arm64: Remove SMP support

As ARM Trusted Firmware is the only first class citizen for
booting arm64 multi-processor in coreboot remove SMP
support. If SoCs want to bring up MP then ATF needs to be
ported and integrated.

Change-Id: Ife24d53eed9b7a5a5d8c69a64d7a20a55a4163db
Signed-off-by: Furquan Shaikh <furquan@google.com>
Reviewed-on: http://review.coreboot.org/11909
Tested-by: build bot (Jenkins)
Reviewed-by: Julius Werner <jwerner@chromium.org>
This commit is contained in:
Furquan Shaikh 2015-10-15 12:15:31 -07:00 committed by Julius Werner
parent 1148786c05
commit b3f6ad3522
18 changed files with 38 additions and 797 deletions

View File

@ -130,9 +130,7 @@ ifeq ($(CONFIG_ARCH_RAMSTAGE_ARM64),y)
ramstage-y += c_entry.c
ramstage-y += stages.c
ramstage-y += startup.c
ramstage-y += div0.c
ramstage-y += cpu.c
ramstage-y += cpu_ramstage.c
ramstage-y += eabi_compat.c
ramstage-y += boot.c

View File

@ -17,7 +17,6 @@
#include <arch/cpu.h>
#include <arch/mmu.h>
#include <arch/stages.h>
#include <arch/startup.h>
#include "cpu-internal.h"
void __attribute__((weak)) arm64_soc_init(void)
@ -32,7 +31,7 @@ static void seed_stack(void)
int i;
int size;
stack_begin = cpu_get_stack(smp_processor_id());
stack_begin = cpu_get_stack();
stack_begin -= CONFIG_STACK_SIZE;
slot = (void *)stack_begin;
@ -45,21 +44,10 @@ static void seed_stack(void)
static void arm64_init(void)
{
cpu_set_bsp();
seed_stack();
arm64_soc_init();
main();
}
/*
* This variable holds entry point for CPUs starting up. The first
* element is the BSP path, and the second is the non-BSP path.
*/
void (*c_entry[2])(void) = { &arm64_init, &arch_secondary_cpu_init };
void *prepare_secondary_cpu_startup(void)
{
startup_save_cpu_data();
return secondary_entry_point(&arm64_cpu_startup_resume);
}
/* This variable holds entry point for CPU starting up. */
void (*c_entry)(void) = &arm64_init;

View File

@ -16,22 +16,10 @@
#ifndef ARCH_CPU_INTERNAL_H
#define ARCH_CPU_INTERNAL_H
/*
* Do the necessary work to prepare for secondary CPUs coming up. The
* SoC will call this function before bringing up the other CPUs. The
* entry point for the seoncdary CPUs is returned.
*/
void *prepare_secondary_cpu_startup(void);
/* Return the top of the stack for the cpu. */
void *cpu_get_stack(void);
/*
* Code path for the non-BSP CPUs. This is an internal function used.
*/
void arch_secondary_cpu_init(void);
/* Return the top of the stack for the specified cpu. */
void *cpu_get_stack(unsigned int cpu);
/* Return the top of the exception stack for the specified cpu. */
void *cpu_get_exception_stack(unsigned int cpu);
/* Return the top of the exception stack for the cpu. */
void *cpu_get_exception_stack(void);
#endif /* ARCH_CPU_INTERNAL_H */

