Clean up comments, whitespace, and copyright date in the AMD HT code.

Signed-off-by: Marc Jones <marc.jones@amd.com>
Acked-by: Marc Jones <marc.jones@amd.com>



git-svn-id: svn://svn.coreboot.org/coreboot/trunk@3423 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
This commit is contained in:
Marc Jones 2008-07-16 21:09:31 +00:00
parent 049814cc8f
commit aee0796506
3 changed files with 70 additions and 71 deletions

View File

@ -1,7 +1,7 @@
/* /*
* This file is part of the coreboot project. * This file is part of the coreboot project.
* *
* Copyright (C) 2007 Advanced Micro Devices, Inc. * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
* *
* This program is free software; you can redistribute it and/or modify * This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by * it under the terms of the GNU General Public License as published by

View File

@ -253,9 +253,9 @@ void routeFromBSP(u8 targetNode, u8 actualTarget, sMainData *pDat)
u8 predecessorNode, predecessorLink, currentPair; u8 predecessorNode, predecessorLink, currentPair;
if (targetNode == 0) if (targetNode == 0)
return; // BSP has no predecessor, stop return; /* BSP has no predecessor, stop */
// Search for the link that connects targetNode to its predecessor /* Search for the link that connects targetNode to its predecessor */
currentPair = 0; currentPair = 0;
while (pDat->PortList[currentPair*2+1].NodeID != targetNode) while (pDat->PortList[currentPair*2+1].NodeID != targetNode)
{ {
@ -266,8 +266,8 @@ void routeFromBSP(u8 targetNode, u8 actualTarget, sMainData *pDat)
predecessorNode = pDat->PortList[currentPair*2].NodeID; predecessorNode = pDat->PortList[currentPair*2].NodeID;
predecessorLink = pDat->PortList[currentPair*2].Link; predecessorLink = pDat->PortList[currentPair*2].Link;
// Recursively call self to ensure the route from the BSP to the Predecessor /* Recursively call self to ensure the route from the BSP to the Predecessor */
// Node is established /* Node is established */
routeFromBSP(predecessorNode, actualTarget, pDat); routeFromBSP(predecessorNode, actualTarget, pDat);
pDat->nb->writeRoutingTable(predecessorNode, actualTarget, predecessorLink, pDat->nb); pDat->nb->writeRoutingTable(predecessorNode, actualTarget, predecessorLink, pDat->nb);
@ -601,15 +601,15 @@ BOOL isoMorph(u8 i, sMainData *pDat)
if (i != nodecnt) if (i != nodecnt)
{ {
// Keep building the permutation /* Keep building the permutation */
for (j = 0; j < nodecnt; j++) for (j = 0; j < nodecnt; j++)
{ {
// Make sure the degree matches /* Make sure the degree matches */
if (pDat->sysDegree[i] != pDat->dbDegree[j]) if (pDat->sysDegree[i] != pDat->dbDegree[j])
continue; continue;
// Make sure that j hasn't been used yet (ought to use a "used" /* Make sure that j hasn't been used yet (ought to use a "used" */
// array instead, might be faster) /* array instead, might be faster) */
for (k = 0; k < i; k++) for (k = 0; k < i; k++)
{ {
if (pDat->Perm[k] == j) if (pDat->Perm[k] == j)
@ -623,7 +623,7 @@ BOOL isoMorph(u8 i, sMainData *pDat)
} }
return FALSE; return FALSE;
} else { } else {
// Test to see if the permutation is isomorphic /* Test to see if the permutation is isomorphic */
