This code adds support for coreboot images that use ROMFS.

It also removes the call to FILO from hardwaremain -- that 
has needed removal for a long time. 

abuild tested.
Note that this code has been tested and works on 
both qemu and kontron. The changes to use it are coming 
next.

Signed-off-by: Ronald G. Minnich <rminnich@gmail.com>
Acked-by: Patrick Georgi <patrick.georgi@coresystems.de>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@4039 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
Ronald G. Minnich 2009-04-01 10:48:39 +00:00 committed by Patrick Georgi
parent f834e20ba3
commit ae63126346
5 changed files with 752 additions and 3 deletions

View File

@ -1,5 +1,8 @@
object elfboot.o
object hardwaremain.o
if CONFIG_ROMFS
object selfboot.o
end
if CONFIG_FS_PAYLOAD
object filo.o
end

View File

@ -88,10 +88,21 @@ void hardwaremain(int boot_complete)
*/
lb_mem = write_tables();
#if CONFIG_FS_PAYLOAD == 1
filo(lb_mem);
#if CONFIG_ROMFS == 1
printk_err("=================================================\n");
#if USE_FALLBACK_IMAGE == 1
void (*pl)(void) = romfs_load_payload(lb_mem, "fallback/payload");
#else
elfboot(lb_mem);
void (*pl)(void) = romfs_load_payload(lb_mem, "normal/payload");
#endif
#endif
#warning elfboot will soon be deprecated
printk_err("Trying elfboot, but that will be gone soon!\n");
elfboot(lb_mem);
printk_err("NO BOOT METHOD succeeded\n");
}