View File

@ -1,224 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2013 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <stdint.h>
#include <stdlib.h>
#include <arch/lib_helpers.h>
#include <cpu/cpu.h>
#include <console/console.h>
#include <smp/node.h>
#include "cpu-internal.h"
struct cpu_info cpu_infos[CONFIG_MAX_CPUS];
struct cpu_info *bsp_cpu_info;
struct cpu_info *cpu_info(void)
{
return cpu_info_for_cpu(smp_processor_id());
}
size_t cpus_online(void)
{
int i;
size_t num = 0;
for (i = 0; i < ARRAY_SIZE(cpu_infos); i++) {
if (cpu_online(cpu_info_for_cpu(i)))
num++;
}
return num;
}
static inline int action_queue_empty(struct cpu_action_queue *q)
{
return load_acquire_exclusive(&q->todo) == NULL;
}
static inline int action_completed(struct cpu_action_queue *q,
struct cpu_action *action)
{
return load_acquire(&q->completed) == action;
}
static inline void wait_for_action_queue_slot(struct cpu_action_queue *q)
{
while (!action_queue_empty(q))
wfe();
}
static void wait_for_action_complete(struct cpu_action_queue *q,
struct cpu_action *a)
{
while (!action_completed(q, a))
wfe();
}
static struct cpu_action *wait_for_action(struct cpu_action_queue *q,
struct cpu_action *local)
{
struct cpu_action *action;
while (action_queue_empty(q))
wfe();
/*
* Keep original address, but use a local copy for async processing.
*/
do {
action = load_acquire_exclusive(&q->todo);
*local = *action;
} while (!store_release_exclusive(&q->todo, NULL));
return action;
}
static void queue_action(struct cpu_action_queue *q, struct cpu_action *action)
{
do {
wait_for_action_queue_slot(q);
if (load_acquire_exclusive(&q->todo) != NULL)
continue;
} while (!store_release_exclusive(&q->todo, action));
}
static void action_queue_complete(struct cpu_action_queue *q,
struct cpu_action *action)
{
/* Mark completion and send events to waiters. */
store_release(&q->completed, action);
sev();
}
static void action_run(struct cpu_action *action)
{
action->run(action->arg);
}
static void action_run_on_cpu(struct cpu_info *ci, struct cpu_action *action,
int sync)
{
struct cpu_action_queue *q = &ci->action_queue;
/* Don't run actions on non-online cpus. */
if (!cpu_online(ci))
return;
if (ci->id == smp_processor_id()) {
action->run(action->arg);
return;
}
queue_action(q, action);
/* Wait for CPU to pick it up. Empty slot means it was picked up. */
wait_for_action_queue_slot(q);
/* Wait for completion if requested. */
if (sync)
wait_for_action_complete(q, action);
}
static int __arch_run_on_cpu(unsigned int cpu, struct cpu_action *action,
int sync)
{
struct cpu_info *ci;
if (cpu >= CONFIG_MAX_CPUS)
return -1;
ci = cpu_info_for_cpu(cpu);
action_run_on_cpu(ci, action, sync);
return 0;
}
int arch_run_on_cpu(unsigned int cpu, struct cpu_action *action)
{
return __arch_run_on_cpu(cpu, action, 1);
}
int arch_run_on_cpu_async(unsigned int cpu, struct cpu_action *action)
{
return __arch_run_on_cpu(cpu, action, 0);
}
static int __arch_run_on_all_cpus(struct cpu_action *action, int sync)
{
int i;
for (i = 0; i < CONFIG_MAX_CPUS; i++)
action_run_on_cpu(cpu_info_for_cpu(i), action, sync);
return 0;
}
static int __arch_run_on_all_cpus_but_self(struct cpu_action *action, int sync)
{
int i;
struct cpu_info *me = cpu_info();
for (i = 0; i < CONFIG_MAX_CPUS; i++) {
struct cpu_info *ci = cpu_info_for_cpu(i);
if (ci == me)
continue;
action_run_on_cpu(ci, action, sync);
}
return 0;
}
int arch_run_on_all_cpus(struct cpu_action *action)
{
return __arch_run_on_all_cpus(action, 1);
}
int arch_run_on_all_cpus_async(struct cpu_action *action)
{
return __arch_run_on_all_cpus(action, 0);
}
int arch_run_on_all_cpus_but_self(struct cpu_action *action)
{
return __arch_run_on_all_cpus_but_self(action, 1);
}
int arch_run_on_all_cpus_but_self_async(struct cpu_action *action)
{
return __arch_run_on_all_cpus_but_self(action, 0);
}
void arch_cpu_wait_for_action(void)
{
struct cpu_info *ci = cpu_info();
struct cpu_action_queue *q = &ci->action_queue;
while (1) {
struct cpu_action *orig;
struct cpu_action action;
orig = wait_for_action(q, &action);
action_run(&action);
action_queue_complete(q, orig);
}
}
#if IS_ENABLED(CONFIG_SMP)
int boot_cpu(void)
{
return cpu_is_bsp();
}
#endif