for (j = 0; j < nodecnt; j++) for (j = 0; j < nodecnt; j++)
{ {
for (k = 0; k < nodecnt; k++) for (k = 0; k < nodecnt; k++)
@ -685,7 +685,7 @@ void lookupComputeAndLoadRoutingTables(sMainData *pDat)
{ {
if (graphHowManyNodes(pSelected) == size) if (graphHowManyNodes(pSelected) == size)
{ {
// Build Degree vector and Adjency Matrix for this entry /* Build Degree vector and Adjency Matrix for this entry */
for (i = 0; i < size; i++) for (i = 0; i < size; i++)
{ {
pDat->dbDegree[i] = 0; pDat->dbDegree[i] = 0;
@ -703,7 +703,7 @@ void lookupComputeAndLoadRoutingTables(sMainData *pDat)
} }
} }
if (isoMorph(0, pDat)) if (isoMorph(0, pDat))
break; // A matching topology was found break; /* A matching topology was found */
} }
pTopologyList++; pTopologyList++;
@ -712,13 +712,13 @@ void lookupComputeAndLoadRoutingTables(sMainData *pDat)
if (pSelected != NULL) if (pSelected != NULL)
{ {
// Compute the reverse Permutation /* Compute the reverse Permutation */
for (i = 0; i < size; i++) for (i = 0; i < size; i++)
{ {
pDat->ReversePerm[pDat->Perm[i]] = i; pDat->ReversePerm[pDat->Perm[i]] = i;
} }
// Start with the last discovered node, and move towards the BSP /* Start with the last discovered node, and move towards the BSP */
for (i = size-1; i >= 0; i--) for (i = size-1; i >= 0; i--)
{ {
for (j = 0; j < size; j++) for (j = 0; j < size; j++)
@ -1171,7 +1171,7 @@ void ncInit(sMainData *pDat)
for (link = 0; link < pDat->nb->maxLinks; link++) for (link = 0; link < pDat->nb->maxLinks; link++)
{ {
if (pDat->HtBlock->AMD_CB_IgnoreLink && pDat->HtBlock->AMD_CB_IgnoreLink(node, link)) if (pDat->HtBlock->AMD_CB_IgnoreLink && pDat->HtBlock->AMD_CB_IgnoreLink(node, link))
continue; // Skip the link continue; /* Skip the link */
if (node == 0 && link == compatLink) if (node == 0 && link == compatLink)
continue; continue;
@ -1208,68 +1208,68 @@ void regangLinks(sMainData *pDat)
u8 i, j; u8 i, j;
for (i = 0; i < pDat->TotalLinks*2; i += 2) for (i = 0; i < pDat->TotalLinks*2; i += 2)
{ {
ASSERT(pDat->PortList[i].Type < 2 && pDat->PortList[i].Link < pDat->nb->maxLinks); // Data validation ASSERT(pDat->PortList[i].Type < 2 && pDat->PortList[i].Link < pDat->nb->maxLinks); /* Data validation */
ASSERT(pDat->PortList[i+1].Type < 2 && pDat->PortList[i+1].Link < pDat->nb->maxLinks); // data validation ASSERT(pDat->PortList[i+1].Type < 2 && pDat->PortList[i+1].Link < pDat->nb->maxLinks); /* data validation */
ASSERT(!(pDat->PortList[i].Type == PORTLIST_TYPE_IO && pDat->PortList[i+1].Type == PORTLIST_TYPE_CPU)); // ensure src is closer to the bsp than dst ASSERT(!(pDat->PortList[i].Type == PORTLIST_TYPE_IO && pDat->PortList[i+1].Type == PORTLIST_TYPE_CPU)); /* ensure src is closer to the bsp than dst */
/* Regang is false unless we pass all conditions below */ /* Regang is false unless we pass all conditions below */
pDat->PortList[i].SelRegang = FALSE; pDat->PortList[i].SelRegang = FALSE;
pDat->PortList[i+1].SelRegang = FALSE; pDat->PortList[i+1].SelRegang = FALSE;
if ( (pDat->PortList[i].Type != PORTLIST_TYPE_CPU) || (pDat->PortList[i+1].Type != PORTLIST_TYPE_CPU)) if ( (pDat->PortList[i].Type != PORTLIST_TYPE_CPU) || (pDat->PortList[i+1].Type != PORTLIST_TYPE_CPU))
