Add section header parsing and use it in the mk-payload step

This completes the improvements to the ELF file parsing code.  We can
now parse section headers too, across all 4 combinations of word size
and endianness. I had hoped to completely remove the use of htonl
until I found it in cbfs_image.c. That's a battle for another day.

There's now a handy macro to create magic numbers in host byte order.
I'm using it for all the PAYLOAD_SEGMENT_* constants and maybe
we can use it for the others too, but this is sensitive code and
I'd rather change one thing at a time.

To maximize the ease of use for users, elf parsing is accomplished with
just one function:

int
elf_headers(const struct buffer *pinput,
	    Elf64_Ehdr *ehdr,
	    Elf64_Phdr **pphdr,
	    Elf64_Shdr **pshdr)

which requires the ehdr and pphdr pointers to be non-NULL, but allows
the pshdr to be NULL. If pshdr is NULL, the code will not try to read
in section headers.

To satisfy our powerful scripts, I had to remove the ^M from an unrelated
microcode file.

BUG=None
TEST=Build a peppy image (known to boot) with old and new versions and verify they are bit-for-bit the same. This was also fully tested across all chromebooks for building and booting and running chromeos.
BRANCH=None

Change-Id: I54dad887d922428b6175fdb6a9cdfadd8a6bb889
Signed-off-by: Ronald G. Minnich <rminnich@google.com>
Reviewed-on: https://chromium-review.googlesource.com/181272
Reviewed-by: Ronald Minnich <rminnich@chromium.org>
Commit-Queue: Ronald Minnich <rminnich@chromium.org>
Tested-by: Ronald Minnich <rminnich@chromium.org>
Signed-off-by: Ronald G. Minnich <rminnich@google.com>
Reviewed-on: http://review.coreboot.org/5098
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
This commit is contained in:
Ronald G. Minnich 2013-12-30 13:16:18 -08:00 committed by Ronald G. Minnich
parent 25fc8d181f
commit a8a133ded3
12 changed files with 13528 additions and 13389 deletions

File diff suppressed because it is too large Load Diff

View File

@ -13,7 +13,7 @@ LDFLAGS += -g
BINARY:=$(obj)/cbfstool
COMMON:=cbfstool.o common.o cbfs_image.o compress.o fit.o
COMMON+=cbfs-mkstage.o cbfs-mkpayload.o xdr.o
COMMON+=elfheaders.o cbfs-mkstage.o cbfs-mkpayload.o xdr.o
# LZMA
COMMON+=lzma/lzma.o
COMMON+=lzma/C/LzFind.o lzma/C/LzmaDec.o lzma/C/LzmaEnc.o

View File

@ -5,6 +5,7 @@ cbfsobj += compress.o
cbfsobj += cbfs_image.o
cbfsobj += cbfs-mkstage.o
cbfsobj += cbfs-mkpayload.o
cbfsobj += elfheaders.o
cbfsobj += xdr.o
cbfsobj += fit.o
# LZMA

