return 1;
return memcmp(le_guid->Data4, native_guid->Data4,
ARRAY_SIZE(le_guid->Data4));
}
/* Provide this for symmetry when accessing UEFI fields. */
static inline uint8_t le8toh(uint8_t byte)
{
return byte;
}
static const EFI_GUID ffs2_guid = EFI_FIRMWARE_FILE_SYSTEM2_GUID; static const EFI_GUID ffs2_guid = EFI_FIRMWARE_FILE_SYSTEM2_GUID;
static const EFI_GUID fih_guid = FSP_INFO_HEADER_GUID; static const EFI_GUID fih_guid = FSP_INFO_HEADER_GUID;
@ -87,6 +114,7 @@ static int te_relocate(uintptr_t new_addr, void *te, size_t size)
EFI_TE_IMAGE_HEADER *teih; EFI_TE_IMAGE_HEADER *teih;
EFI_IMAGE_DATA_DIRECTORY *relocd; EFI_IMAGE_DATA_DIRECTORY *relocd;
EFI_IMAGE_BASE_RELOCATION *relocb; EFI_IMAGE_BASE_RELOCATION *relocb;
uintptr_t image_base;
size_t fixup_offset; size_t fixup_offset;
size_t num_relocs; size_t num_relocs;
uint16_t *reloc; uint16_t *reloc;
@ -96,9 +124,10 @@ static int te_relocate(uintptr_t new_addr, void *te, size_t size)
teih = te; teih = te;
if (teih->Signature != EFI_TE_IMAGE_HEADER_SIGNATURE) { if (le16toh(teih->Signature) != EFI_TE_IMAGE_HEADER_SIGNATURE) {
printk(BIOS_ERR, "TE Signature mismatch: %x vs %x\n", printk(BIOS_ERR, "TE Signature mismatch: %x vs %x\n",
teih->Signature, EFI_TE_IMAGE_HEADER_SIGNATURE); le16toh(teih->Signature),
EFI_TE_IMAGE_HEADER_SIGNATURE);
return -1; return -1;
} }
@ -109,54 +138,58 @@ static int te_relocate(uintptr_t new_addr, void *te, size_t size)
* from the encoded offets. Similarly, the linked address of the * from the encoded offets. Similarly, the linked address of the
* program is found by adding the fixup_offset to the ImageBase. * program is found by adding the fixup_offset to the ImageBase.
*/ */
fixup_offset = teih->StrippedSize - sizeof(EFI_TE_IMAGE_HEADER); fixup_offset = le16toh(teih->StrippedSize);
fixup_offset -= sizeof(EFI_TE_IMAGE_HEADER);
/* Keep track of a base that is correctly adjusted so that offsets /* Keep track of a base that is correctly adjusted so that offsets
* can be used directly. */ * can be used directly. */
te_base = te; te_base = te;
te_base -= fixup_offset; te_base -= fixup_offset;
adj = new_addr - (teih->ImageBase + fixup_offset); image_base = le64toh(teih->ImageBase);
adj = new_addr - (image_base + fixup_offset);
printk(FSP_DBG_LVL, "TE Image %p -> %p adjust value: %x\n", printk(FSP_DBG_LVL, "TE Image %p -> %p adjust value: %x\n",
(void *)(uintptr_t)(teih->ImageBase + fixup_offset), (void *)image_base, (void *)new_addr, adj);
(void *)new_addr, adj);
/* Adjust ImageBase for consistency. */ /* Adjust ImageBase for consistency. */
teih->ImageBase = (uint32_t)(teih->ImageBase + adj); teih->ImageBase = htole32(image_base + adj);
relocd = &teih->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC]; relocd = &teih->DataDirectory[EFI_TE_IMAGE_DIRECTORY_ENTRY_BASERELOC];
relocd_offset = 0; relocd_offset = 0;
/* Though the field name is VirtualAddress it's actually relative to /* Though the field name is VirtualAddress it's actually relative to
* the beginning of the image which is linked at ImageBase. */ * the beginning of the image which is linked at ImageBase. */