View File

@ -24,6 +24,8 @@
#include <timer.h>
#include "cpu-internal.h"
static struct cpu_info cpu_info;
void __attribute__((weak)) arm64_arch_timer_init(void)
{
/* Default weak implementation does nothing. */
@ -102,9 +104,9 @@ static void el3_init(void)
isb();
}
static void init_this_cpu(void *arg)
static void init_this_cpu(void)
{
struct cpu_info *ci = arg;
struct cpu_info *ci = &cpu_info;
device_t dev = ci->cpu;
cpu_set_device_operations(dev);
@ -156,14 +158,14 @@ static void init_cpu_info(struct bus *bus)
continue;
/* IDs are currently mapped 1:1 with logical CPU numbers. */
if (id >= CONFIG_MAX_CPUS) {
if (id != 0) {
printk(BIOS_WARNING,
"CPU id %x too large. Disabling.\n", id);
cpu_disable_dev(cur);
continue;
}
ci = cpu_info_for_cpu(id);
ci = &cpu_info;
if (ci->cpu != NULL) {
printk(BIOS_WARNING,
"Duplicate ID %x in device tree.\n", id);
@ -175,12 +177,8 @@ static void init_cpu_info(struct bus *bus)
}
}
void arch_initialize_cpus(device_t cluster, struct cpu_control_ops *cntrl_ops)
void arch_initialize_cpu(device_t cluster)
{
size_t max_cpus;
size_t i;
struct cpu_info *ci;
void (*entry)(void);
struct bus *bus;
if (cluster->path.type != DEVICE_PATH_CPU_CLUSTER) {
@ -196,83 +194,11 @@ void arch_initialize_cpus(device_t cluster, struct cpu_control_ops *cntrl_ops)
if (bus == NULL)
return;
/*
* el3_init must be performed prior to prepare_secondary_cpu_startup.
* This is important since el3_init initializes SCR values on BSP CPU
* and then prepare_secondary_cpu_startup reads the initialized SCR
* value and saves it for use by non-BSP CPUs.
*/
el3_init();
/* Mark current cpu online. */
cpu_mark_online(cpu_info());
entry = prepare_secondary_cpu_startup();
/* Initialize the cpu_info structures. */
init_cpu_info(bus);
max_cpus = cntrl_ops->total_cpus();
if (max_cpus > CONFIG_MAX_CPUS) {
printk(BIOS_WARNING,
"max_cpus (%zu) exceeds CONFIG_MAX_CPUS (%zu).\n",
max_cpus, (size_t)CONFIG_MAX_CPUS);
max_cpus = CONFIG_MAX_CPUS;
}
for (i = 0; i < max_cpus; i++) {
device_t dev;
struct cpu_action action;
struct stopwatch sw;
ci = cpu_info_for_cpu(i);
dev = ci->cpu;
/* Disregard CPUs not in device tree. */
if (dev == NULL)
continue;
/* Skip disabled CPUs. */
if (!dev->enabled)
continue;
if (!cpu_online(ci)) {
/* Start the CPU. */
printk(BIOS_DEBUG, "Starting CPU%x\n", ci->id);
if (cntrl_ops->start_cpu(ci->id, entry)) {
printk(BIOS_ERR,
"Failed to start CPU%x\n", ci->id);
continue;
}
stopwatch_init_msecs_expire(&sw, 1000);
/* Wait for CPU to come online. */
while (!stopwatch_expired(&sw)) {
if (!cpu_online(ci))
continue;
printk(BIOS_DEBUG,
"CPU%x online in %ld usecs.\n",
ci->id, stopwatch_duration_usecs(&sw));
break;
}
}
if (!cpu_online(ci)) {
printk(BIOS_DEBUG,
"CPU%x failed to come online in %ld usecs.\n",
ci->id, stopwatch_duration_usecs(&sw));
continue;
}
/* Send it the init action. */
action.run = init_this_cpu;
action.arg = ci;
arch_run_on_cpu(ci->id, &action);
}
}
void arch_secondary_cpu_init(void)
{
/* Mark this CPU online. */
cpu_mark_online(cpu_info());
arch_cpu_wait_for_action();
/* Send it the init action. */
init_this_cpu();
}

