coreboot: tiered imd

A tiered imd allows for both small and large allocations. The
small allocations are packed into a large region. Utilizing a
tiered imd reduces internal fragmentation within the imd.

Change-Id: I0bcd6473aacbc714844815b24d77cb5c542abdd0
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/8623
Tested-by: build bot (Jenkins)
Reviewed-by: Marc Jones <marc.jones@se-eng.com>
This commit is contained in:
Aaron Durbin 2015-03-24 23:14:46 -05:00
parent 20686d851c
commit cac5050623
3 changed files with 374 additions and 136 deletions

View file

@ -58,6 +58,7 @@
#define CBMEM_ID_HOB_POINTER 0x484f4221 #define CBMEM_ID_HOB_POINTER 0x484f4221
#define CBMEM_ID_IGD_OPREGION 0x4f444749 #define CBMEM_ID_IGD_OPREGION 0x4f444749
#define CBMEM_ID_IMD_ROOT 0xff4017ff #define CBMEM_ID_IMD_ROOT 0xff4017ff
#define CBMEM_ID_IMD_SMALL 0x53a11439
#define CBMEM_ID_MEMINFO 0x494D454D #define CBMEM_ID_MEMINFO 0x494D454D
#define CBMEM_ID_MPTABLE 0x534d5054 #define CBMEM_ID_MPTABLE 0x534d5054
#define CBMEM_ID_MRCDATA 0x4d524344 #define CBMEM_ID_MRCDATA 0x4d524344
@ -105,6 +106,7 @@ struct cbmem_id_to_name {
{ CBMEM_ID_FREESPACE, "FREE SPACE " }, \ { CBMEM_ID_FREESPACE, "FREE SPACE " }, \
{ CBMEM_ID_GDT, "GDT " }, \ { CBMEM_ID_GDT, "GDT " }, \
{ CBMEM_ID_IMD_ROOT, "IMD ROOT " }, \ { CBMEM_ID_IMD_ROOT, "IMD ROOT " }, \
{ CBMEM_ID_IMD_SMALL, "IMD SMALL " }, \
{ CBMEM_ID_MEMINFO, "MEM INFO " }, \ { CBMEM_ID_MEMINFO, "MEM INFO " }, \
{ CBMEM_ID_MPTABLE, "SMP TABLE " }, \ { CBMEM_ID_MPTABLE, "SMP TABLE " }, \
{ CBMEM_ID_MRCDATA, "MRC DATA " }, \ { CBMEM_ID_MRCDATA, "MRC DATA " }, \

View file

@ -81,6 +81,18 @@ void imd_handle_init_partial_recovery(struct imd *imd);
*/ */
int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align); int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align);
/*
* Create an empty imd with both large and small allocations. The small
* allocations come from a fixed imd stored internally within the large
* imd. The region allocated for tracking the smaller allocations is dependent
* on the small root_size and the large entry alignment by calculating the
* number of entries within the small imd and multiplying that by the small
* entry alignment.
*/
int imd_create_tiered_empty(struct imd *imd,
size_t lg_root_size, size_t lg_entry_align,
size_t sm_root_size, size_t sm_entry_align);
/* /*
* Recover a previously created imd. * Recover a previously created imd.
*/ */
@ -131,9 +143,13 @@ int imd_print_entries(const struct imd *imd, const struct imd_lookup *lookup,
* NOTE: Do not directly touch any fields within this structure. An imd pointer * NOTE: Do not directly touch any fields within this structure. An imd pointer
* is meant to be opaque, but the fields are exposed for stack allocation. * is meant to be opaque, but the fields are exposed for stack allocation.
*/ */
struct imd { struct imdr {
uintptr_t limit; uintptr_t limit;
void *r; void *r;
}; };
struct imd {
struct imdr lg;
struct imdr sm;
};
#endif /* _IMD_H_ */ #endif /* _IMD_H_ */

View file

@ -28,6 +28,7 @@
static const uint32_t IMD_ROOT_PTR_MAGIC = 0xc0389481; static const uint32_t IMD_ROOT_PTR_MAGIC = 0xc0389481;
static const uint32_t IMD_ENTRY_MAGIC = ~0xc0389481; static const uint32_t IMD_ENTRY_MAGIC = ~0xc0389481;
static const uint32_t SMALL_REGION_ID = CBMEM_ID_IMD_SMALL;
static const size_t LIMIT_ALIGN = 4096; static const size_t LIMIT_ALIGN = 4096;
/* In-memory data structures. */ /* In-memory data structures. */
@ -69,20 +70,20 @@ static bool imd_root_pointer_valid(const struct imd_root_pointer *rp)
return !!(rp->magic == IMD_ROOT_PTR_MAGIC); return !!(rp->magic == IMD_ROOT_PTR_MAGIC);
} }
static struct imd_root *imd_root(const struct imd *imd) static struct imd_root *imdr_root(const struct imdr *imdr)
{ {
return imd->r; return imdr->r;
} }
/* /*
* The root pointer is relative to the upper limit of the imd. i.e. It sits * The root pointer is relative to the upper limit of the imd. i.e. It sits
* just below the upper limit. * just below the upper limit.