497
src/boot/selfboot.c Normal file
View File

@ -0,0 +1,497 @@
#include <console/console.h>
#include <part/fallback_boot.h>
#include <boot/elf.h>
#include <boot/elf_boot.h>
#include <boot/coreboot_tables.h>
#include <ip_checksum.h>
#include <stream/read_bytes.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <romfs.h>
#ifndef CONFIG_BIG_ENDIAN
#define ntohl(x) ( ((x&0xff)<<24) | ((x&0xff00)<<8) | \
((x&0xff0000) >> 8) | ((x&0xff000000) >> 24) )
#else
#define ntohl(x) (x)
#endif
/* Maximum physical address we can use for the coreboot bounce buffer.
*/
#ifndef MAX_ADDR
#define MAX_ADDR -1UL
#endif
extern unsigned char _ram_seg;
extern unsigned char _eram_seg;
struct segment {
struct segment *next;
struct segment *prev;
struct segment *phdr_next;
struct segment *phdr_prev;
unsigned long s_dstaddr;
unsigned long s_srcaddr;
unsigned long s_memsz;
unsigned long s_filesz;
};
struct verify_callback {
struct verify_callback *next;
int (*callback)(struct verify_callback *vcb,
Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head);
unsigned long desc_offset;
unsigned long desc_addr;
};
struct ip_checksum_vcb {
struct verify_callback data;
unsigned short ip_checksum;
};
int romfs_self_decompress(int algo, void *src,struct segment *new)
{
u8 *dst;
/* for uncompressed, it's easy: just point at the area in ROM */
if (algo == ROMFS_COMPRESS_NONE) {
new->s_srcaddr = (u32) src;
new->s_filesz = new->s_memsz;
return 0;
}
/* for compression, let's keep it simple. We'll malloc the destination
* area and decompress to there. The compression overhead far outweighs
* any overhead for an extra copy.
*/
dst = malloc(new->s_memsz);
if (! dst)
return -1;
switch(algo) {
#ifdef CONFIG_COMPRESSION_LZMA
case ROMFS_COMPRESS_LZMA: {
unsigned long ulzma(unsigned char *src, unsigned char *dst);
ulzma(src, dst);
}
#endif
#ifdef CONFIG_COMPRESSION_NRV2B
case ROMFS_COMPRESS_NRV2B: {
unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
unsigned long tmp;
unrv2b(src, dst, &tmp);
}
#endif
default:
printk_info( "ROMFS: Unknown compression type %d\n",
algo);
return -1;
}
new->s_srcaddr = (u32) dst;
new->s_filesz = new->s_memsz;
return 0;
}
/* The problem:
* Static executables all want to share the same addresses
* in memory because only a few addresses are reliably present on
* a machine, and implementing general relocation is hard.
*
* The solution:
* - Allocate a buffer twice the size of the coreboot image.
* - Anything that would overwrite coreboot copy into the lower half of
* the buffer.
* - After loading an ELF image copy coreboot to the upper half of the
* buffer.
* - Then jump to the loaded image.
*
* Benefits:
* - Nearly arbitrary standalone executables can be loaded.
* - Coreboot is preserved, so it can be returned to.
* - The implementation is still relatively simple,
* and much simpler then the general case implemented in kexec.
*
*/
static unsigned long get_bounce_buffer(struct lb_memory *mem)
{
unsigned long lb_size;
unsigned long mem_entries;
unsigned long buffer;
int i;
lb_size = (unsigned long)(&_eram_seg - &_ram_seg);
/* Double coreboot size so I have somewhere to place a copy to return to */
lb_size = lb_size + lb_size;
mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
buffer = 0;
for(i = 0; i < mem_entries; i++) {
unsigned long mstart, mend;
unsigned long msize;
unsigned long tbuffer;
if (mem->map[i].type != LB_MEM_RAM)
continue;
if (unpack_lb64(mem->map[i].start) > MAX_ADDR)
continue;
if (unpack_lb64(mem->map[i].size) < lb_size)
continue;
mstart = unpack_lb64(mem->map[i].start);
msize = MAX_ADDR - mstart +1;
if (msize > unpack_lb64(mem->map[i].size))
msize = unpack_lb64(mem->map[i].size);
mend = mstart + msize;
tbuffer = mend - lb_size;
if (tbuffer < buffer)
continue;
buffer = tbuffer;
}
return buffer;
}
static int valid_area(struct lb_memory *mem, unsigned long buffer,
unsigned long start, unsigned long len)
{
/* Check through all of the memory segments and ensure
* the segment that was passed in is completely contained
* in RAM.
*/
int i;
unsigned long end = start + len;
unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
/* See if I conflict with the bounce buffer */