View File

@ -23,18 +23,39 @@
#include <stdlib.h>
#include <string.h>
#include "elf.h"
#include "common.h"
#include "cbfs.h"
#include "elf.h"
#include "fv.h"
#include "coff.h"
/* serialize the seg array into the buffer.
* The buffer is assumed to be large enough.
*/
static void xdr_segs(struct buffer *output,
struct cbfs_payload_segment *segs, int nseg)
{
struct buffer outheader;
int i;
outheader.data = output->data;
outheader.size = 0;
for(i = 0; i < nseg; i++){
xdr_be.put32(&outheader, segs[i].type);
xdr_be.put32(&outheader, segs[i].compression);
xdr_be.put32(&outheader, segs[i].offset);
xdr_be.put64(&outheader, segs[i].load_addr);
xdr_be.put32(&outheader, segs[i].len);
xdr_be.put32(&outheader, segs[i].mem_len);
}
}
int parse_elf_to_payload(const struct buffer *input,
struct buffer *output, comp_algo algo)
{
Elf32_Phdr *phdr;
Elf32_Ehdr *ehdr = (Elf32_Ehdr *)input->data;
Elf32_Shdr *shdr;
Elf64_Phdr *phdr;
Elf64_Ehdr ehdr;
Elf64_Shdr *shdr;
char *header;
char *strtab;
int headers;
@ -44,39 +65,26 @@ int parse_elf_to_payload(const struct buffer *input,
struct cbfs_payload_segment *segs;
int i;
if(!iself((unsigned char *)input->data)){
INFO("The payload file is not in ELF format!\n");
return -1;
}
// The tool may work in architecture-independent way.
if (arch != CBFS_ARCHITECTURE_UNKNOWN &&
!((ehdr->e_machine == EM_ARM) && (arch == CBFS_ARCHITECTURE_ARMV7)) &&
!((ehdr->e_machine == EM_386) && (arch == CBFS_ARCHITECTURE_X86))) {
ERROR("The payload file has the wrong architecture\n");
return -1;
}
comp_func_ptr compress = compression_function(algo);
if (!compress)
return -1;
if (elf_headers(input, &ehdr, &phdr, &shdr) < 0)
return -1;
DEBUG("start: parse_elf_to_payload\n");
headers = ehdr->e_phnum;
header = (char *)ehdr;
headers = ehdr.e_phnum;
header = input->data;
phdr = (Elf32_Phdr *) & (header[ehdr->e_phoff]);
shdr = (Elf32_Shdr *) & (header[ehdr->e_shoff]);
strtab = &header[shdr[ehdr->e_shstrndx].sh_offset];
strtab = &header[shdr[ehdr.e_shstrndx].sh_offset];
/* Count the number of headers - look for the .notes.pinfo
* section */
for (i = 0; i < ehdr->e_shnum; i++) {
for (i = 0; i < ehdr.e_shnum; i++) {
char *name;
if (i == ehdr->e_shstrndx)
if (i == ehdr.e_shstrndx)
continue;
if (shdr[i].sh_size == 0)
@ -106,29 +114,39 @@ int parse_elf_to_payload(const struct buffer *input,
segments++;
}
/* allocate the segment header array */
segs = calloc(segments, sizeof(*segs));
if (segs == NULL)
return -1;
/* Allocate a block of memory to store the data in */
if (buffer_create(output, (segments * sizeof(*segs)) + isize,
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
doffset = (segments * sizeof(struct cbfs_payload_segment));
doffset = (segments * sizeof(*segs));
segs = (struct cbfs_payload_segment *)output->data;
/* set up for output marshaling. This is a bit
* tricky as we are marshaling the headers at the front,
* and the data starting after the headers. We need to convert
* the headers to the right format but the data
* passes through unchanged. Unlike most XDR code,
* we are doing these two concurrently. The doffset is
* used to compute the address for the raw data, and the
* outheader is used to marshal the headers. To make it simpler
* for The Reader, we set up the headers in a separate array,
* then marshal them all at once to the output.
*/
segments = 0;
for (i = 0; i < ehdr->e_shnum; i++) {
for (i = 0; i < ehdr.e_shnum; i++) {
char *name;
if (i == ehdr->e_shstrndx)
if (i == ehdr.e_shstrndx)
continue;
if (shdr[i].sh_size == 0)
continue;
name = (char *)(strtab + shdr[i].sh_name);
if (!strcmp(name, ".note.pinfo")) {
segs[segments].type = PAYLOAD_SEGMENT_PARAMS;
segs[segments].load_addr = 0;
@ -148,17 +166,13 @@ int parse_elf_to_payload(const struct buffer *input,
for (i = 0; i < headers; i++) {
if (phdr[i].p_type != PT_LOAD)
continue;
if (phdr[i].p_memsz == 0)
continue;
if (phdr[i].p_filesz == 0) {
segs[segments].type = PAYLOAD_SEGMENT_BSS;
segs[segments].load_addr =
(uint64_t)htonll(phdr[i].p_paddr);
segs[segments].mem_len =
(uint32_t)htonl(phdr[i].p_memsz);
segs[segments].offset = htonl(doffset);
segs[segments].load_addr = phdr[i].p_paddr;
segs[segments].mem_len = phdr[i].p_memsz;
segs[segments].offset = doffset;
segments++;
continue;
@ -168,37 +182,37 @@ int parse_elf_to_payload(const struct buffer *input,
segs[segments].type = PAYLOAD_SEGMENT_CODE;
else
segs[segments].type = PAYLOAD_SEGMENT_DATA;
segs[segments].load_addr = (uint64_t)htonll(phdr[i].p_paddr);