*/ */
static struct imd_root_pointer *imd_get_root_pointer(const struct imd *imd) static struct imd_root_pointer *imdr_get_root_pointer(const struct imdr *imdr)
{ {
struct imd_root_pointer *rp; struct imd_root_pointer *rp;
rp = relative_pointer((void *)imd->limit, -sizeof(*rp)); rp = relative_pointer((void *)imdr->limit, -sizeof(*rp));
return rp; return rp;
} }
@ -93,6 +94,39 @@ static void imd_link_root(struct imd_root_pointer *rp, struct imd_root *r)
rp->root_offset = (int32_t)((intptr_t)r - (intptr_t)rp); rp->root_offset = (int32_t)((intptr_t)r - (intptr_t)rp);
} }
static struct imd_entry *root_last_entry(struct imd_root *r)
{
return &r->entries[r->num_entries - 1];
}
static size_t root_num_entries(size_t root_size)
{
size_t entries_size;
entries_size = root_size;
entries_size -= sizeof(struct imd_root_pointer);
entries_size -= sizeof(struct imd_root);
return entries_size / sizeof(struct imd_entry);
}
static size_t imd_root_data_left(struct imd_root *r)
{
struct imd_entry *last_entry;
last_entry = root_last_entry(r);
if (r->max_offset != 0)
return last_entry->start_offset - r->max_offset;
return ~(size_t)0;
}
static bool root_is_locked(const struct imd_root *r)
{
return !!(r->flags & IMD_FLAG_LOCKED);
}
static void imd_entry_assign(struct imd_entry *e, uint32_t id, static void imd_entry_assign(struct imd_entry *e, uint32_t id,
ssize_t offset, size_t size) ssize_t offset, size_t size)
{ {
@ -102,50 +136,32 @@ static void imd_entry_assign(struct imd_entry *e, uint32_t id,
e->id = id; e->id = id;
} }
static bool root_is_locked(const struct imd_root *r) static void imdr_init(struct imdr *ir, void *upper_limit)
{
return !!(r->flags & IMD_FLAG_LOCKED);
}
static struct imd_entry *root_last_entry(struct imd_root *r)
{
return &r->entries[r->num_entries - 1];
}
/* Initialize imd handle. */
void imd_handle_init(struct imd *imd, void *upper_limit)
{ {
uintptr_t limit = (uintptr_t)upper_limit; uintptr_t limit = (uintptr_t)upper_limit;
/* Upper limit is aligned down to 4KiB */ /* Upper limit is aligned down to 4KiB */
imd->limit = ALIGN_DOWN(limit, LIMIT_ALIGN); ir->limit = ALIGN_DOWN(limit, LIMIT_ALIGN);
imd->r = NULL; ir->r = NULL;
} }
void imd_handle_init_partial_recovery(struct imd *imd) static int imdr_create_empty(struct imdr *imdr, size_t root_size,
{ size_t entry_align)
struct imd_root_pointer *rp;
imd_handle_init(imd, (void *)imd->limit);
rp = imd_get_root_pointer(imd);
imd->r = relative_pointer(rp, rp->root_offset);
}
int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align)
{ {
struct imd_root_pointer *rp; struct imd_root_pointer *rp;
struct imd_root *r; struct imd_root *r;
struct imd_entry *e; struct imd_entry *e;
ssize_t root_offset; ssize_t root_offset;
size_t entries_size;
if (!imd->limit) if (!imdr->limit)
return -1; return -1;
/* root_size and entry_align should be a power of 2. */ /* root_size and entry_align should be a power of 2. */
assert(IS_POWER_OF_2(root_size)); assert(IS_POWER_OF_2(root_size));
assert(IS_POWER_OF_2(entry_align)); assert(IS_POWER_OF_2(entry_align));
if (!imdr->limit)
return -1;
/* /*
* root_size needs to be large enough to accomodate root pointer and * root_size needs to be large enough to accomodate root pointer and
* root book keeping structure. The caller needs to ensure there's * root book keeping structure. The caller needs to ensure there's
@ -162,23 +178,19 @@ int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align)
if (entry_align > root_size) if (entry_align > root_size)