if (end >= buffer) {
return 0;
}
/* Walk through the table of valid memory ranges and see if I
* have a match.
*/
for(i = 0; i < mem_entries; i++) {
uint64_t mstart, mend;
uint32_t mtype;
mtype = mem->map[i].type;
mstart = unpack_lb64(mem->map[i].start);
mend = mstart + unpack_lb64(mem->map[i].size);
if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) {
break;
}
if ((mtype == LB_MEM_TABLE) && (start < mend) && (end > mstart)) {
printk_err("Payload is overwriting Coreboot tables.\n");
break;
}
}
if (i == mem_entries) {
printk_err("No matching ram area found for range:\n");
printk_err(" [0x%016lx, 0x%016lx)\n", start, end);
printk_err("Ram areas\n");
for(i = 0; i < mem_entries; i++) {
uint64_t mstart, mend;
uint32_t mtype;
mtype = mem->map[i].type;
mstart = unpack_lb64(mem->map[i].start);
mend = mstart + unpack_lb64(mem->map[i].size);
printk_err(" [0x%016lx, 0x%016lx) %s\n",
(unsigned long)mstart,
(unsigned long)mend,
(mtype == LB_MEM_RAM)?"RAM":"Reserved");
}
return 0;
}
return 1;
}
static void relocate_segment(unsigned long buffer, struct segment *seg)
{
/* Modify all segments that want to load onto coreboot
* to load onto the bounce buffer instead.
*/
unsigned long lb_start = (unsigned long)&_ram_seg;
unsigned long lb_end = (unsigned long)&_eram_seg;
unsigned long start, middle, end;
printk_spew("lb: [0x%016lx, 0x%016lx)\n",
lb_start, lb_end);
start = seg->s_dstaddr;
middle = start + seg->s_filesz;
end = start + seg->s_memsz;
/* I don't conflict with coreboot so get out of here */
if ((end <= lb_start) || (start >= lb_end))
return;
printk_spew("segment: [0x%016lx, 0x%016lx, 0x%016lx)\n",
start, middle, end);
/* Slice off a piece at the beginning
* that doesn't conflict with coreboot.
*/
if (start < lb_start) {
struct segment *new;
unsigned long len = lb_start - start;
new = malloc(sizeof(*new));
*new = *seg;
new->s_memsz = len;
seg->s_memsz -= len;
seg->s_dstaddr += len;
seg->s_srcaddr += len;
if (seg->s_filesz > len) {
new->s_filesz = len;
seg->s_filesz -= len;
} else {
seg->s_filesz = 0;
}
/* Order by stream offset */
new->next = seg;
new->prev = seg->prev;
seg->prev->next = new;
seg->prev = new;
/* Order by original program header order */
new->phdr_next = seg;
new->phdr_prev = seg->phdr_prev;
seg->phdr_prev->phdr_next = new;
seg->phdr_prev = new;
/* compute the new value of start */
start = seg->s_dstaddr;
printk_spew(" early: [0x%016lx, 0x%016lx, 0x%016lx)\n",
new->s_dstaddr,
new->s_dstaddr + new->s_filesz,
new->s_dstaddr + new->s_memsz);
}
/* Slice off a piece at the end
* that doesn't conflict with coreboot
*/
if (end > lb_end) {
unsigned long len = lb_end - start;
struct segment *new;
new = malloc(sizeof(*new));
*new = *seg;
seg->s_memsz = len;
new->s_memsz -= len;
new->s_dstaddr += len;
new->s_srcaddr += len;
if (seg->s_filesz > len) {
seg->s_filesz = len;
new->s_filesz -= len;
} else {
new->s_filesz = 0;
}
/* Order by stream offset */
new->next = seg->next;
new->prev = seg;
seg->next->prev = new;
seg->next = new;
/* Order by original program header order */
new->phdr_next = seg->phdr_next;
new->phdr_prev = seg;
seg->phdr_next->phdr_prev = new;
seg->phdr_next = new;
/* compute the new value of end */
end = start + len;
printk_spew(" late: [0x%016lx, 0x%016lx, 0x%016lx)\n",
new->s_dstaddr,
new->s_dstaddr + new->s_filesz,
new->s_dstaddr + new->s_memsz);
}
/* Now retarget this segment onto the bounce buffer */
/* sort of explanation: the buffer is a 1:1 mapping to coreboot.
* so you will make the dstaddr be this buffer, and it will get copied
* later to where coreboot lives.
*/
seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start);
printk_spew(" bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n",
seg->s_dstaddr,
seg->s_dstaddr + seg->s_filesz,
seg->s_dstaddr + seg->s_memsz);
}
static int build_self_segment_list(
struct segment *head,
unsigned long bounce_buffer, struct lb_memory *mem,
struct romfs_payload *payload, u32 *entry)
{
struct segment *new;
struct segment *ptr;
u8 *data;
int datasize;
struct romfs_payload_segment *segment, *first_segment;
memset(head, 0, sizeof(*head));
head->phdr_next = head->phdr_prev = head;
head->next = head->prev = head;