View File

@ -1,44 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Google Inc
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __ARCH_ARM64_INCLUDE_ARCH_STARTUP_H__
#define __ARCH_ARM64_INCLUDE_ARCH_STARTUP_H__
/* Every element occupies 8 bytes (64-bit entries) */
#define PER_ELEMENT_SIZE_BYTES 8
#define MAIR_INDEX 0
#define TCR_INDEX 1
#define TTBR0_INDEX 2
#define SCR_INDEX 3
#define VBAR_INDEX 4
#define CNTFRQ_INDEX 5
#define CPTR_INDEX 6
#define CPACR_INDEX 7
/* IMPORTANT!!! If any new element is added please update NUM_ELEMENTS */
#define NUM_ELEMENTS 8
#ifndef __ASSEMBLY__
/*
* startup_save_cpu_data is used to save register values that need to be setup
* when a CPU starts booting. This is used by secondary CPUs as well as resume
* path to directly setup MMU and other related registers.
*/
void startup_save_cpu_data(void);
#endif
#endif /* __ARCH_ARM64_INCLUDE_ARCH_STARTUP_H__ */

View File

@ -37,148 +37,28 @@ struct cpu_driver {
const struct cpu_device_id *id_table;
};
/* Action to run. */
struct cpu_action {
void (*run)(void *arg);
void *arg;
};
/*
* Actions are queued to 'todo'. When picked up 'todo' is cleared. The
* 'completed' field is set to the original 'todo' value when the action
* is complete.
*/
struct cpu_action_queue {
struct cpu_action *todo;
struct cpu_action *completed;
};
struct cpu_info {
device_t cpu;
struct cpu_action_queue action_queue;
unsigned int online;
/* Current assumption is that id matches smp_processor_id(). */
unsigned int id;
uint64_t mpidr;
};
/* Obtain cpu_info for current executing CPU. */
struct cpu_info *cpu_info(void);
extern struct cpu_info *bsp_cpu_info;
extern struct cpu_info cpu_infos[CONFIG_MAX_CPUS];
static inline struct cpu_info *cpu_info_for_cpu(unsigned int id)
{
return &cpu_infos[id];
}
/* Ran only by BSP at initial boot strapping. */
static inline void cpu_set_bsp(void)
{
bsp_cpu_info = cpu_info();
}
static inline int cpu_is_bsp(void)
{
return cpu_info() == bsp_cpu_info;
}
static inline int cpu_online(struct cpu_info *ci)
{
return load_acquire(&ci->online) != 0;
}
static inline void cpu_mark_online(struct cpu_info *ci)
{
ci->mpidr = read_affinity_mpidr();
store_release(&ci->online, 1);
}
/* Provide number of CPUs online. */
size_t cpus_online(void);
/* Control routines for starting CPUs. */
struct cpu_control_ops {
/* Return the maximum number of CPUs supported. */
size_t (*total_cpus)(void);
/*
* Start the requested CPU and have it start running entry().
* Returns 0 on success, < 0 on error.
*/
int (*start_cpu)(unsigned int id, void (*entry)(void));
};
/*
* Initialize all DEVICE_PATH_CPUS under the DEVICE_PATH_CPU_CLUSTER cluster.
* type DEVICE_PATH_CPUS. Start up is controlled by cntrl_ops.
*/
void arch_initialize_cpus(device_t cluster, struct cpu_control_ops *cntrl_ops);
/*
* Run cpu_action returning < 0 on error, 0 on success. There are synchronous
* and asynchronous methods. Both cases ensure the action has been picked up
* by the target cpu. The synchronous variants will wait for the action to
* be completed before returning.
*
* Though the current implementation allows queuing actions on the main cpu,
* the main cpu doesn't process its own queue.
*/