return -1; return -1;
rp = imd_get_root_pointer(imd); rp = imdr_get_root_pointer(imdr);
root_offset = -(ssize_t)root_size; root_offset = -(ssize_t)root_size;
/* Set root pointer. */ /* Set root pointer. */
imd->r = relative_pointer((void *)imd->limit, root_offset); imdr->r = relative_pointer((void *)imdr->limit, root_offset);
r = imd_root(imd); r = imdr_root(imdr);
imd_link_root(rp, r); imd_link_root(rp, r);
memset(r, 0, sizeof(*r)); memset(r, 0, sizeof(*r));
r->entry_align = entry_align; r->entry_align = entry_align;
/* Calculate size left for entries. */ /* Calculate size left for entries. */
entries_size = root_size; r->max_entries = root_num_entries(root_size);
entries_size -= sizeof(*rp);
entries_size -= sizeof(*r);
r->max_entries = entries_size / sizeof(r->entries[0]);
/* Fill in first entry covering the root region. */ /* Fill in first entry covering the root region. */
r->num_entries = 1; r->num_entries = 1;
@ -190,41 +202,17 @@ int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align)
return 0; return 0;
} }
int imd_limit_size(struct imd *imd, size_t max_size) static int imdr_recover(struct imdr *imdr)
{
struct imd_root *r;
ssize_t smax_size;
size_t root_size;
r = imd_root(imd);
if (r == NULL)
return -1;
root_size = imd->limit - (uintptr_t)r;
if (max_size < root_size)
return -1;
/* Take into account the root size. */
smax_size = max_size - root_size;
smax_size = -smax_size;
r->max_offset = smax_size;
return 0;
}
int imd_recover(struct imd *imd)
{ {
struct imd_root_pointer *rp; struct imd_root_pointer *rp;
struct imd_root *r; struct imd_root *r;
uintptr_t low_limit; uintptr_t low_limit;
size_t i; size_t i;
if (!imd->limit); if (!imdr->limit)
return -1; return -1;
rp = imd_get_root_pointer(imd); rp = imdr_get_root_pointer(imdr);
if (!imd_root_pointer_valid(rp)) if (!imd_root_pointer_valid(rp))
return -1; return -1;
@ -233,7 +221,7 @@ int imd_recover(struct imd *imd)
/* Confirm the root and root pointer are just under the limit. */ /* Confirm the root and root pointer are just under the limit. */
if (ALIGN_UP((uintptr_t)&r->entries[r->max_entries], LIMIT_ALIGN) != if (ALIGN_UP((uintptr_t)&r->entries[r->max_entries], LIMIT_ALIGN) !=
imd->limit) imdr->limit)
return -1; return -1;
if (r->num_entries > r->max_entries) if (r->num_entries > r->max_entries)
@ -259,59 +247,76 @@ int imd_recover(struct imd *imd)
start_addr = (uintptr_t)relative_pointer(r, e->start_offset); start_addr = (uintptr_t)relative_pointer(r, e->start_offset);
if (start_addr < low_limit) if (start_addr < low_limit)
return -1; return -1;
if (start_addr >= imd->limit || if (start_addr >= imdr->limit ||
(start_addr + e->size) > imd->limit) (start_addr + e->size) > imdr->limit)
return -1; return -1;
} }
/* Set root pointer. */ /* Set root pointer. */
imd->r = r; imdr->r = r;
return 0; return 0;
} }
int imd_lockdown(struct imd *imd) static const struct imd_entry *imdr_entry_find(const struct imdr *imdr,
{ uint32_t id)
struct imd_root *r;
r = imd_root(imd);
if (r == NULL)
return -1;
r->flags |= IMD_FLAG_LOCKED;
return 0;
}
int imd_region_used(struct imd *imd, void **base, size_t *size)
{ {
struct imd_root *r; struct imd_root *r;
struct imd_entry *e; struct imd_entry *e;
void *low_addr; size_t i;
size_t sz_used;
if (!imd->limit) r = imdr_root(imdr);
return -1;
r = imd_root(imd); if (r == NULL)
return NULL;
e = NULL;
/* Skip first entry covering the root. */
for (i = 1; i < r->num_entries; i++) {
if (id != r->entries[i].id)
continue;
e = &r->entries[i];
break;
}