relocb = relative_offset(te, relocd->VirtualAddress - fixup_offset); relocb = relative_offset(te,
le32toh(relocd->VirtualAddress) - fixup_offset);
while (relocd_offset < relocd->Size) { while (relocd_offset < relocd->Size) {
size_t rva_offset = relocb->VirtualAddress; size_t rva_offset = le32toh(relocb->VirtualAddress);
printk(FSP_DBG_LVL, "Relocs for RVA offset %zx\n", rva_offset); printk(FSP_DBG_LVL, "Relocs for RVA offset %zx\n", rva_offset);
num_relocs = relocb->SizeOfBlock - sizeof(*relocb); num_relocs = le32toh(relocb->SizeOfBlock) - sizeof(*relocb);
num_relocs /= sizeof(uint16_t); num_relocs /= sizeof(uint16_t);
reloc = relative_offset(relocb, sizeof(*relocb)); reloc = relative_offset(relocb, sizeof(*relocb));
printk(FSP_DBG_LVL, "Num relocs in block: %zx\n", num_relocs); printk(FSP_DBG_LVL, "Num relocs in block: %zx\n", num_relocs);
while (num_relocs > 0) { while (num_relocs > 0) {
int type = reloc_type(*reloc); uint16_t reloc_val = le16toh(*reloc);
size_t offset = reloc_offset(*reloc); int type = reloc_type(reloc_val);
size_t offset = reloc_offset(reloc_val);
printk(FSP_DBG_LVL, "reloc type %x offset %zx\n", printk(FSP_DBG_LVL, "reloc type %x offset %zx\n",
type, offset); type, offset);
if (type == EFI_IMAGE_REL_BASED_HIGHLOW) { if (type == EFI_IMAGE_REL_BASED_HIGHLOW) {
uint32_t *reloc_addr; uint32_t *reloc_addr;
uint32_t val;
offset += rva_offset; offset += rva_offset;
reloc_addr = (void *)&te_base[offset]; reloc_addr = (void *)&te_base[offset];
val = le32toh(*reloc_addr);
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n", printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
reloc_addr, *reloc_addr, reloc_addr, val, val + adj);
*reloc_addr + adj); *reloc_addr = htole32(val + adj);
*reloc_addr += adj;
} else if (type != EFI_IMAGE_REL_BASED_ABSOLUTE) { } else if (type != EFI_IMAGE_REL_BASED_ABSOLUTE) {
printk(BIOS_ERR, "Unknown reloc type: %x\n", printk(BIOS_ERR, "Unknown reloc type: %x\n",
type); type);
@ -167,9 +200,9 @@ static int te_relocate(uintptr_t new_addr, void *te, size_t size)
} }
/* Track consumption of relocation directory contents. */ /* Track consumption of relocation directory contents. */
relocd_offset += relocb->SizeOfBlock; relocd_offset += le32toh(relocb->SizeOfBlock);
/* Get next relocation block to process. */ /* Get next relocation block to process. */
relocb = relative_offset(relocb, relocb->SizeOfBlock); relocb = relative_offset(relocb, le32toh(relocb->SizeOfBlock));
} }
return 0; return 0;
@ -181,9 +214,9 @@ static size_t csh_size(const EFI_COMMON_SECTION_HEADER *csh)
/* Unpack the array into a type that can be used. */ /* Unpack the array into a type that can be used. */
size = 0; size = 0;
size |= csh->Size[0] << 0; size |= le8toh(csh->Size[0]) << 0;
size |= csh->Size[1] << 8; size |= le8toh(csh->Size[1]) << 8;
size |= csh->Size[2] << 16; size |= le8toh(csh->Size[2]) << 16;
return size; return size;
} }
@ -201,7 +234,7 @@ static size_t section_data_size(const EFI_COMMON_SECTION_HEADER *csh)
size_t section_size; size_t section_size;
if (csh_size(csh) == 0x00ffffff) if (csh_size(csh) == 0x00ffffff)
section_size = SECTION2_SIZE(csh); section_size = le32toh(SECTION2_SIZE(csh));