int arch_run_on_cpu(unsigned int cpu, struct cpu_action *action);
int arch_run_on_all_cpus(struct cpu_action *action);
int arch_run_on_all_cpus_but_self(struct cpu_action *action);
int arch_run_on_cpu_async(unsigned int cpu, struct cpu_action *action);
int arch_run_on_all_cpus_async(struct cpu_action *action);
int arch_run_on_all_cpus_but_self_async(struct cpu_action *action);
/* Wait for actions to be perfomed. */
void arch_cpu_wait_for_action(void);
/* Initialize CPU0 under the DEVICE_PATH_CPU_CLUSTER cluster. */
void arch_initialize_cpu(device_t cluster);
#endif /* !__PRE_RAM__ */
/*
* Returns logical cpu in range [0:MAX_CPUS). SoC should define this.
* Additionally, this is needed early in arm64 init so it should not
* rely on a stack. Standard clobber list is fair game: x0-x7 and x0
* returns the logical cpu number.
*/
unsigned int smp_processor_id(void);
static inline unsigned int smp_processor_id(void) { return 0; }
/*
* Stages and rmodules have 2 entry points: BSP and non-BSP. Provided
* a pointer the correct non-BSP entry point will be returned. The
* first instruction is for BSP and the 2nd is for non-BSP. Instructions
* are all 32-bit on arm64.
*/
static inline void *secondary_entry_point(void *e)
{
uintptr_t nonbsp = (uintptr_t)e;
return (void *)(nonbsp + sizeof(uint32_t));
}
/*
* The arm64_cpu_startup() initializes a CPU's exception stack and regular
* stack as well initializing the C environment for the processor. It
* calls into the array of function pointers at symbol c_entry depending
* on BSP state. Note that arm64_cpu_startup contains secondary entry
* point which can be obtained by secondary_entry_point().
* The arm64_cpu_startup() initializes CPU's exception stack and regular
* stack as well initializing the C environment for the processor. Finally it
* calls into c_entry.
*/
void arm64_cpu_startup(void);
/*
* The arm64_cpu_startup_resume() initializes a CPU's exception stack and
* regular stack as well initializing the C environment for the processor. It
* calls into the array of function pointers at symbol c_entry depending
* on BSP state. Note that arm64_cpu_startup contains secondary entry
* point which can be obtained by secondary_entry_point().
* Additionally, it also restores saved register data and enables MMU, caches
* and exceptions before jumping to C environment for both BSP and non-BSP CPUs.
*/
void arm64_cpu_startup_resume(void);
/*
* The arm64_arch_timer_init() initializes the per CPU's cntfrq register of
* The arm64_arch_timer_init() initializes the CPU's cntfrq register of
* ARM arch timer.
*/
void arm64_arch_timer_init(void);

View File

@ -1,29 +0,0 @@
#ifndef ARCH_SMP_SPINLOCK_H
#define ARCH_SMP_SPINLOCK_H
#include <arch/barrier.h>
#include <stdint.h>
typedef struct {
volatile uint32_t lock;
} spinlock_t;
#define SPIN_LOCK_UNLOCKED (spinlock_t) { 0 }
#define DECLARE_SPIN_LOCK(x) static spinlock_t x = SPIN_LOCK_UNLOCKED;
static inline void spin_lock(spinlock_t *spin)
{
while (1) {
if (load_acquire_exclusive(&spin->lock) != 0)
continue;
if (store_release_exclusive(&spin->lock, 1))
break;
}
}
static inline void spin_unlock(spinlock_t *spin)
{
store_release(&spin->lock, 0);
}
#endif