return e;
}
static int imdr_limit_size(struct imdr *imdr, size_t max_size)
{
struct imd_root *r;
ssize_t smax_size;
size_t root_size;
r = imdr_root(imdr);
if (r == NULL) if (r == NULL)
return -1; return -1;
/* Use last entry to obtain lowest address. */ root_size = imdr->limit - (uintptr_t)r;
e = root_last_entry(r);
low_addr = relative_pointer(r, e->start_offset); if (max_size < root_size)
return -1;
/* Total size used is the last entry's base up to the limit. */ /* Take into account the root size. */
sz_used = imd->limit - (uintptr_t)low_addr; smax_size = max_size - root_size;
smax_size = -smax_size;
*base = low_addr; r->max_offset = smax_size;
*size = sz_used;
return 0; return 0;
} }
static size_t imdr_entry_size(const struct imdr *imdr,
const struct imd_entry *e)
{
return e->size;
}
static void *imdr_entry_at(const struct imdr *imdr, const struct imd_entry *e)
{
return relative_pointer(imdr_root(imdr), e->start_offset);
}
static struct imd_entry *imd_entry_add_to_root(struct imd_root *r, uint32_t id, static struct imd_entry *imd_entry_add_to_root(struct imd_root *r, uint32_t id,
size_t size) size_t size)
{ {
@ -326,20 +331,15 @@ static struct imd_entry *imd_entry_add_to_root(struct imd_root *r, uint32_t id,
/* Determine total size taken up by entry. */ /* Determine total size taken up by entry. */
used_size = ALIGN_UP(size, r->entry_align); used_size = ALIGN_UP(size, r->entry_align);
last_entry = root_last_entry(r);
/* See if size overflows imd total size. */ /* See if size overflows imd total size. */
if (r->max_offset != 0) { if (used_size > imd_root_data_left(r))
size_t remaining = last_entry->start_offset - r->max_offset; return NULL;
if (used_size > remaining)
return NULL;
}
/* /*
* Determine if offset field overflows. All offsets should be lower * Determine if offset field overflows. All offsets should be lower
* than the previous one. * than the previous one.
*/ */
last_entry = root_last_entry(r);
e_offset = last_entry->start_offset; e_offset = last_entry->start_offset;
e_offset -= (ssize_t)used_size; e_offset -= (ssize_t)used_size;
if (e_offset > last_entry->start_offset) if (e_offset > last_entry->start_offset)
@ -353,12 +353,12 @@ static struct imd_entry *imd_entry_add_to_root(struct imd_root *r, uint32_t id,
return entry; return entry;
} }
const struct imd_entry *imd_entry_add(const struct imd *imd, uint32_t id, static const struct imd_entry *imdr_entry_add(const struct imdr *imdr,
size_t size) uint32_t id, size_t size)
{ {
struct imd_root *r; struct imd_root *r;
r = imd_root(imd); r = imdr_root(imdr);
if (r == NULL) if (r == NULL)
return NULL; return NULL;
@ -369,25 +369,227 @@ const struct imd_entry *imd_entry_add(const struct imd *imd, uint32_t id,
return imd_entry_add_to_root(r, id, size); return imd_entry_add_to_root(r, id, size);
} }
const struct imd_entry *imd_entry_find(const struct imd *imd, uint32_t id) static bool imdr_has_entry(const struct imdr *imdr, const struct imd_entry *e)
{
struct imd_root *r;
size_t idx;
r = imdr_root(imdr);
if (r == NULL)
return false;
/* Determine if the entry is within this root structure. */
idx = e - &r->entries[0];
if (idx >= r->num_entries)
return false;
return true;
}
static const struct imdr *imd_entry_to_imdr(const struct imd *imd,
const struct imd_entry *entry)
{
if (imdr_has_entry(&imd->lg, entry))
return &imd->lg;
if (imdr_has_entry(&imd->sm, entry))
return &imd->sm;
return NULL;
}
/* Initialize imd handle. */
void imd_handle_init(struct imd *imd, void *upper_limit)