segs[segments].mem_len = (uint32_t)htonl(phdr[i].p_memsz);
segs[segments].compression = htonl(algo);
segs[segments].offset = htonl(doffset);
segs[segments].load_addr = phdr[i].p_paddr;
segs[segments].mem_len = phdr[i].p_memsz;
segs[segments].compression = algo;
segs[segments].offset = doffset;
int len;
compress((char *)&header[phdr[i].p_offset],
phdr[i].p_filesz, output->data + doffset, &len);
segs[segments].len = htonl(len);
segs[segments].len = len;
/* If the compressed section is larger, then use the
original stuff */
if ((unsigned int)len > phdr[i].p_filesz) {
segs[segments].compression = 0;
segs[segments].len = htonl(phdr[i].p_filesz);
segs[segments].len = phdr[i].p_filesz;
memcpy(output->data + doffset,
&header[phdr[i].p_offset], phdr[i].p_filesz);
}
doffset += ntohl(segs[segments].len);
osize += ntohl(segs[segments].len);
doffset += segs[segments].len;
osize += segs[segments].len;
segments++;
}
segs[segments].type = PAYLOAD_SEGMENT_ENTRY;
segs[segments++].load_addr = htonll(ehdr->e_entry);
segs[segments++].load_addr = ehdr.e_entry;
output->size = (segments * sizeof(struct cbfs_payload_segment)) + osize;
output->size = (segments * sizeof(*segs)) + osize;
xdr_segs(output, segs, segments);
return 0;
}
@ -209,7 +223,7 @@ int parse_flat_binary_to_payload(const struct buffer *input,
comp_algo algo)
{
comp_func_ptr compress;
struct cbfs_payload_segment *segs;
struct cbfs_payload_segment segs[2];
int doffset, len = 0;
compress = compression_function(algo);
@ -217,36 +231,35 @@ int parse_flat_binary_to_payload(const struct buffer *input,
return -1;
DEBUG("start: parse_flat_binary_to_payload\n");
if (buffer_create(output, (2 * sizeof(*segs) + input->size),
if (buffer_create(output, (sizeof(segs) + input->size),
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
segs = (struct cbfs_payload_segment *)output->data;
doffset = (2 * sizeof(*segs));
/* Prepare code segment */
segs[0].type = PAYLOAD_SEGMENT_CODE;
segs[0].load_addr = htonll(loadaddress);
segs[0].mem_len = htonl(input->size);
segs[0].offset = htonl(doffset);
segs[0].load_addr = loadaddress;
segs[0].mem_len = input->size;
segs[0].offset = doffset;
compress(input->data, input->size, output->data + doffset, &len);
segs[0].compression = htonl(algo);
segs[0].len = htonl(len);
segs[0].compression = algo;
segs[0].len = len;
if ((unsigned int)len >= input->size) {
WARN("Compressing data would make it bigger - disabled.\n");
segs[0].compression = 0;
segs[0].len = htonl(input->size);
segs[0].len = input->size;
memcpy(output->data + doffset, input->data, input->size);
}
/* prepare entry point segment */
segs[1].type = PAYLOAD_SEGMENT_ENTRY;
segs[1].load_addr = htonll(entrypoint);
output->size = doffset + ntohl(segs[0].len);
segs[1].load_addr = entrypoint;
output->size = doffset + segs[0].len;
xdr_segs(output, segs, 2);
return 0;
}
@ -254,7 +267,7 @@ int parse_fv_to_payload(const struct buffer *input,
struct buffer *output, comp_algo algo)
{
comp_func_ptr compress;
struct cbfs_payload_segment *segs;
struct cbfs_payload_segment segs[2];
int doffset, len = 0;
firmware_volume_header_t *fv;
ffs_file_header_t *fh;
@ -343,37 +356,36 @@ int parse_fv_to_payload(const struct buffer *input,
return -1;
}
if (buffer_create(output, (2 * sizeof(*segs) + input->size),
if (buffer_create(output, (sizeof(segs) + input->size),
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
segs = (struct cbfs_payload_segment *)output->data;
doffset = (2 * sizeof(*segs));
doffset = (sizeof(segs));
/* Prepare code segment */
segs[0].type = PAYLOAD_SEGMENT_CODE;
segs[0].load_addr = htonll(loadaddress);
segs[0].mem_len = htonl(input->size);
segs[0].offset = htonl(doffset);
segs[0].load_addr = loadaddress;
segs[0].mem_len = input->size;
segs[0].offset = doffset;
compress(input->data, input->size, output->data + doffset, &len);
segs[0].compression = htonl(algo);
segs[0].len = htonl(len);
segs[0].compression = algo;
segs[0].len = len;
if ((unsigned int)len >= input->size) {
WARN("Compressing data would make it bigger - disabled.\n");
segs[0].compression = 0;
segs[0].len = htonl(input->size);
segs[0].len = input->size;
memcpy(output->data + doffset, input->data, input->size);
}
/* prepare entry point segment */
segs[1].type = PAYLOAD_SEGMENT_ENTRY;
segs[1].load_addr = htonll(entrypoint);
output->size = doffset + ntohl(segs[0].len);
segs[1].load_addr = entrypoint;
output->size = doffset + segs[0].len;
xdr_segs(output, segs, 2);
return 0;
}