continue; // Only process cpu to cpu links continue; /* Only process cpu to cpu links */
for (j = i+2; j < pDat->TotalLinks*2; j += 2) for (j = i+2; j < pDat->TotalLinks*2; j += 2)
{ {
if ( (pDat->PortList[j].Type != PORTLIST_TYPE_CPU) || (pDat->PortList[j+1].Type != PORTLIST_TYPE_CPU) ) if ( (pDat->PortList[j].Type != PORTLIST_TYPE_CPU) || (pDat->PortList[j+1].Type != PORTLIST_TYPE_CPU) )
continue; // Only process cpu to cpu links continue; /* Only process cpu to cpu links */
if (pDat->PortList[i].NodeID != pDat->PortList[j].NodeID) if (pDat->PortList[i].NodeID != pDat->PortList[j].NodeID)
continue; // Links must be from the same source continue; /* Links must be from the same source */
if (pDat->PortList[i+1].NodeID != pDat->PortList[j+1].NodeID) if (pDat->PortList[i+1].NodeID != pDat->PortList[j+1].NodeID)
continue; // Link must be to the same target continue; /* Link must be to the same target */
if ((pDat->PortList[i].Link & 3) != (pDat->PortList[j].Link & 3)) if ((pDat->PortList[i].Link & 3) != (pDat->PortList[j].Link & 3))
continue; // Ensure same source base port continue; /* Ensure same source base port */
if ((pDat->PortList[i+1].Link & 3) != (pDat->PortList[j+1].Link & 3)) if ((pDat->PortList[i+1].Link & 3) != (pDat->PortList[j+1].Link & 3))
continue; // Ensure same destination base port continue; /* Ensure same destination base port */
if ((pDat->PortList[i].Link & 4) != (pDat->PortList[i+1].Link & 4)) if ((pDat->PortList[i].Link & 4) != (pDat->PortList[i+1].Link & 4))
continue; // Ensure sublink0 routes to sublink0 continue; /* Ensure sublink0 routes to sublink0 */
ASSERT((pDat->PortList[j].Link & 4) == (pDat->PortList[j+1].Link & 4)); // (therefore sublink1 routes to sublink1) ASSERT((pDat->PortList[j].Link & 4) == (pDat->PortList[j+1].Link & 4)); /* (therefore sublink1 routes to sublink1) */
if (pDat->HtBlock->AMD_CB_SkipRegang && if (pDat->HtBlock->AMD_CB_SkipRegang &&
pDat->HtBlock->AMD_CB_SkipRegang(pDat->PortList[i].NodeID, pDat->HtBlock->AMD_CB_SkipRegang(pDat->PortList[i].NodeID,
pDat->PortList[i].Link & 0x03, pDat->PortList[i].Link & 0x03,
pDat->PortList[i+1].NodeID, pDat->PortList[i+1].NodeID,
pDat->PortList[i+1].Link & 0x03)) pDat->PortList[i+1].Link & 0x03))
{ {
continue; // Skip regang continue; /* Skip regang */
} }
pDat->PortList[i].Link &= 0x03; // Force to point to sublink0 pDat->PortList[i].Link &= 0x03; /* Force to point to sublink0 */
pDat->PortList[i+1].Link &= 0x03; pDat->PortList[i+1].Link &= 0x03;
pDat->PortList[i].SelRegang = TRUE; // Enable link reganging pDat->PortList[i].SelRegang = TRUE; /* Enable link reganging */
pDat->PortList[i+1].SelRegang = TRUE; pDat->PortList[i+1].SelRegang = TRUE;
pDat->PortList[i].PrvWidthOutCap = HT_WIDTH_16_BITS; pDat->PortList[i].PrvWidthOutCap = HT_WIDTH_16_BITS;
pDat->PortList[i+1].PrvWidthOutCap = HT_WIDTH_16_BITS; pDat->PortList[i+1].PrvWidthOutCap = HT_WIDTH_16_BITS;
pDat->PortList[i].PrvWidthInCap = HT_WIDTH_16_BITS; pDat->PortList[i].PrvWidthInCap = HT_WIDTH_16_BITS;
pDat->PortList[i+1].PrvWidthInCap = HT_WIDTH_16_BITS; pDat->PortList[i+1].PrvWidthInCap = HT_WIDTH_16_BITS;
// Delete PortList[j, j+1], slow but easy to debug implementation /* Delete PortList[j, j+1], slow but easy to debug implementation */