else else
section_size = csh_size(csh); section_size = csh_size(csh);
@ -221,11 +254,11 @@ static size_t ffs_file_size(const EFI_FFS_FILE_HEADER *ffsfh)
size_t size; size_t size;
if (IS_FFS_FILE2(ffsfh)) if (IS_FFS_FILE2(ffsfh))
size = FFS_FILE2_SIZE(ffsfh); size = le32toh(FFS_FILE2_SIZE(ffsfh));
else { else {
size = ffsfh->Size[0] << 0; size = le8toh(ffsfh->Size[0]) << 0;
size |= ffsfh->Size[1] << 8; size |= le8toh(ffsfh->Size[1]) << 8;
size |= ffsfh->Size[2] << 16; size |= le8toh(ffsfh->Size[2]) << 16;
} }
return size; return size;
} }
@ -234,33 +267,39 @@ static int relocate_patch_table(void *fsp, size_t size, size_t offset,
ssize_t adjustment) ssize_t adjustment)
{ {
struct fsp_patch_table *table; struct fsp_patch_table *table;
uint32_t num; size_t num;
size_t num_entries;
table = relative_offset(fsp, offset); table = relative_offset(fsp, offset);
if ((offset + sizeof(*table) > size) || if ((offset + sizeof(*table) > size) ||
(table->header_length + offset) > size) { (le16toh(table->header_length) + offset) > size) {
printk(BIOS_ERR, "FSPP not entirely contained in region.\n"); printk(BIOS_ERR, "FSPP not entirely contained in region.\n");
return -1; return -1;
} }
printk(FSP_DBG_LVL, "FSPP relocs: %x\n", table->patch_entry_num); num_entries = le32toh(table->patch_entry_num);
printk(FSP_DBG_LVL, "FSPP relocs: %zx\n", num_entries);
for (num = 0; num < table->patch_entry_num; num++) { for (num = 0; num < table->patch_entry_num; num++) {
uint32_t *reloc; uint32_t *reloc;
uint32_t reloc_val;
reloc = fspp_reloc(fsp, size, table->patch_entries[num]); reloc = fspp_reloc(fsp, size,
le32toh(table->patch_entries[num]));
if (reloc == NULL) { if (reloc == NULL) {
printk(BIOS_ERR, "Ignoring FSPP entry: %x\n", printk(BIOS_ERR, "Ignoring FSPP entry: %x\n",
table->patch_entries[num]); le32toh(table->patch_entries[num]));
continue; continue;
} }
reloc_val = le32toh(*reloc);
printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n", printk(FSP_DBG_LVL, "Adjusting %p %x -> %x\n",
reloc, *reloc, (unsigned int)(*reloc + adjustment)); reloc, reloc_val,
(unsigned int)(reloc_val + adjustment));
*reloc += adjustment; *reloc = htole32(reloc_val + adjustment);
} }
return 0; return 0;
@ -289,33 +328,33 @@ static ssize_t relocate_remaining_items(void *fsp, size_t size,
fih_offset += section_data_offset(csh); fih_offset += section_data_offset(csh);
fih = relative_offset(fsp, fih_offset); fih = relative_offset(fsp, fih_offset);
if (memcmp(&ffsfh->Name, &fih_guid, sizeof(fih_guid))) { if (guid_compare(&ffsfh->Name, &fih_guid)) {
printk(BIOS_ERR, "Bad FIH GUID.\n"); printk(BIOS_ERR, "Bad FIH GUID.\n");
return -1; return -1;
} }
if (csh->Type != EFI_SECTION_RAW) { if (le8toh(csh->Type) != EFI_SECTION_RAW) {
printk(BIOS_ERR, "FIH file should have raw section: %x\n", printk(BIOS_ERR, "FIH file should have raw section: %x\n",
csh->Type); csh->Type);
return -1; return -1;
} }
if (fih->Signature != FSP_SIG) { if (le32toh(fih->Signature) != FSP_SIG) {
printk(BIOS_ERR, "Unexpected FIH signature: %08x\n", printk(BIOS_ERR, "Unexpected FIH signature: %08x\n",