View File

@ -15,51 +15,41 @@
/*
* ======================== stage_entry.S =====================================
* This file acts as an entry point to the different stages of arm64 as well as
* for the secure monitor. They share the same process of setting up stacks and
* jumping to c code. It is important to save x25 from corruption as it contains
* the argument for secure monitor.
* This file acts as an entry point to the different stages of arm64. They share
* the same process of setting up stacks and jumping to c code. It is important
* to save x25 from corruption as it contains the argument for rmodule.
* =============================================================================
*/
#include <arch/asm.h>
#define __ASSEMBLY__
#include <arch/lib_helpers.h>
#include <arch/startup.h>
#define STACK_SZ CONFIG_STACK_SIZE
#define EXCEPTION_STACK_SZ CONFIG_STACK_SIZE
/*
* The stacks for each of the armv8 cores grows down from _estack. It is sized
* according to MAX_CPUS. Additionally provide exception stacks for each CPU.
* Stack for armv8 CPU grows down from _estack. Additionally, provide exception
* stack for the CPU.
*/
.section .bss, "aw", @nobits
.global _arm64_startup_data
.balign 8
_arm64_startup_data:
.space NUM_ELEMENTS*PER_ELEMENT_SIZE_BYTES
.global _stack
.global _estack
.balign STACK_SZ
_stack:
.space CONFIG_MAX_CPUS*STACK_SZ
.space STACK_SZ
_estack:
.global _stack_exceptions
.global _estack_exceptions
.balign EXCEPTION_STACK_SZ
_stack_exceptions:
.space CONFIG_MAX_CPUS*EXCEPTION_STACK_SZ
.space EXCEPTION_STACK_SZ
_estack_exceptions:
ENTRY(cpu_get_stack)
mov x1, #STACK_SZ
mul x0, x0, x1
ldr x1, 1f
sub x0, x1, x0
ldr x0, 1f
ret
.align 3
1:
@ -67,10 +57,7 @@ ENTRY(cpu_get_stack)
ENDPROC(cpu_get_stack)
ENTRY(cpu_get_exception_stack)
mov x1, #EXCEPTION_STACK_SZ
mul x0, x0, x1
ldr x1, 1f
sub x0, x1, x0
ldr x0, 1f
ret
.align 3
1:
@ -87,11 +74,7 @@ ENDPROC(cpu_get_exception_stack)
* any rmodules.
*/
ENTRY(arm64_c_environment)
bl smp_processor_id /* x0 = cpu */
mov x24, x0
/* Set the exception stack for this cpu. */
/* Set the exception stack for the cpu. */
bl cpu_get_exception_stack
msr SPSel, #1
isb
@ -101,16 +84,12 @@ ENTRY(arm64_c_environment)
msr SPSel, #0
isb
/* Set stack for this cpu. */
mov x0, x24 /* x0 = cpu */
/* Set the non-exception stack for the cpu. */
bl cpu_get_stack
mov sp, x0
/* Get entry point by dereferencing c_entry. */
ldr x1, 1f
/* Retrieve entry in c_entry array using x26 as the index. */
adds x1, x1, x26, lsl #3
ldr x1, [x1]
/* Move back the arguments from x25 to x0 */
mov x0, x25
br x1
@ -119,21 +98,7 @@ ENTRY(arm64_c_environment)
.quad c_entry
ENDPROC(arm64_c_environment)
/* The first 2 instructions are for BSP and secondary CPUs,
* respectively. x26 holds the index into c_entry array. */
.macro split_bsp_path
b 2000f
b 2001f
2000:
mov x26, #0
b 2002f
2001:
mov x26, #1
2002:
.endm
ENTRY(_start)
split_bsp_path
/* Save any arguments to current rmodule in x25 */
mov x25, x0
b arm64_c_environment
@ -153,77 +118,12 @@ ENDPROC(_start)
write_current sctlr, x0, x1
.endm
/*
* This macro assumes x2 has base address and returns value read in x0
* x1 is used as temporary register.
*/
.macro get_element_addr index
add x1, x2, #(\index * PER_ELEMENT_SIZE_BYTES)
ldr x0, [x1]
.endm
/*
* Uses following registers:
* x0 = reading stored value
* x1 = temp reg
* x2 = base address of saved data region
*/
.macro startup_restore
adr x2, _arm64_startup_data
get_element_addr MAIR_INDEX
write_current mair, x0, x1
get_element_addr TCR_INDEX
write_current tcr, x0, x1
get_element_addr TTBR0_INDEX
write_current ttbr0, x0, x1
get_element_addr SCR_INDEX
write_el3 scr, x0, x1
get_element_addr VBAR_INDEX
write_current vbar, x0, x1
get_element_addr CNTFRQ_INDEX
write_el0 cntfrq, x0, x1
get_element_addr CPTR_INDEX
write_el3 cptr, x0, x1
get_element_addr CPACR_INDEX
write_el1 cpacr, x0, x1
dsb sy
isb
tlbiall_current x1
read_current x0, sctlr
orr x0, x0, #(1 << 12) /* Enable Instruction Cache */
orr x0, x0, #(1 << 2) /* Enable Data/Unified Cache */
orr x0, x0, #(1 << 0) /* Enable MMU */
write_current sctlr, x0, x1
dsb sy
isb
.endm
CPU_RESET_ENTRY(arm64_cpu_startup)
split_bsp_path
bl arm64_cpu_early_setup
setup_sctlr
b arm64_c_environment
ENDPROC(arm64_cpu_startup)
CPU_RESET_ENTRY(arm64_cpu_startup_resume)
split_bsp_path
bl arm64_cpu_early_setup
setup_sctlr
startup_restore
b arm64_c_environment
ENDPROC(arm64_cpu_startup_resume)
/*
* stage_entry is defined as a weak symbol to allow SoCs/CPUs to define a custom
* entry point to perform any fixups that need to be done immediately after