pDat->TotalLinks--; pDat->TotalLinks--;
Amdmemcpy(&(pDat->PortList[j]), &(pDat->PortList[j+2]), sizeof(sPortDescriptor)*(pDat->TotalLinks*2-j)); Amdmemcpy(&(pDat->PortList[j]), &(pDat->PortList[j+2]), sizeof(sPortDescriptor)*(pDat->TotalLinks*2-j));
Amdmemset(&(pDat->PortList[pDat->TotalLinks*2]), INVALID_LINK, sizeof(sPortDescriptor)*2); Amdmemset(&(pDat->PortList[pDat->TotalLinks*2]), INVALID_LINK, sizeof(sPortDescriptor)*2);
////High performance, but would make debuging harder due to 'shuffling' of the records /* //High performance, but would make debuging harder due to 'shuffling' of the records */
////Amdmemcpy(PortList[TotalPorts-2], PortList[j], SIZEOF(sPortDescriptor)*2); /* //Amdmemcpy(PortList[TotalPorts-2], PortList[j], SIZEOF(sPortDescriptor)*2); */
////TotalPorts -=2; /* //TotalPorts -=2; */
break; // Exit loop, advance to PortList[i+2] break; /* Exit loop, advance to PortList[i+2] */
} }
} }
#endif /* HT_BUILD_NC_ONLY */ #endif /* HT_BUILD_NC_ONLY */
@ -1400,14 +1400,14 @@ void hammerSublinkFixup(sMainData *pDat)
changes = FALSE; changes = FALSE;
for (i = 0; i < pDat->TotalLinks*2; i++) for (i = 0; i < pDat->TotalLinks*2; i++)
{ {
if (pDat->PortList[i].Type != PORTLIST_TYPE_CPU) // Must be a CPU link if (pDat->PortList[i].Type != PORTLIST_TYPE_CPU) /* Must be a CPU link */
continue; continue;
if (pDat->PortList[i].Link < 4) // Only look for for sublink1's if (pDat->PortList[i].Link < 4) /* Only look for for sublink1's */
continue; continue;
for (j = 0; j < pDat->TotalLinks*2; j++) for (j = 0; j < pDat->TotalLinks*2; j++)
{ {
// Step 1. Find the matching sublink0 /* Step 1. Find the matching sublink0 */
if (pDat->PortList[j].Type != PORTLIST_TYPE_CPU) if (pDat->PortList[j].Type != PORTLIST_TYPE_CPU)
continue; continue;
if (pDat->PortList[j].NodeID != pDat->PortList[i].NodeID) if (pDat->PortList[j].NodeID != pDat->PortList[i].NodeID)
@ -1415,7 +1415,7 @@ void hammerSublinkFixup(sMainData *pDat)
if (pDat->PortList[j].Link != (pDat->PortList[i].Link & 0x03)) if (pDat->PortList[j].Link != (pDat->PortList[i].Link & 0x03))
continue; continue;
// Step 2. Check for an illegal frequency ratio /* Step 2. Check for an illegal frequency ratio */
if (pDat->PortList[i].SelFrequency >= pDat->PortList[j].SelFrequency) if (pDat->PortList[i].SelFrequency >= pDat->PortList[j].SelFrequency)
{ {
hiIndex = i; hiIndex = i;
@ -1430,65 +1430,65 @@ void hammerSublinkFixup(sMainData *pDat)
} }
if (hiFreq == loFreq) if (hiFreq == loFreq)
break; // The frequencies are 1:1, no need to do anything break; /* The frequencies are 1:1, no need to do anything */
downgrade = FALSE; downgrade = FALSE;
if (hiFreq == 13) if (hiFreq == 13)
{ {
if ((loFreq != 7) && //{13, 7} 2400MHz / 1200MHz 2:1 if ((loFreq != 7) && /* {13, 7} 2400MHz / 1200MHz 2:1 */
(loFreq != 4) && //{13, 4} 2400MHz / 600MHz 4:1 (loFreq != 4) && /* {13, 4} 2400MHz / 600MHz 4:1 */
(loFreq != 2) ) //{13, 2} 2400MHz / 400MHz 6:1 (loFreq != 2) ) /* {13, 2} 2400MHz / 400MHz 6:1 */
downgrade = TRUE; downgrade = TRUE;
} }
else if (hiFreq == 11) else if (hiFreq == 11)
{ {
if ((loFreq != 6)) //{11, 6} 2000MHz / 1000MHz 2:1 if ((loFreq != 6)) /* {11, 6} 2000MHz / 1000MHz 2:1 */