fih->Signature); le32toh(fih->Signature));
return -1; return -1;
} }
adjustment = (intptr_t)new_addr - fih->ImageBase; adjustment = (intptr_t)new_addr - le32toh(fih->ImageBase);
/* Update ImageBase to reflect FSP's new home. */ /* Update ImageBase to reflect FSP's new home. */
fih->ImageBase += adjustment; fih->ImageBase = htole32(adjustment + le32toh(fih->ImageBase));
/* Need to find patch table and adjust each entry. The tables /* Need to find patch table and adjust each entry. The tables
* following FSP_INFO_HEADER have a 32-bit signature and header * following FSP_INFO_HEADER have a 32-bit signature and header
* length. The patch table is denoted as having a 'FSPP' signature; * length. The patch table is denoted as having a 'FSPP' signature;
* the table format doesn't follow the other tables. */ * the table format doesn't follow the other tables. */
offset = fih_offset + fih->HeaderLength; offset = fih_offset + le32toh(fih->HeaderLength);
while (offset + 2 * sizeof(uint32_t) <= size) { while (offset + 2 * sizeof(uint32_t) <= size) {
uint32_t *table_headers; uint32_t *table_headers;
@ -324,8 +363,8 @@ static ssize_t relocate_remaining_items(void *fsp, size_t size,
printk(FSP_DBG_LVL, "Checking offset %zx for 'FSPP'\n", printk(FSP_DBG_LVL, "Checking offset %zx for 'FSPP'\n",
offset); offset);
if (table_headers[0] != FSPP_SIG) { if (le32toh(table_headers[0]) != FSPP_SIG) {
offset += table_headers[1]; offset += le32toh(table_headers[1]);
continue; continue;
} }
@ -350,41 +389,44 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
size_t offset; size_t offset;
size_t file_offset; size_t file_offset;
size_t size; size_t size;
size_t fv_length;
offset = fvh_offset; offset = fvh_offset;
fvh = relative_offset(fsp, offset); fvh = relative_offset(fsp, offset);
if (fvh->Signature != EFI_FVH_SIGNATURE) if (le32toh(fvh->Signature) != EFI_FVH_SIGNATURE)
return -1; return -1;
fv_length = le64toh(fvh->FvLength);
printk(FSP_DBG_LVL, "FVH length: %zx Offset: %zx Mapping length: %zx\n", printk(FSP_DBG_LVL, "FVH length: %zx Offset: %zx Mapping length: %zx\n",
(size_t)fvh->FvLength, offset, fsp_size); fv_length, offset, fsp_size);
if (fvh->FvLength + offset > fsp_size) if (fvh->FvLength + offset > fsp_size)
return -1; return -1;
/* Parse only this FV. However, the algorithm uses offsets into the /* Parse only this FV. However, the algorithm uses offsets into the
* entire FSP region so make size include the starting offset. */ * entire FSP region so make size include the starting offset. */
size = fvh->FvLength + offset; size = fv_length + offset;
if (memcmp(&fvh->FileSystemGuid, &ffs2_guid, sizeof(ffs2_guid))) { if (guid_compare(&fvh->FileSystemGuid, &ffs2_guid)) {
printk(BIOS_ERR, "FVH not an FFS2 type.\n"); printk(BIOS_ERR, "FVH not an FFS2 type.\n");
return -1; return -1;
} }
if (fvh->ExtHeaderOffset != 0) { if (le16toh(fvh->ExtHeaderOffset) != 0) {
EFI_FIRMWARE_VOLUME_EXT_HEADER *fveh; EFI_FIRMWARE_VOLUME_EXT_HEADER *fveh;
offset += fvh->ExtHeaderOffset; offset += le16toh(fvh->ExtHeaderOffset);
fveh = relative_offset(fsp, offset); fveh = relative_offset(fsp, offset);