View File

@ -1,53 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Google Inc
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/cache.h>
#include <arch/lib_helpers.h>
#include <arch/startup.h>
#include <console/console.h>
/* This space is defined in stage_entry.S. */
extern u8 _arm64_startup_data[];
static inline void save_element(size_t index, uint64_t val)
{
uint64_t *ptr = (uint64_t *)_arm64_startup_data;
ptr[index] = val;
}
/*
* startup_save_cpu_data is used to save register values that need to be setup
* when a CPU starts booting. This is used by secondary CPUs as well as resume
* path to directly setup MMU and other related registers.
*/
void startup_save_cpu_data(void)
{
save_element(MAIR_INDEX, raw_read_mair_current());
save_element(TCR_INDEX, raw_read_tcr_current());
save_element(TTBR0_INDEX, raw_read_ttbr0_current());
save_element(VBAR_INDEX, raw_read_vbar_current());
save_element(CNTFRQ_INDEX, raw_read_cntfrq_el0());
save_element(CPACR_INDEX, raw_read_cpacr_el1());
if (get_current_el() == EL3) {
save_element(SCR_INDEX, raw_read_scr_el3());
save_element(CPTR_INDEX, raw_read_cptr_el3());
}
dcache_clean_by_mva(_arm64_startup_data,
NUM_ELEMENTS * PER_ELEMENT_SIZE_BYTES);
}

View File

@ -16,7 +16,6 @@
chip soc/nvidia/tegra132
device cpu_cluster 0 on
device cpu 0 on end
device cpu 1 on end
end
register "display_controller" = "TEGRA_ARM_DISPLAYA"

View File

@ -12,7 +12,6 @@ config SOC_NVIDIA_TEGRA132
select HAVE_HARD_RESET
select HAVE_UART_SPECIAL
select ARM_BOOTBLOCK_CUSTOM
select SMP
select GENERIC_GPIO_LIB
select HAS_PRECBMEM_TIMESTAMP_REGION