downgrade = TRUE; downgrade = TRUE;
} }
else if (hiFreq == 9) else if (hiFreq == 9)
{ {
if ((loFreq != 5) && //{ 9, 5} 1600MHz / 800MHz 2:1 if ((loFreq != 5) && /* { 9, 5} 1600MHz / 800MHz 2:1 */
(loFreq != 2) && //{ 9, 2} 1600MHz / 400MHz 4:1 (loFreq != 2) && /* { 9, 2} 1600MHz / 400MHz 4:1 */
(loFreq != 0) ) //{ 9, 0} 1600MHz / 200Mhz 8:1 (loFreq != 0) ) /* { 9, 0} 1600MHz / 200Mhz 8:1 */
downgrade = TRUE; downgrade = TRUE;
} }
else if (hiFreq == 7) else if (hiFreq == 7)
{ {
if ((loFreq != 4) && //{ 7, 4} 1200MHz / 600MHz 2:1 if ((loFreq != 4) && /* { 7, 4} 1200MHz / 600MHz 2:1 */
(loFreq != 0) ) //{ 7, 0} 1200MHz / 200MHz 6:1 (loFreq != 0) ) /* { 7, 0} 1200MHz / 200MHz 6:1 */
downgrade = TRUE; downgrade = TRUE;
} }
else if (hiFreq == 5) else if (hiFreq == 5)
{ {
if ((loFreq != 2) && //{ 5, 2} 800MHz / 400MHz 2:1 if ((loFreq != 2) && /* { 5, 2} 800MHz / 400MHz 2:1 */
(loFreq != 0) ) //{ 5, 0} 800MHz / 200MHz 4:1 (loFreq != 0) ) /* { 5, 0} 800MHz / 200MHz 4:1 */
downgrade = TRUE; downgrade = TRUE;
} }
else if (hiFreq == 2) else if (hiFreq == 2)
{ {
if ((loFreq != 0)) //{ 2, 0} 400MHz / 200MHz 2:1 if ((loFreq != 0)) /* { 2, 0} 400MHz / 200MHz 2:1 */
downgrade = TRUE; downgrade = TRUE;
} }
else else
{ {
downgrade = TRUE; // no legal ratios for hiFreq downgrade = TRUE; /* no legal ratios for hiFreq */
} }
// Step 3. Downgrade the higher of the two frequencies, and set nochanges to FALSE /* Step 3. Downgrade the higher of the two frequencies, and set nochanges to FALSE */
if (downgrade) if (downgrade)
{ {
// Although the problem was with the port specified by hiIndex, we need to /* Although the problem was with the port specified by hiIndex, we need to */
// downgrade both ends of the link. /* downgrade both ends of the link. */
hiIndex = hiIndex & 0xFE; // Select the 'upstream' (i.e. even) port hiIndex = hiIndex & 0xFE; /* Select the 'upstream' (i.e. even) port */
temp = pDat->PortList[hiIndex].CompositeFrequencyCap; temp = pDat->PortList[hiIndex].CompositeFrequencyCap;
// Remove hiFreq from the list of valid frequencies /* Remove hiFreq from the list of valid frequencies */
temp = temp & ~((u32)1 << hiFreq); temp = temp & ~((uint32)1 << hiFreq);
ASSERT (temp != 0); ASSERT (temp != 0);
pDat->PortList[hiIndex].CompositeFrequencyCap = (u16)temp; pDat->PortList[hiIndex].CompositeFrequencyCap = (uint16)temp;
pDat->PortList[hiIndex+1].CompositeFrequencyCap = (u16)temp; pDat->PortList[hiIndex+1].CompositeFrequencyCap = (uint16)temp;
for (k = 15; ; k--) for (k = 15; ; k--)
{ {
@ -1503,7 +1503,7 @@ void hammerSublinkFixup(sMainData *pDat)
} }
} }
} }
} while (changes); // Repeat until a valid configuration is reached } while (changes); /* Repeat until a valid configuration is reached */
#endif /* HT_BUILD_NC_ONLY */ #endif /* HT_BUILD_NC_ONLY */
} }
@ -1550,7 +1550,7 @@ void trafficDistribution(sMainData *pDat)
u8 linkCount; u8 linkCount;
u8 i; u8 i;
// Traffic Distribution is only used when there are exactly two nodes in the system /* Traffic Distribution is only used when there are exactly two nodes in the system */
if (pDat->NodesDiscovered+1 != 2) if (pDat->NodesDiscovered+1 != 2)
return; return;
@ -1568,7 +1568,7 @@ void trafficDistribution(sMainData *pDat)
