arch/riscv: Don't set up virtual memory
Due to changes in the RISC-V Privileged Architecture specification, Linux can now be started in physical memory and it will setup its own page tables. Thus we can delete most of virtual_memory.c. Change-Id: I4e69d15f8ee540d2f98c342bc4ec0c00fb48def0 Signed-off-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net> Reviewed-on: https://review.coreboot.org/23772 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
This commit is contained in:
parent
2764919dfb
commit
b26759d703
|
@ -975,14 +975,6 @@ config DEBUG_BOOT_STATE
|
|||
Control debugging of the boot state machine. When selected displays
|
||||
the state boundaries in ramstage.
|
||||
|
||||
config DEBUG_PRINT_PAGE_TABLES
|
||||
bool "Print the page tables after construction"
|
||||
default n
|
||||
depends on ARCH_RISCV
|
||||
help
|
||||
After the page tables have been built, print them on the debug
|
||||
console.
|
||||
|
||||
config DEBUG_ADA_CODE
|
||||
bool "Compile debug code in Ada sources"
|
||||
default n
|
||||
|
|
|
@ -27,7 +27,6 @@ void arch_prog_run(struct prog *prog)
|
|||
|
||||
if (ENV_RAMSTAGE && prog_type(prog) == PROG_PAYLOAD) {
|
||||
printk(BIOS_SPEW, "Config string: '%s'\n", config);
|
||||
initVirtualMemory();
|
||||
printk(BIOS_SPEW, "OK, let's go\n");
|
||||
riscvpayload(config, doit);
|
||||
}
|
||||
|
|
|
@ -32,36 +32,11 @@
|
|||
#include <stdint.h>
|
||||
#include <arch/encoding.h>
|
||||
|
||||
#define SUPERPAGE_SIZE ((uintptr_t)(RISCV_PGSIZE << RISCV_PGLEVEL_BITS))
|
||||
#define VM_CHOICE VM_SV39
|
||||
#define VA_BITS 39
|
||||
#define MEGAPAGE_SIZE (SUPERPAGE_SIZE << RISCV_PGLEVEL_BITS)
|
||||
|
||||
#define EXTRACT_FIELD(val, which) (((val) & (which)) / ((which) & ~((which)-1)))
|
||||
#define INSERT_FIELD(val, which, fieldval) (((val) & ~(which)) | ((fieldval) * ((which) & ~((which)-1))))
|
||||
|
||||
#define supervisor_paddr_valid(start, length) \
|
||||
((uintptr_t)(start) >= current.first_user_vaddr + current.bias \
|
||||
&& (uintptr_t)(start) + (length) < mem_size \
|
||||
&& (uintptr_t)(start) + (length) >= (uintptr_t)(start))
|
||||
|
||||
typedef uintptr_t pte_t;
|
||||
extern pte_t* root_page_table;
|
||||
|
||||
void initVirtualMemory(void);
|
||||
|
||||
size_t pte_ppn(pte_t pte);
|
||||
pte_t ptd_create(uintptr_t ppn);
|
||||
pte_t pte_create(uintptr_t ppn, int prot, int user);
|
||||
|
||||
void print_page_table(void);
|
||||
|
||||
void init_vm(uintptr_t virtMemStart, uintptr_t physMemStart,
|
||||
pte_t *pageTableStart);
|
||||
void mstatus_init(void); // need to setup mstatus so we know we have virtual memory
|
||||
|
||||
void flush_tlb(void);
|
||||
|
||||
|
||||
#define DEFINE_MPRV_READ(name, type, insn) \
|
||||
static inline type name(type *p); \
|
||||
|
|
|
@ -14,13 +14,9 @@
|
|||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <arch/barrier.h>
|
||||
#include <arch/encoding.h>
|
||||
#include <atomic.h>
|
||||
#include <console/console.h>
|
||||
#include <stdint.h>
|
||||
#include <vm.h>
|
||||
#include <symbols.h>
|
||||
|
||||
/* Delegate controls which traps are delegated to the payload. If you
|
||||
* wish to temporarily disable some or all delegation you can, in a
|
||||
|
@ -38,234 +34,6 @@ static int delegate = 0
|
|||
| (1 << CAUSE_USER_ECALL)
|
||||
;
|
||||
|
||||
pte_t* root_page_table;
|
||||
|
||||
/* Indent the following text by 2*level spaces */
|
||||
static void indent(int level)
|
||||
{
|
||||
int i;
|
||||
for (i = 0; i < level; i++)
|
||||
printk(BIOS_DEBUG, " ");
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert a page table index at a given page table level to a virtual address
|
||||
* offset
|
||||
*/
|
||||
static uintptr_t index_to_virt_addr(int index, int level)
|
||||
{
|
||||
/*
|
||||
* Index is at most RISCV_PGLEVEL_BITS bits wide (not considering the
|
||||
* leading zeroes. If level==0, the below expression thus shifts index
|
||||
* into the highest bits of a 64-bit number, and then shifts it down
|
||||
* with sign extension.