View File

@ -24,246 +24,9 @@
#include <stdlib.h>
#include <string.h>
#include "elf.h"
#include "common.h"
#include "cbfs.h"
#include "elf.h"
/*
* Short form: this is complicated, but we've tried making it simple
* and we keep hitting problems with our ELF parsing.
*
* The ELF parsing situation has always been a bit tricky. In fact,
* we (and most others) have been getting it wrong in small ways for
* years. Recently this has caused real trouble for the ARM V8 build.
* In this file we attempt to finally get it right for all variations
* of endian-ness and word size and target architectures and
* architectures we might get run on. Phew!. To do this we borrow a
* page from the FreeBSD NFS xdr model (see elf_ehdr and elf_phdr),
* the Plan 9 endianness functions (see xdr.c), and Go interfaces (see
* how we use buffer structs in this file). This ends up being a bit
* wordy at the lowest level, but greatly simplifies the elf parsing
* code and removes a common source of bugs, namely, forgetting to
* flip type endianness when referencing a struct member.
*
* ELF files can have four combinations of data layout: 32/64, and
* big/little endian. Further, to add to the fun, depending on the
* word size, the size of the ELF structs varies. The coreboot SELF
* format is simpler in theory: it's supposed to be always BE, and the
* various struct members allow room for growth: the entry point is
* always 64 bits, for example, so the size of a SELF struct is
* constant, regardless of target architecture word size. Hence, we
* need to do some transformation of the ELF files.
*
* A given architecture, realistically, only supports one of the four
* combinations at a time as the 'native' format. Hence, our code has
* been sprinkled with every variation of [nh]to[hn][sll] over the
* years. We've never quite gotten it all right, however, and a quick
* pass over this code revealed another bug. It's all worked because,
* until now, all the working platforms that had CBFS were 32 LE. Even then,
* however, bugs crept in: we recently realized that we're not
* transforming the entry point to big format when we store into the
* SELF image.
*
* The problem is essentially an XDR operation:
* we have something in a foreign format and need to transform it.
* It's most like XDR because:
* 1) the byte order can be wrong
* 2) the word size can be wrong
* 3) the size of elements in the stream depends on the value
* of other elements in the stream
* it's not like XDR because:
* 1) the byte order can be right
* 2) the word size can be right
* 3) the struct members are all on a natural alignment
*
* Hence, this new approach. To cover word size issues, we *always*
* transform the two structs we care about, the file header and
* program header, into a native struct in the 64 bit format:
*
* [32,little] -> [Elf64_Ehdr, Elf64_Phdr]
* [64,little] -> [Elf64_Ehdr, Elf64_Phdr]
* [32,big] -> [Elf64_Ehdr, Elf64_Phdr]
* [64,big] -> [Elf64_Ehdr, Elf64_Phdr]
* Then we just use those structs, and all the need for inline ntoh* goes away,
* as well as all the chances for error.
* This works because all the SELF structs have fields large enough for
* the largest ELF 64 struct members, and all the Elf64 struct members
* are at least large enough for all ELF 32 struct members.
* We end up with one function to do all our ELF parsing, and two functions
* to transform the headers. For the put case, we also have
* XDR functions, and hopefully we'll never again spend 5 years with the
* wrong endian-ness on an output value :-)
* This should work for all word sizes and endianness we hope to target.
* I *really* don't want to be here for 128 bit addresses.
*
* The parse functions are called with a pointer to an input buffer
* struct. One might ask: are there enough bytes in the input buffer?
* We know there need to be at *least* sizeof(Elf32_Ehdr) +
* sizeof(Elf32_Phdr) bytes. Realistically, there has to be some data
* too. If we start to worry, though we have not in the past, we
* might apply the simple test: the input buffer needs to be at least
* sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) bytes because, even if it's
* ELF 32, there's got to be *some* data! This is not theoretically
* accurate but it is actually good enough in practice. It allows the
* header transformation code to ignore the possibility of underrun.
*
* We also must accomodate different ELF files, and hence formats,
* in the same cbfs invocation. We might load a 64-bit payload
* on a 32-bit machine; we might even have a mixed armv7/armv8
* SOC or even a system with an x86/ARM!
*
* A possibly problematic (though unlikely to be so) assumption
* is that we expect the BIOS to remain in the lowest 32 bits
* of the physical address space. Since ARMV8 has standardized