first_segment = segment = &payload->segments;
while(1) {
printk_debug("Segment %p\n", segment);
switch(segment->type) {
default: printk_emerg("Bad segment type %x\n", segment->type);
return -1;
case PAYLOAD_SEGMENT_PARAMS:
printk_info("found param section\n");
segment++;
continue;
case PAYLOAD_SEGMENT_CODE:
case PAYLOAD_SEGMENT_DATA:
printk_info( "%s: ", segment->type == PAYLOAD_SEGMENT_CODE ?
"code" : "data");
new = malloc(sizeof(*new));
new->s_dstaddr = ntohl((u32) segment->load_addr);
new->s_memsz = ntohl(segment->mem_len);
datasize = ntohl(segment->len);
/* figure out decompression, do it, get pointer to the area */
if (romfs_self_decompress(ntohl(segment->compression),
((unsigned char *) first_segment) +
ntohl(segment->offset), new)) {
printk_emerg("romfs_self_decompress failed\n");
return;
}
printk_debug("New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n",
new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
/* Clean up the values */
if (new->s_filesz > new->s_memsz) {
new->s_filesz = new->s_memsz;
}
printk_debug("(cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n",
new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
break;
case PAYLOAD_SEGMENT_BSS:
printk_info("BSS %p/%d\n", (void *) ntohl((u32) segment->load_addr),
ntohl(segment->mem_len));
new = malloc(sizeof(*new));
new->s_filesz = 0;
new->s_dstaddr = ntohl((u32) segment->load_addr);
new->s_memsz = ntohl(segment->mem_len);
break;
case PAYLOAD_SEGMENT_ENTRY:
printk_info("Entry %p\n", (void *) ntohl((u32) segment->load_addr));
*entry = (void *) ntohl((u32) segment->load_addr);
return 1;
}
segment++;
for(ptr = head->next; ptr != head; ptr = ptr->next) {
if (new->s_srcaddr < ntohl((u32) segment->load_addr))
break;
}
/* Order by stream offset */
new->next = ptr;
new->prev = ptr->prev;
ptr->prev->next = new;
ptr->prev = new;
/* Order by original program header order */
new->phdr_next = head;
new->phdr_prev = head->phdr_prev;
head->phdr_prev->phdr_next = new;
head->phdr_prev = new;
/* Verify the memory addresses in the segment are valid */
if (!valid_area(mem, bounce_buffer, new->s_dstaddr, new->s_memsz))
goto out;
/* Modify the segment to load onto the bounce_buffer if necessary.
*/
relocate_segment(bounce_buffer, new);
}
return 1;
out:
return 0;
}
static int load_self_segments(
struct segment *head, struct romfs_payload *payload)
{
unsigned long offset;
struct segment *ptr;
offset = 0;
for(ptr = head->next; ptr != head; ptr = ptr->next) {
unsigned long skip_bytes, read_bytes;
unsigned char *dest, *middle, *end, *src;
byte_offset_t result;
printk_debug("Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
/* Compute the boundaries of the segment */
dest = (unsigned char *)(ptr->s_dstaddr);
end = dest + ptr->s_memsz;
middle = dest + ptr->s_filesz;
src = ptr->s_srcaddr;
printk_spew("[ 0x%016lx, %016lx, 0x%016lx) <- %016lx\n",
(unsigned long)dest,
(unsigned long)middle,
(unsigned long)end,
(unsigned long)src);
/* Copy data from the initial buffer */
if (ptr->s_filesz) {
size_t len;
len = ptr->s_filesz;
memcpy(dest, src, len);
dest += len;
}
/* Zero the extra bytes between middle & end */
if (middle < end) {
printk_debug("Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n",
(unsigned long)middle, (unsigned long)(end - middle));
/* Zero the extra bytes */
memset(middle, 0, end - middle);
}
}
return 1;
out:
return 0;
}
int selfboot(struct lb_memory *mem, struct romfs_payload *payload)
{
void *entry;
struct segment head;
unsigned long bounce_buffer;
/* Find a bounce buffer so I can load to coreboot's current location */
bounce_buffer = get_bounce_buffer(mem);
if (!bounce_buffer) {
printk_err("Could not find a bounce buffer...\n");
goto out;
}
/* Preprocess the self segments */
if (!build_self_segment_list(&head, bounce_buffer, mem, payload, &entry))
goto out;
/* Load the segments */
if (!load_self_segments(&head, payload))
goto out;
printk_spew("Loaded segments\n");
/* Reset to booting from this image as late as possible */
boot_successful();
printk_debug("Jumping to boot code at %p\n", entry);
post_code(0xfe);
/* Jump to kernel */
jmp_to_elf_entry(entry, bounce_buffer);
return 1;
out:
return 0;
}