|
||||
*
|
||||
* If level>0, then the expression should work as expected, without any
|
||||
* magic.
|
||||
*/
|
||||
return ((intptr_t)index)
|
||||
<< (64 - RISCV_PGLEVEL_BITS - level * RISCV_PGLEVEL_BITS)
|
||||
>> (64 - VA_BITS);
|
||||
}
|
||||
|
||||
/* Dump the page table structures to the console -- helper function */
|
||||
static void print_page_table_at(pte_t *pt, intptr_t virt_addr, int level)
|
||||
{
|
||||
int i;
|
||||
|
||||
indent(level);
|
||||
printk(BIOS_DEBUG, "Level %d page table at 0x%p\n", level, pt);
|
||||
|
||||
for (i = 0; i < RISCV_PGSIZE / sizeof(pte_t); i++) {
|
||||
char urwx[8];
|
||||
uintptr_t pointer;
|
||||
intptr_t next_virt_addr;
|
||||
|
||||
if (!(pt[i] & PTE_V))
|
||||
continue;
|
||||
|
||||
urwx[0] = (pt[i] & PTE_U)? 'u' : '-';
|
||||
urwx[1] = (pt[i] & PTE_R)? 'r' : '-';
|
||||
urwx[2] = (pt[i] & PTE_W)? 'w' : '-';
|
||||
urwx[3] = (pt[i] & PTE_X)? 'x' : '-';
|
||||
urwx[4] = '\0';
|
||||
|
||||
next_virt_addr = virt_addr + index_to_virt_addr(i, level);
|
||||
|
||||
pointer = ((uintptr_t)pt[i] >> 10) << RISCV_PGSHIFT;
|
||||
|
||||
indent(level + 1);
|
||||
printk(BIOS_DEBUG, "Valid PTE at index %d (0x%016zx -> 0x%zx), ",
|
||||
i, (size_t) next_virt_addr, (size_t) pointer);
|
||||
if (PTE_TABLE(pt[i]))
|
||||
printk(BIOS_DEBUG, "page table\n");
|
||||
else
|
||||
printk(BIOS_DEBUG, "protections %s\n", urwx);
|
||||
|
||||
if (PTE_TABLE(pt[i])) {
|
||||
print_page_table_at((pte_t *)pointer, next_virt_addr, level + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Print the page table structures to the console */
|
||||
void print_page_table(void) {
|
||||
print_page_table_at((void *)(read_csr(sptbr) << RISCV_PGSHIFT), 0, 0);
|
||||
}
|
||||
|
||||
void flush_tlb(void)
|
||||
{
|
||||
asm volatile("sfence.vm");
|
||||
}
|
||||
|
||||
size_t pte_ppn(pte_t pte)
|
||||
{
|
||||
return pte >> PTE_PPN_SHIFT;
|
||||
}
|
||||
|
||||
pte_t ptd_create(uintptr_t ppn)
|
||||
{
|
||||
return (ppn << PTE_PPN_SHIFT) | PTE_V;
|
||||
}
|
||||
|
||||
pte_t pte_create(uintptr_t ppn, int prot, int user)
|
||||
{
|
||||
pte_t pte = (ppn << PTE_PPN_SHIFT) | PTE_R | PTE_V;
|
||||
if (prot & PTE_W)
|
||||
pte |= PTE_W;
|
||||
if (prot & PTE_X)
|
||||
pte |= PTE_X;
|
||||
if (user)
|
||||
pte |= PTE_U;
|
||||
return pte;
|
||||
}
|
||||
|
||||
// The current RISCV *physical* address space is this:
|
||||
// * 0 - 2 GiB: miscellaneous IO devices
|
||||
// * 2 GiB - 4 GiB DRAM
|
||||
// We have determined, also, that if code references a physical address
|
||||
// not backed by a device, we'll take a fault. In other words, we don't
|
||||
// need to finely map the memory-mapped devices as we would on an x86.