* on that, and x86_64 also has, this seems a safe assumption.
*
* To repeat, ELF structs are different sizes because ELF struct
* members are different sizes, depending on values in the ELF file
* header. For this we use the functions defined in xdr.c, which
* consume bytes, convert the endianness, and advance the data pointer
* in the buffer struct.
*/
/* Get the ident array, so we can figure out
* endian-ness, word size, and in future other useful
* parameters
*/
static void
elf_eident(struct buffer *input, Elf64_Ehdr *ehdr)
{
memmove(ehdr->e_ident, input->data, sizeof(ehdr->e_ident));
input->data += sizeof(ehdr->e_ident);
input->size -= sizeof(ehdr->e_ident);
}
static void
elf_ehdr(struct buffer *input, Elf64_Ehdr *ehdr, struct xdr *xdr, int bit64)
{
ehdr->e_type = xdr->get16(input);
ehdr->e_machine = xdr->get16(input);
ehdr->e_version = xdr->get32(input);
if (bit64){
ehdr->e_entry = xdr->get64(input);
ehdr->e_phoff = xdr->get64(input);
ehdr->e_shoff = xdr->get64(input);
} else {
ehdr->e_entry = xdr->get32(input);
ehdr->e_phoff = xdr->get32(input);
ehdr->e_shoff = xdr->get32(input);
}
ehdr->e_flags = xdr->get32(input);
ehdr->e_ehsize = xdr->get16(input);
ehdr->e_phentsize = xdr->get16(input);
ehdr->e_phnum = xdr->get16(input);
ehdr->e_shentsize = xdr->get16(input);
ehdr->e_shnum = xdr->get16(input);
ehdr->e_shstrndx = xdr->get16(input);
}
static void
elf_phdr(struct buffer *pinput, Elf64_Phdr *phdr,
int entsize, struct xdr *xdr, int bit64)
{
/*
* The entsize need not be sizeof(*phdr).
* Hence, it is easier to keep a copy of the input,
* as the xdr functions may not advance the input
* pointer the full entsize; rather than get tricky
* we just advance it below.
*/
struct buffer input = *pinput;
if (bit64){
phdr->p_type = xdr->get32(&input);
phdr->p_flags = xdr->get32(&input);
phdr->p_offset = xdr->get64(&input);
phdr->p_vaddr = xdr->get64(&input);
phdr->p_paddr = xdr->get64(&input);
phdr->p_filesz = xdr->get64(&input);
phdr->p_memsz = xdr->get64(&input);
phdr->p_align = xdr->get64(&input);
} else {
phdr->p_type = xdr->get32(&input);
phdr->p_offset = xdr->get32(&input);
phdr->p_vaddr = xdr->get32(&input);
phdr->p_paddr = xdr->get32(&input);
phdr->p_filesz = xdr->get32(&input);
phdr->p_memsz = xdr->get32(&input);
phdr->p_flags = xdr->get32(&input);
phdr->p_align = xdr->get32(&input);
}
pinput->size -= entsize;
pinput->data += entsize;
}
/* Get the headers from the buffer.
* Return -1 in the event of an error.
*/
static int
elf_headers(const struct buffer *pinput, Elf64_Ehdr *ehdr, Elf64_Phdr **pphdr)
{
int i;
struct xdr *xdr = &xdr_le;
int bit64 = 0;
struct buffer input = *(struct buffer *)pinput;
struct buffer phdr_buf;
Elf64_Phdr *phdr;
if (!iself((unsigned char *)pinput->data)) {
ERROR("The stage file is not in ELF format!\n");
return -1;
}
elf_eident(&input, ehdr);
bit64 = ehdr->e_ident[EI_CLASS] == ELFCLASS64;
/* Assume LE unless we are sure otherwise.
* We're not going to take on the task of
* fully validating the ELF file. That way
* lies madness.
*/
if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
xdr = &xdr_be;
elf_ehdr(&input, ehdr, xdr, bit64);
// The tool may work in architecture-independent way.
if (arch != CBFS_ARCHITECTURE_UNKNOWN &&
!((ehdr->e_machine == EM_ARM) && (arch == CBFS_ARCHITECTURE_ARMV7)) &&
!((ehdr->e_machine == EM_386) && (arch == CBFS_ARCHITECTURE_X86))) {
ERROR("The stage file has the wrong architecture\n");
return -1;
}
if (pinput->size < ehdr->e_phoff){
ERROR("The program header offset is greater than "
"the remaining file size."
"%ld bytes left, program header offset is %ld \n",
pinput->size, ehdr->e_phoff);
return -1;
}
/* cons up an input buffer for the headers.
* Note that the program headers can be anywhere,
* per the ELF spec, You'd be surprised how many ELF
* readers miss this little detail.
*/
phdr_buf.data = &pinput->data[ehdr->e_phoff];
phdr_buf.size = ehdr->e_phentsize * ehdr->e_phnum;
if (phdr_buf.size > (pinput->size - ehdr->e_phoff)){
ERROR("The file is not large enough for the program headers."
"%ld bytes left, %ld bytes of headers\n",
pinput->size - ehdr->e_phoff, phdr_buf.size);
return -1;
}
/* gather up all the phdrs.
* We do them all at once because there is more
* than one loop over all the phdrs.
*/
phdr = calloc(sizeof(*phdr), ehdr->e_phnum);
for (i = 0; i < ehdr->e_phnum; i++)
elf_phdr(&phdr_buf, &phdr[i], ehdr->e_phentsize, xdr, bit64);
*pphdr = phdr;
return 0;
}
/* returns size of result, or -1 if error.
* Note that, with the new code, this function
@ -287,7 +50,7 @@ int parse_elf_to_stage(const struct buffer *input, struct buffer *output,
DEBUG("start: parse_elf_to_stage(location=0x%x)\n", *location);
if (elf_headers(input, &ehdr, &phdr) < 0)
if (elf_headers(input, &ehdr, &phdr, NULL) < 0)
return -1;
headers = ehdr.e_phnum;