printk(FSP_DBG_LVL, "Extended Header Offset: %zx Size: %zx\n", printk(FSP_DBG_LVL, "Extended Header Offset: %zx Size: %zx\n",
(size_t)fvh->ExtHeaderOffset, (size_t)le16toh(fvh->ExtHeaderOffset),
(size_t)fveh->ExtHeaderSize); (size_t)le32toh(fveh->ExtHeaderSize));
offset += fveh->ExtHeaderSize; offset += le32toh(fveh->ExtHeaderSize);
/* FFS files are 8 byte aligned after extended header. */ /* FFS files are 8 byte aligned after extended header. */
offset = ALIGN_UP(offset, 8); offset = ALIGN_UP(offset, 8);
} else { } else {
offset += fvh->HeaderLength; offset += le16toh(fvh->HeaderLength);
} }
file_offset = offset; file_offset = offset;
@ -398,11 +440,12 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
ffsfh = relative_offset(fsp, file_offset); ffsfh = relative_offset(fsp, file_offset);
printk(FSP_DBG_LVL, "file type = %x\n", ffsfh->Type); printk(FSP_DBG_LVL, "file type = %x\n", le8toh(ffsfh->Type));
printk(FSP_DBG_LVL, "file attribs = %x\n", ffsfh->Attributes); printk(FSP_DBG_LVL, "file attribs = %x\n",
le8toh(ffsfh->Attributes));
/* Exit FV relocation when empty space found */ /* Exit FV relocation when empty space found */
if (ffsfh->Type == EFI_FV_FILETYPE_FFS_MAX) if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_MAX)
break; break;
/* Next file on 8 byte alignment. */ /* Next file on 8 byte alignment. */
@ -410,7 +453,7 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
file_offset = ALIGN_UP(file_offset, 8); file_offset = ALIGN_UP(file_offset, 8);
/* Padding files have no section information. */ /* Padding files have no section information. */
if (ffsfh->Type == EFI_FV_FILETYPE_FFS_PAD) if (le8toh(ffsfh->Type) == EFI_FV_FILETYPE_FFS_PAD)
continue; continue;
offset += file_section_offset(ffsfh); offset += file_section_offset(ffsfh);
@ -422,7 +465,8 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
csh = relative_offset(fsp, offset); csh = relative_offset(fsp, offset);
printk(FSP_DBG_LVL, "section offset: %zx\n", offset); printk(FSP_DBG_LVL, "section offset: %zx\n", offset);
printk(FSP_DBG_LVL, "section type: %x\n", csh->Type); printk(FSP_DBG_LVL, "section type: %x\n",
le8toh(csh->Type));
data_size = section_data_size(csh); data_size = section_data_size(csh);
data_offset = section_data_offset(csh); data_offset = section_data_offset(csh);
@ -441,7 +485,7 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
* relocated address based on the TE offset within * relocated address based on the TE offset within
* FSP proper. * FSP proper.
*/ */
if (csh->Type == EFI_SECTION_TE) { if (le8toh(csh->Type) == EFI_SECTION_TE) {
void *te; void *te;
size_t te_offset = offset + data_offset; size_t te_offset = offset + data_offset;
uintptr_t te_addr = new_addr + te_offset; uintptr_t te_addr = new_addr + te_offset;
@ -459,7 +503,7 @@ static ssize_t relocate_fvh(uintptr_t new_addr, void *fsp, size_t fsp_size,
} }
/* Return amount of buffer parsed: FV size. */ /* Return amount of buffer parsed: FV size. */
return fvh->FvLength; return fv_length;
} }
static ssize_t fsp1_1_relocate(uintptr_t new_addr, void *fsp, size_t size) static ssize_t fsp1_1_relocate(uintptr_t new_addr, void *fsp, size_t size)