|
||||
// We can use GiB mappings for the IO space and we will take a trap
|
||||
// if we reference hardware that does not exist.
|
||||
//
|
||||
// The intent of the RISCV designers is that pages be set up in M mode
|
||||
// for lower privilege software. They have also told me that they
|
||||
// expect, unlike other platforms, that next level software use these
|
||||
// page tables. Some kernels (Linux) prefer the old fashioned model,
|
||||
// where kernel starts with an identity (ID) map and sets up page tables as
|
||||
// it sees fit. Other kernels (harvey) are fine with using whatever
|
||||
// firmware sets up. We need to accommodate both. So, we set up the
|
||||
// identity map for Linux, but also set up the map for kernels that
|
||||
// are more willing to conform to the RISCV model. The map is as
|
||||
// follows:
|
||||
//
|
||||
// ID map: map IO space and all of DRAM 1:1 using 1 GiB PTEs
|
||||
// I.e. we use 1 GiB PTEs for 4 GiB.
|
||||
// Linux/BSD uses this mapping just enough to replace it.
|
||||
//
|
||||
// Top 2G map: map the 2 Gib - 4 GiB of physical address space to
|
||||
// 0xffffffff_80000000. This will be needed until the GNU toolchain can compile
|
||||
// code to run at 0xffffffc000000000, i.e. the start of Sv39.
|
||||
//
|
||||
// Only Harvey/Plan 9 uses this Mapping, and temporarily.
|
||||
//
|
||||
// standard RISCV map long term: Map IO space, and all of DRAM, to the *lowest*
|
||||
// possible negative address for this implementation,
|
||||
// e.g. 0xffffffc000000000 for Sv39 CPUs. For now we can use GiB PTEs.
|
||||
//
|
||||
// RISCV map for now: map IO space, and all of DRAM, starting at
|
||||
// 0xffff_ffc0_0000_0000, i.e. just as for Sv39.
|
||||
//
|
||||
// It is our intent on Harvey (and eventually Akaros) that we use
|
||||
// this map, once the toolchain can correctly support it.
|
||||
// We have tested this arrangement and it lets us boot harvey to user mode.
|
||||
void init_vm(uintptr_t virtMemStart, uintptr_t physMemStart, pte_t *pt)
|
||||
{
|
||||
// 0xFFF... - 0xFFFFFFFF81000000 - RISCV_PGSIZE
|
||||
intptr_t memorySize = 0x7F000000;
|
||||
|
||||
// middle page table
|
||||
pte_t* middle_pt = (void*)pt;
|
||||
size_t num_middle_pts = 2; // 3 level page table, 39 bit virtual address space for now
|
||||
|
||||
// root page table
|
||||
pte_t* root_pt = (void*)middle_pt + num_middle_pts * RISCV_PGSIZE;
|
||||
memset(middle_pt, 0, (num_middle_pts + 1) * RISCV_PGSIZE); // 0's out middle_pt and root_pt
|
||||
for (size_t i = 0; i < num_middle_pts; i++)
|
||||
root_pt[(1<<RISCV_PGLEVEL_BITS)-num_middle_pts+i] = ptd_create(((uintptr_t)middle_pt >> RISCV_PGSHIFT) + i);
|
||||
|
||||
// fill the middle page table
|
||||
for (uintptr_t vaddr = virtMemStart, paddr = physMemStart;
|
||||
paddr < physMemStart + memorySize;
|
||||
vaddr += SUPERPAGE_SIZE, paddr += SUPERPAGE_SIZE) {
|
||||
int l2_shift = RISCV_PGLEVEL_BITS + RISCV_PGSHIFT;
|
||||
size_t l2_idx = (virtMemStart >> l2_shift) & ((1 << RISCV_PGLEVEL_BITS)-1);
|
||||
l2_idx += ((vaddr - virtMemStart) >> l2_shift);
|
||||
middle_pt[l2_idx] = pte_create(paddr >> RISCV_PGSHIFT,
|
||||
PTE_U|PTE_R|PTE_W|PTE_X, 0);
|
||||
}
|
||||
|
||||
// IO space. Identity mapped.