View File

@ -20,6 +20,18 @@
#define __CBFS_H
#include <stdint.h>
#include "elf.h"
/* create a magic number in host-byte order.
* b3 is the high order byte.
* in the coreboot tools, we go with the 32-bit
* magic number convention.
* This was an inline func but that breaks anything
* that uses it in a case statement.
*/
#define makemagic(b3, b2, b1, b0)\
(((b3)<<24) | ((b2) << 16) | ((b1) << 8) | (b0))
#define CBFS_HEADER_MAGIC 0x4F524243
#define CBFS_HEADPTR_ADDR_X86 0xFFFFFFFC
@ -60,11 +72,11 @@ struct cbfs_stage {
uint32_t memlen;
} __attribute__ ((packed));
#define PAYLOAD_SEGMENT_CODE 0x45444F43
#define PAYLOAD_SEGMENT_DATA 0x41544144
#define PAYLOAD_SEGMENT_BSS 0x20535342
#define PAYLOAD_SEGMENT_PARAMS 0x41524150
#define PAYLOAD_SEGMENT_ENTRY 0x52544E45
#define PAYLOAD_SEGMENT_CODE makemagic('C', 'O', 'D', 'E')
#define PAYLOAD_SEGMENT_DATA makemagic('D', 'A', 'T', 'A')
#define PAYLOAD_SEGMENT_BSS makemagic(' ', 'B', 'S', 'S')
#define PAYLOAD_SEGMENT_PARAMS makemagic('P', 'A', 'R', 'A')
#define PAYLOAD_SEGMENT_ENTRY makemagic('E', 'N', 'T', 'R')
struct cbfs_payload_segment {
uint32_t type;
@ -110,7 +122,22 @@ struct cbfs_payload {
int cbfs_file_header(unsigned long physaddr);
#define CBFS_NAME(_c) (((char *) (_c)) + sizeof(struct cbfs_file))
#define CBFS_SUBHEADER(_p) ( (void *) ((((uint8_t *) (_p)) + ntohl((_p)->offset))) )
/* cbfs_image.c */
uint32_t get_cbfs_entry_type(const char *name, uint32_t default_value);
const char *get_cbfs_entry_type_name(uint32_t type);
uint32_t get_cbfs_compression(const char *name, uint32_t unknown);
/* common.c */
int find_master_header(void *romarea, size_t size);
void recalculate_rom_geometry(void *romarea);
struct cbfs_file *cbfs_create_empty_file(uint32_t physaddr, uint32_t size);
const char *strfiletype(uint32_t number);
/* elfheaders.c */
int
elf_headers(const struct buffer *pinput,
Elf64_Ehdr *ehdr,
Elf64_Phdr **pphdr,
Elf64_Shdr **pshdr);
#endif