} }
ASSERT(linkCount != 0); ASSERT(linkCount != 0);
if (linkCount == 1) if (linkCount == 1)
return; // Don't setup Traffic Distribution if only one link is being used return; /* Don't setup Traffic Distribution if only one link is being used */
pDat->nb->writeTrafficDistribution(links01, links10, pDat->nb); pDat->nb->writeTrafficDistribution(links01, links10, pDat->nb);
#endif /* HT_BUILD_NC_ONLY */ #endif /* HT_BUILD_NC_ONLY */

View File

@ -333,10 +333,10 @@ BOOL verifyLinkIsCoherent(u8 node, u8 link, cNorthBridge *nb)
linkBase = makeLinkBase(node, link); linkBase = makeLinkBase(node, link);
// FN0_98/A4/C4 = LDT Type Register /* FN0_98/A4/C4 = LDT Type Register */
AmdPCIRead(linkBase + HTHOST_LINK_TYPE_REG, &linkType); AmdPCIRead(linkBase + HTHOST_LINK_TYPE_REG, &linkType);
// Verify LinkCon=1, InitComplete=1, NC=0, UniP-cLDT=0, LinkConPend=0 /* Verify LinkCon=1, InitComplete=1, NC=0, UniP-cLDT=0, LinkConPend=0 */
return (linkType & HTHOST_TYPE_MASK) == HTHOST_TYPE_COHERENT; return (linkType & HTHOST_TYPE_MASK) == HTHOST_TYPE_COHERENT;
#else #else
return 0; return 0;
@ -1111,10 +1111,9 @@ u8 convertBitsToWidth(u8 value, cNorthBridge *nb)
} else if (value == 4) { } else if (value == 4) {
return 2; return 2;
} }
STOP_HERE; // This is an error internal condition STOP_HERE; /* This is an error internal condition */
return 0xFF; // make the compiler happy. return 0xFF; // make the compiler happy.
} }
/**---------------------------------------------------------------------------------------- /**----------------------------------------------------------------------------------------
@ -1143,7 +1142,7 @@ u8 convertWidthToBits(u8 value, cNorthBridge *nb)
} else if (value == 2) { } else if (value == 2) {
return 4; return 4;
} }
STOP_HERE; // This is an internal error condition STOP_HERE; /* This is an internal error condition */
return 0xFF; // make the compiler happy. return 0xFF; // make the compiler happy.
} }
@ -1262,7 +1261,7 @@ void gatherLinkData(sMainData *pDat, cNorthBridge *nb)
AmdPCIReadBits(linkBase + HTHOST_FREQ_REV_REG, 31, 16, &temp); AmdPCIReadBits(linkBase + HTHOST_FREQ_REV_REG, 31, 16, &temp);
pDat->PortList[i].PrvFrequencyCap = (u16)temp & 0x7FFF pDat->PortList[i].PrvFrequencyCap = (u16)temp & 0x7FFF
& nb->northBridgeFreqMask(pDat->PortList[i].NodeID, pDat->nb); // Mask off bit 15, reserved value & nb->northBridgeFreqMask(pDat->PortList[i].NodeID, pDat->nb); /* Mask off bit 15, reserved value */
} }
else else
{ {
@ -1384,7 +1383,7 @@ void setLinkData(sMainData *pDat, cNorthBridge *nb)
ASSERT((temp >= HT_FREQUENCY_600M && temp <= HT_FREQUENCY_2600M) ASSERT((temp >= HT_FREQUENCY_600M && temp <= HT_FREQUENCY_2600M)
|| (temp == HT_FREQUENCY_200M) || (temp == HT_FREQUENCY_400M)); || (temp == HT_FREQUENCY_200M) || (temp == HT_FREQUENCY_400M));
AmdPCIWriteBits(linkBase + HTHOST_FREQ_REV_REG, 11, 8, &temp); AmdPCIWriteBits(linkBase + HTHOST_FREQ_REV_REG, 11, 8, &temp);
if (temp > HT_FREQUENCY_1000M) // Gen1 = 200Mhz -> 1000MHz, Gen3 = 1200MHz -> 2600MHz if (temp > HT_FREQUENCY_1000M) /* Gen1 = 200Mhz -> 1000MHz, Gen3 = 1200MHz -> 2600MHz */
{ {
/* Enable for Gen3 frequencies */ /* Enable for Gen3 frequencies */
temp = 1; temp = 1;