View File

@ -61,7 +61,6 @@ ramstage-y += 32bit_reset.S
ramstage-y += addressmap.c
ramstage-y += cbmem.c
ramstage-y += cpu.c
ramstage-y += cpu_lib.S
ramstage-y += clock.c
ramstage-$(CONFIG_MAINBOARD_DO_NATIVE_VGA_INIT) += dc.c
ramstage-$(CONFIG_MAINBOARD_DO_DSI_INIT) += dsi.c

View File

@ -1,23 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
.text
.global smp_processor_id
smp_processor_id:
/* Core 0 and 1 are encoded in the Aff0 (7:0) field of MPIDR_EL1. */
mrs x0, mpidr_el1
uxtb w0, w0
ret

View File

@ -55,25 +55,6 @@ static void soc_read_resources(device_t dev)
ram_resource(dev, index++, begin * KiB, size * KiB);
}
static size_t cntrl_total_cpus(void)
{
return CONFIG_MAX_CPUS;
}
static int cntrl_start_cpu(unsigned int id, void (*entry)(void))
{
if (id != 1)
return -1;
start_cpu(1, entry);
return 0;
}
static struct cpu_control_ops cntrl_ops = {
.total_cpus = cntrl_total_cpus,
.start_cpu = cntrl_start_cpu,
};
static void lock_down_vpr(void)
{
struct tegra_mc_regs *regs = (void *)(uintptr_t)TEGRA_MC_BASE;
@ -87,7 +68,7 @@ static void soc_init(device_t dev)
{
clock_init_arm_generic_timer();
arch_initialize_cpus(dev, &cntrl_ops);
arch_initialize_cpu(dev);
/* Lock down VPR */
lock_down_vpr();

View File

@ -64,7 +64,6 @@ romstage-$(CONFIG_DRIVERS_UART) += uart.c
ramstage-y += addressmap.c
ramstage-y += cbmem.c
ramstage-y += cpu.c
ramstage-y += cpu_lib.S
ramstage-y += clock.c
ramstage-$(CONFIG_MAINBOARD_DO_NATIVE_VGA_INIT) += dc.c
ramstage-$(CONFIG_MAINBOARD_DO_DSI_INIT) += dsi.c

View File

@ -1,23 +0,0 @@
/*
* This file is part of the coreboot project.
*
* Copyright 2014 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
.text
.global smp_processor_id
smp_processor_id:
/* Core 0 and 1 are encoded in the Aff0 (7:0) field of MPIDR_EL1. */
mrs x0, mpidr_el1
uxtb w0, w0
ret

View File

@ -58,30 +58,11 @@ static void soc_read_resources(device_t dev)
ram_resource(dev, index++, begin * KiB, size * KiB);
}
static size_t cntrl_total_cpus(void)
{
return CONFIG_MAX_CPUS;
}
static int cntrl_start_cpu(unsigned int id, void (*entry)(void))
{
if (id >= CONFIG_MAX_CPUS)
return -1;
start_cpu(id, entry);
return 0;
}
static struct cpu_control_ops cntrl_ops = {
.total_cpus = cntrl_total_cpus,
.start_cpu = cntrl_start_cpu,
};
static void soc_init(device_t dev)
{
clock_init_arm_generic_timer();
arch_initialize_cpus(dev, &cntrl_ops);
arch_initialize_cpu(dev);
if (!IS_ENABLED(CONFIG_MAINBOARD_DO_NATIVE_VGA_INIT))
return;
@ -132,9 +113,8 @@ struct chip_operations soc_nvidia_tegra210_ops = {
static void tegra210_cpu_init(device_t cpu)
{
if (cpu_is_bsp())
if (tegra210_run_mtc() != 0)
printk(BIOS_ERR, "MTC: No training data.\n");
if (tegra210_run_mtc() != 0)
printk(BIOS_ERR, "MTC: No training data.\n");
}
static const struct cpu_device_id ids[] = {