|
||||
root_pt[0x000] = pte_create(0x00000000 >> RISCV_PGSHIFT,
|
||||
PTE_R | PTE_W, 0);
|
||||
root_pt[0x001] = pte_create(0x40000000 >> RISCV_PGSHIFT,
|
||||
PTE_R | PTE_W, 0);
|
||||
root_pt[0x002] = pte_create(0x80000000 >> RISCV_PGSHIFT,
|
||||
PTE_R | PTE_W | PTE_X, 0);
|
||||
root_pt[0x003] = pte_create(0xc0000000 >> RISCV_PGSHIFT,
|
||||
PTE_R | PTE_W | PTE_X, 0);
|
||||
|
||||
// Negative address space map at 0xffffffc000000000
|
||||
root_pt[0x100] = root_pt[0];
|
||||
root_pt[0x101] = root_pt[1];
|
||||
root_pt[0x102] = root_pt[2];
|
||||
root_pt[0x103] = root_pt[3];
|
||||
|
||||
mb();
|
||||
root_page_table = root_pt;
|
||||
uintptr_t ptbr = ((uintptr_t) root_pt) >> RISCV_PGSHIFT;
|
||||
write_csr(sptbr, ptbr);
|
||||
}
|
||||
|
||||
void initVirtualMemory(void) {
|
||||
uintptr_t ms;
|
||||
|
||||
ms = read_csr(mstatus);
|
||||
ms = INSERT_FIELD(ms, MSTATUS_VM, VM_CHOICE);
|
||||
write_csr(mstatus, ms);
|
||||
ms = read_csr(mstatus);
|
||||
|
||||
if (EXTRACT_FIELD(ms, MSTATUS_VM) != VM_CHOICE) {
|
||||
printk(BIOS_DEBUG, "We don't have virtual memory...\n");
|
||||
return;
|
||||
} else {
|
||||
printk(BIOS_DEBUG, "-----------------------------\n");
|
||||
printk(BIOS_DEBUG, "Virtual memory status enabled\n");
|
||||
printk(BIOS_DEBUG, "-----------------------------\n");
|
||||
}
|
||||
|
||||
// TODO: Figure out how to grab this from cbfs
|
||||
// N.B. We used to map physical from 0x81000000,
|
||||
// but since kernels need to be able to see the page tables
|
||||
// created by firmware, we're going to map from start of RAM.
|
||||
// All this is subject to change as we learn more. Much
|
||||
// about RISCV is still in flux.
|
||||
printk(BIOS_DEBUG, "Initializing virtual memory...\n");
|
||||
uintptr_t physicalStart = 0x80000000;
|
||||
uintptr_t virtualStart = 0xffffffff80000000;
|
||||
init_vm(virtualStart, physicalStart, (pte_t *)_pagetables);
|
||||
mb();
|
||||
flush_tlb();
|
||||
|
||||
#if IS_ENABLED(CONFIG_DEBUG_PRINT_PAGE_TABLES)
|
||||
printk(BIOS_DEBUG, "Finished initializing virtual memory, starting walk...\n");
|
||||
print_page_table();
|
||||
#else
|
||||
printk(BIOS_DEBUG, "Finished initializing virtual memory\n");
|
||||
#endif
|
||||
}
|
||||
|
||||
void mstatus_init(void)
|
||||
{
|
||||
uintptr_t ms = 0;
|
||||
|
|
Loading…
Reference in New Issue