View File

@ -24,6 +24,7 @@
#include <string.h>
#include "common.h"
#include "elf.h"
#include "cbfs_image.h"
/* The file name align is not defined in CBFS spec -- only a preference by

View File

@ -26,6 +26,7 @@
#include <unistd.h>
#include <getopt.h>
#include "common.h"
#include "elf.h"
#include "cbfs.h"
#include "cbfs_image.h"
#include "fit.h"

View File

@ -23,9 +23,9 @@
#include <stdlib.h>
#include <string.h>
#include <libgen.h>
#include "elf.h"
#include "common.h"
#include "cbfs.h"
#include "elf.h"
/* Utilities */

View File

@ -144,17 +144,7 @@ struct xdr {
void (*put64)(struct buffer *input, uint64_t val);
};
/* common.c */
int find_master_header(void *romarea, size_t size);
void recalculate_rom_geometry(void *romarea);
const char *strfiletype(uint32_t number);
/* cbfs_image.c */
uint32_t get_cbfs_entry_type(const char *name, uint32_t default_value);
const char *get_cbfs_entry_type_name(uint32_t type);
uint32_t get_cbfs_compression(const char *name, uint32_t unknown);
/* xdr.c */
extern struct xdr xdr_le, xdr_be;
#endif

343
util/cbfstool/elfheaders.c Normal file
View File

@ -0,0 +1,343 @@
/*
* elf header parsing.
*
* Copyright (C) 2013 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "elf.h"
#include "common.h"
#include "cbfs.h"
/*
* Short form: this is complicated, but we've tried making it simple
* and we keep hitting problems with our ELF parsing.
*
* The ELF parsing situation has always been a bit tricky. In fact,
* we (and most others) have been getting it wrong in small ways for
* years. Recently this has caused real trouble for the ARM V8 build.
* In this file we attempt to finally get it right for all variations
* of endian-ness and word size and target architectures and
* architectures we might get run on. Phew!. To do this we borrow a
* page from the FreeBSD NFS xdr model (see elf_ehdr and elf_phdr),
* the Plan 9 endianness functions (see xdr.c), and Go interfaces (see
* how we use buffer structs in this file). This ends up being a bit
* wordy at the lowest level, but greatly simplifies the elf parsing
* code and removes a common source of bugs, namely, forgetting to
* flip type endianness when referencing a struct member.
*
* ELF files can have four combinations of data layout: 32/64, and
* big/little endian. Further, to add to the fun, depending on the
* word size, the size of the ELF structs varies. The coreboot SELF
* format is simpler in theory: it's supposed to be always BE, and the
* various struct members allow room for growth: the entry point is
* always 64 bits, for example, so the size of a SELF struct is
* constant, regardless of target architecture word size. Hence, we
* need to do some transformation of the ELF files.
*
* A given architecture, realistically, only supports one of the four
* combinations at a time as the 'native' format. Hence, our code has
* been sprinkled with every variation of [nh]to[hn][sll] over the
* years. We've never quite gotten it all right, however, and a quick
* pass over this code revealed another bug. It's all worked because,
* until now, all the working platforms that had CBFS were 32 LE. Even then,
* however, bugs crept in: we recently realized that we're not
* transforming the entry point to big format when we store into the
* SELF image.
*
* The problem is essentially an XDR operation:
* we have something in a foreign format and need to transform it.
* It's most like XDR because:
* 1) the byte order can be wrong
* 2) the word size can be wrong
* 3) the size of elements in the stream depends on the value
* of other elements in the stream
* it's not like XDR because:
* 1) the byte order can be right
* 2) the word size can be right
* 3) the struct members are all on a natural alignment
*
* Hence, this new approach. To cover word size issues, we *always*
* transform the two structs we care about, the file header and
* program header, into a native struct in the 64 bit format:
*
* [32,little] -> [Elf64_Ehdr, Elf64_Phdr]
* [64,little] -> [Elf64_Ehdr, Elf64_Phdr]
* [32,big] -> [Elf64_Ehdr, Elf64_Phdr]
* [64,big] -> [Elf64_Ehdr, Elf64_Phdr]
* Then we just use those structs, and all the need for inline ntoh* goes away,
* as well as all the chances for error.
* This works because all the SELF structs have fields large enough for
* the largest ELF 64 struct members, and all the Elf64 struct members
* are at least large enough for all ELF 32 struct members.
* We end up with one function to do all our ELF parsing, and two functions
* to transform the headers. For the put case, we also have
* XDR functions, and hopefully we'll never again spend 5 years with the
* wrong endian-ness on an output value :-)
* This should work for all word sizes and endianness we hope to target.
* I *really* don't want to be here for 128 bit addresses.
*
* The parse functions are called with a pointer to an input buffer
* struct. One might ask: are there enough bytes in the input buffer?
* We know there need to be at *least* sizeof(Elf32_Ehdr) +
* sizeof(Elf32_Phdr) bytes. Realistically, there has to be some data
* too. If we start to worry, though we have not in the past, we
* might apply the simple test: the input buffer needs to be at least
* sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) bytes because, even if it's
* ELF 32, there's got to be *some* data! This is not theoretically
* accurate but it is actually good enough in practice. It allows the
* header transformation code to ignore the possibility of underrun.
*
* We also must accomodate different ELF files, and hence formats,
* in the same cbfs invocation. We might load a 64-bit payload
* on a 32-bit machine; we might even have a mixed armv7/armv8
* SOC or even a system with an x86/ARM!
*
* A possibly problematic (though unlikely to be so) assumption
* is that we expect the BIOS to remain in the lowest 32 bits
* of the physical address space. Since ARMV8 has standardized
* on that, and x86_64 also has, this seems a safe assumption.
*
* To repeat, ELF structs are different sizes because ELF struct
* members are different sizes, depending on values in the ELF file
* header. For this we use the functions defined in xdr.c, which
* consume bytes, convert the endianness, and advance the data pointer
* in the buffer struct.
*/
/* Get the ident array, so we can figure out
* endian-ness, word size, and in future other useful
* parameters
*/
static void