View File

@ -27,3 +27,7 @@ if CONFIG_USE_INIT
initobject memcpy.o
initobject memcmp.o
end
if CONFIG_ROMFS
object romfs.o
end

234
src/lib/romfs.c Normal file
View File

@ -0,0 +1,234 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2008, Jordan Crouse <jordan@cosmicpenguin.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <types.h>
#include <string.h>
#include <console/console.h>
#include <boot/coreboot_tables.h>
#include <romfs.h>
#ifndef CONFIG_BIG_ENDIAN
#define ntohl(x) ( ((x&0xff)<<24) | ((x&0xff00)<<8) | \
((x&0xff0000) >> 8) | ((x&0xff000000) >> 24) )
#else
#define ntohl(x) (x)
#endif
int run_address(void *f);
int romfs_decompress(int algo, void *src, void *dst, int len)
{
switch(algo) {
case ROMFS_COMPRESS_NONE:
memcpy(dst, src, len);
return 0;
#ifdef CONFIG_COMPRESSION_LZMA
case ROMFS_COMPRESS_LZMA: {
unsigned long ulzma(unsigned char *src, unsigned char *dst);
ulzma(src, dst);
}
return 0;
#endif
#ifdef CONFIG_COMPRESSION_NRV2B
case ROMFS_COMPRESS_NRV2B: {
unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
unsigned long tmp;
unrv2b(src, dst, &tmp);
}
return 0;
#endif
default:
printk_info( "ROMFS: Unknown compression type %d\n",
algo);
return -1;
}
}
int romfs_check_magic(struct romfs_file *file)
{
return !strcmp(file->magic, ROMFS_FILE_MAGIC) ? 1 : 0;
}
struct romfs_header *romfs_master_header(void)
{
struct romfs_header *header;
unsigned long ptr = *((unsigned long *) ROMFS_HEADPTR_ADDR);
printk_debug("Check ROMFS header at %p\n", ptr);
header = (struct romfs_header *) ptr;
printk_debug("magic is %08x\n", ntohl(header->magic));
if (ntohl(header->magic) != ROMFS_HEADER_MAGIC) {
printk_err("NO ROMFS HEADER\n");
return NULL;
}
printk_debug("Found ROMFS header at %p\n", ptr);
return header;
}
struct romfs_file *romfs_find(const char *name)
{
struct romfs_header *header = romfs_master_header();
unsigned long offset;
if (header == NULL)
return NULL;
offset = 0 - ntohl(header->romsize) + ntohl(header->offset);
while(1) {
struct romfs_file *file = (struct romfs_file *) offset;
if (romfs_check_magic(file)) printk_info("Check %s\n", ROMFS_NAME(file));
if (romfs_check_magic(file) &&
!strcmp(ROMFS_NAME(file), name))
return file;
offset += ntohl(header->align);
if (offset < 0xFFFFFFFF - ntohl(header->romsize))
return NULL;
}
}
struct romfs_stage *romfs_find_file(const char *name, int type)
{
struct romfs_file *file = romfs_find(name);
if (file == NULL) {
printk_info( "ROMFS: Could not find file %s\n",
name);
return NULL;
}
if (ntohl(file->type) != type) {
printk_info( "ROMFS: File %s is of type %x instead of"
"type %x\n", name, file->type, type);
return NULL;
}
return (void *) ROMFS_SUBHEADER(file);
}
int romfs_load_optionrom(const char *name, u32 dest)
{
struct romfs_optionrom *orom = (struct romfs_optionrom *)
romfs_find_file(name, ROMFS_TYPE_OPTIONROM);
if (orom == NULL)
return -1;
if (romfs_decompress(ntohl(orom->compression),
((unsigned char *) orom) +
sizeof(struct romfs_optionrom),
(void *) dest,
ntohl(orom->len)))
return -1;
return 0;
}
void * romfs_load_payload(struct lb_memory *lb_mem, const char *name)
{
int selfboot(struct lb_memory *mem, struct romfs_payload *payload);
struct romfs_payload *payload = (struct romfs_payload *)
romfs_find_file(name, ROMFS_TYPE_PAYLOAD);
struct romfs_payload_segment *segment, *first_segment;
if (payload == NULL)
return (void *) -1;
printk_debug("Got a payload\n");
first_segment = segment = &payload->segments;
selfboot(lb_mem, payload);
printk_emerg("SELFBOOT RETURNED!\n");
return (void *) -1;
}
void * romfs_load_stage(const char *name)
{
struct romfs_stage *stage = (struct romfs_stage *)
romfs_find_file(name, ROMFS_TYPE_STAGE);
/* this is a mess. There is no ntohll. */
/* for now, assume compatible byte order until we solve this. */
u32 entry;
if (stage == NULL)
return (void *) -1;
printk_info("Stage: load @ %d/%d bytes, enter @ %llx\n",
ntohl((u32) stage->load), ntohl(stage->memlen),
stage->entry);
memset((void *) ntohl((u32) stage->load), 0, ntohl(stage->memlen));
if (romfs_decompress(ntohl(stage->compression),
((unsigned char *) stage) +
sizeof(struct romfs_stage),
(void *) ntohl((u32) stage->load),
ntohl(stage->len)))
return (void *) -1;
entry = stage->entry;
// return (void *) ntohl((u32) stage->entry);
return (void *) entry;
}
void * romfs_get_file(const char *name)
{
return romfs_find(name);
}
int romfs_execute_stage(const char *name)
{
struct romfs_stage *stage = (struct romfs_stage *)
romfs_find_file(name, ROMFS_TYPE_STAGE);
if (stage == NULL)
return 1;
if (ntohl(stage->compression) != ROMFS_COMPRESS_NONE) {
printk_info( "ROMFS: Unable to run %s: Compressed file"
"Not supported for in-place execution\n", name);
return 1;
}
/* FIXME: This isn't right */
printk_info( "ROMFS: run @ %p\n", (void *) ntohl((u32) stage->entry));
return run_address((void *) ntohl((u32) stage->entry));
}
/**
* * run_address is passed the address of a function taking no parameters and
* * jumps to it, returning the result.
* * @param f the address to call as a function.
* * returns value returned by the function.
* */
int run_address(void *f)
{
int (*v) (void);
v = f;
return v();
}