elf_eident(struct buffer *input, Elf64_Ehdr *ehdr)
{
memmove(ehdr->e_ident, input->data, sizeof(ehdr->e_ident));
input->data += sizeof(ehdr->e_ident);
input->size -= sizeof(ehdr->e_ident);
}
static void
elf_ehdr(struct buffer *input, Elf64_Ehdr *ehdr, struct xdr *xdr, int bit64)
{
ehdr->e_type = xdr->get16(input);
ehdr->e_machine = xdr->get16(input);
ehdr->e_version = xdr->get32(input);
if (bit64){
ehdr->e_entry = xdr->get64(input);
ehdr->e_phoff = xdr->get64(input);
ehdr->e_shoff = xdr->get64(input);
} else {
ehdr->e_entry = xdr->get32(input);
ehdr->e_phoff = xdr->get32(input);
ehdr->e_shoff = xdr->get32(input);
}
ehdr->e_flags = xdr->get32(input);
ehdr->e_ehsize = xdr->get16(input);
ehdr->e_phentsize = xdr->get16(input);
ehdr->e_phnum = xdr->get16(input);
ehdr->e_shentsize = xdr->get16(input);
ehdr->e_shnum = xdr->get16(input);
ehdr->e_shstrndx = xdr->get16(input);
}
static void
elf_phdr(struct buffer *pinput, Elf64_Phdr *phdr,
int entsize, struct xdr *xdr, int bit64)
{
/*
* The entsize need not be sizeof(*phdr).
* Hence, it is easier to keep a copy of the input,
* as the xdr functions may not advance the input
* pointer the full entsize; rather than get tricky
* we just advance it below.
*/
struct buffer input = *pinput;
if (bit64){
phdr->p_type = xdr->get32(&input);
phdr->p_flags = xdr->get32(&input);
phdr->p_offset = xdr->get64(&input);
phdr->p_vaddr = xdr->get64(&input);
phdr->p_paddr = xdr->get64(&input);
phdr->p_filesz = xdr->get64(&input);
phdr->p_memsz = xdr->get64(&input);
phdr->p_align = xdr->get64(&input);
} else {
phdr->p_type = xdr->get32(&input);
phdr->p_offset = xdr->get32(&input);
phdr->p_vaddr = xdr->get32(&input);
phdr->p_paddr = xdr->get32(&input);
phdr->p_filesz = xdr->get32(&input);
phdr->p_memsz = xdr->get32(&input);
phdr->p_flags = xdr->get32(&input);
phdr->p_align = xdr->get32(&input);
}
pinput->size -= entsize;
pinput->data += entsize;
}
static void
elf_shdr(struct buffer *pinput, Elf64_Shdr *shdr,
int entsize, struct xdr *xdr, int bit64)
{
/*
* The entsize need not be sizeof(*shdr).
* Hence, it is easier to keep a copy of the input,
* as the xdr functions may not advance the input
* pointer the full entsize; rather than get tricky
* we just advance it below.
*/
struct buffer input = *pinput;
if (bit64){
shdr->sh_name = xdr->get32(&input);
shdr->sh_type = xdr->get32(&input);
shdr->sh_flags = xdr->get64(&input);
shdr->sh_addr = xdr->get64(&input);
shdr->sh_offset = xdr->get64(&input);
shdr->sh_size= xdr->get64(&input);
shdr->sh_link = xdr->get32(&input);
shdr->sh_info = xdr->get32(&input);
shdr->sh_addralign = xdr->get64(&input);
shdr->sh_entsize = xdr->get64(&input);
} else {
shdr->sh_name = xdr->get32(&input);
shdr->sh_type = xdr->get32(&input);
shdr->sh_flags = xdr->get32(&input);
shdr->sh_addr = xdr->get32(&input);
shdr->sh_offset = xdr->get32(&input);
shdr->sh_size = xdr->get32(&input);
shdr->sh_link = xdr->get32(&input);
shdr->sh_info = xdr->get32(&input);
shdr->sh_addralign = xdr->get32(&input);
shdr->sh_entsize = xdr->get32(&input);
}
pinput->size -= entsize;
pinput->data += entsize;
}
/* Get the headers from the buffer.
* Return -1 in the event of an error.
* The section headers are optional; if NULL
* is passed in for pshdr they won't be parsed.
* We don't (yet) make payload parsing optional
* because we've never seen a use case.
*/
int
elf_headers(const struct buffer *pinput,
Elf64_Ehdr *ehdr,
Elf64_Phdr **pphdr,
Elf64_Shdr **pshdr)
{
int i;
struct xdr *xdr = &xdr_le;
int bit64 = 0;
struct buffer input = *(struct buffer *)pinput;
struct buffer phdr_buf;
struct buffer shdr_buf;
Elf64_Phdr *phdr;
Elf64_Shdr *shdr;
if (!iself((unsigned char *)pinput->data)) {
ERROR("The stage file is not in ELF format!\n");
return -1;
}
elf_eident(&input, ehdr);
bit64 = ehdr->e_ident[EI_CLASS] == ELFCLASS64;
/* Assume LE unless we are sure otherwise.
* We're not going to take on the task of
* fully validating the ELF file. That way
* lies madness.
*/
if (ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
xdr = &xdr_be;
elf_ehdr(&input, ehdr, xdr, bit64);
// The tool may work in architecture-independent way.
if (arch != CBFS_ARCHITECTURE_UNKNOWN &&
!((ehdr->e_machine == EM_ARM) && (arch == CBFS_ARCHITECTURE_ARMV7)) &&
!((ehdr->e_machine == EM_386) && (arch == CBFS_ARCHITECTURE_X86))) {
ERROR("The stage file has the wrong architecture\n");
return -1;
}
if (pinput->size < ehdr->e_phoff){
ERROR("The program header offset is greater than "
"the remaining file size."
"%ld bytes left, program header offset is %ld \n",
pinput->size, ehdr->e_phoff);
return -1;
}
/* cons up an input buffer for the headers.
* Note that the program headers can be anywhere,
* per the ELF spec, You'd be surprised how many ELF
* readers miss this little detail.
*/
phdr_buf.data = &pinput->data[ehdr->e_phoff];
phdr_buf.size = ehdr->e_phentsize * ehdr->e_phnum;
if (phdr_buf.size > (pinput->size - ehdr->e_phoff)){
ERROR("The file is not large enough for the program headers."
"%ld bytes left, %ld bytes of headers\n",
pinput->size - ehdr->e_phoff, phdr_buf.size);
return -1;
}
/* gather up all the phdrs.
* We do them all at once because there is more
* than one loop over all the phdrs.
*/
phdr = calloc(sizeof(*phdr), ehdr->e_phnum);
for (i = 0; i < ehdr->e_phnum; i++)
elf_phdr(&phdr_buf, &phdr[i], ehdr->e_phentsize, xdr, bit64);
*pphdr = phdr;
if (!pshdr)
return 0;
if (pinput->size < ehdr->e_shoff){
ERROR("The section header offset is greater than "
"the remaining file size."
"%ld bytes left, program header offset is %ld \n",
pinput->size, ehdr->e_shoff);
return -1;
}
/* cons up an input buffer for the section headers.
* Note that the section headers can be anywhere,
* per the ELF spec, You'd be surprised how many ELF
* readers miss this little detail.
*/
shdr_buf.data = &pinput->data[ehdr->e_shoff];
shdr_buf.size = ehdr->e_shentsize * ehdr->e_shnum;
if (shdr_buf.size > (pinput->size - ehdr->e_shoff)){
ERROR("The file is not large enough for the section headers."
"%ld bytes left, %ld bytes of headers\n",
pinput->size - ehdr->e_shoff, shdr_buf.size);
return -1;
}
/* gather up all the shdrs. */
shdr = calloc(sizeof(*shdr), ehdr->e_shnum);
for (i = 0; i < ehdr->e_shnum; i++)
elf_shdr(&shdr_buf, &shdr[i], ehdr->e_shentsize, xdr, bit64);
*pshdr = shdr;
return 0;
}

View File

@ -23,6 +23,7 @@
#include <stdio.h>
#include "common.h"
#include "elf.h"
#include "cbfs.h"
#include "cbfs_image.h"
#include "fit.h"