{
imdr_init(&imd->lg, upper_limit);
imdr_init(&imd->sm, NULL);
}
void imd_handle_init_partial_recovery(struct imd *imd)
{
const struct imd_entry *e;
struct imd_root_pointer *rp;
struct imdr *imdr;
imd_handle_init(imd, (void *)imd->lg.limit);
/* Initialize root pointer for the large regions. */
imdr = &imd->lg;
rp = imdr_get_root_pointer(imdr);
imdr->r = relative_pointer(rp, rp->root_offset);
e = imdr_entry_find(imdr, SMALL_REGION_ID);
if (e == NULL)
return;
imd->sm.limit = (uintptr_t)imdr_entry_at(imdr, e);
imd->sm.limit += imdr_entry_size(imdr, e);
imdr = &imd->sm;
rp = imdr_get_root_pointer(imdr);
imdr->r = relative_pointer(rp, rp->root_offset);
}
int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align)
{
return imdr_create_empty(&imd->lg, root_size, entry_align);
}
int imd_create_tiered_empty(struct imd *imd,
size_t lg_root_size, size_t lg_entry_align,
size_t sm_root_size, size_t sm_entry_align)
{
size_t sm_region_size;;
const struct imd_entry *e;
struct imdr *imdr;
imdr = &imd->lg;
if (imdr_create_empty(imdr, lg_root_size, lg_entry_align) != 0)
return -1;
/* Calculate the size of the small region to request. */
sm_region_size = root_num_entries(sm_root_size) * sm_entry_align;
sm_region_size += sm_root_size;
sm_region_size = ALIGN_UP(sm_region_size, lg_entry_align);
/* Add a new entry to the large region to cover the root and entries. */
e = imdr_entry_add(imdr, SMALL_REGION_ID, sm_region_size);
if (e == NULL)
goto fail;
imd->sm.limit = (uintptr_t)imdr_entry_at(imdr, e);
imd->sm.limit += sm_region_size;
if (imdr_create_empty(&imd->sm, sm_root_size, sm_entry_align) != 0 ||
imdr_limit_size(&imd->sm, sm_region_size))
goto fail;
return 0;
fail:
imd_handle_init(imd, (void *)imdr->limit);
return -1;
}
int imd_recover(struct imd *imd)
{
const struct imd_entry *e;
uintptr_t small_upper_limit;
struct imdr *imdr;
imdr = &imd->lg;
if (imdr_recover(imdr) != 0)
return -1;
/* Determine if small region is region is present. */
e = imdr_entry_find(imdr, SMALL_REGION_ID);
if (e == NULL)
return 0;
small_upper_limit = (uintptr_t)imdr_entry_at(imdr, e);
small_upper_limit += imdr_entry_size(imdr, e);
imd->sm.limit = small_upper_limit;
/* Tear down any changes on failure. */
if (imdr_recover(&imd->sm) != 0) {
imd_handle_init(imd, (void *)imd->lg.limit);
return -1;
}
return 0;
}
int imd_limit_size(struct imd *imd, size_t max_size)
{
return imdr_limit_size(&imd->lg, max_size);
}
int imd_lockdown(struct imd *imd)
{
struct imd_root *r;
r = imdr_root(&imd->lg);
if (r == NULL)
return -1;
r->flags |= IMD_FLAG_LOCKED;
r = imdr_root(&imd->sm);
if (r != NULL)
r->flags |= IMD_FLAG_LOCKED;
return 0;
}
int imd_region_used(struct imd *imd, void **base, size_t *size)
{ {
struct imd_root *r; struct imd_root *r;
struct imd_entry *e; struct imd_entry *e;
size_t i; void *low_addr;
size_t sz_used;
r = imd_root(imd); if (!imd->lg.limit)
return -1;
r = imdr_root(&imd->lg);
if (r == NULL) if (r == NULL)
return NULL; return -1;
e = NULL; /* Use last entry to obtain lowest address. */
/* Skip first entry covering the root. */ e = root_last_entry(r);
for (i = 1; i < r->num_entries; i++) {
if (id == r->entries[i].id) { low_addr = relative_pointer(r, e->start_offset);
e = &r->entries[i];
break; /* Total size used is the last entry's base up to the limit. */
} sz_used = imd->lg.limit - (uintptr_t)low_addr;
}
*base = low_addr;
*size = sz_used;
return 0;
}
const struct imd_entry *imd_entry_add(const struct imd *imd, uint32_t id,
size_t size)
{
struct imd_root *r;
const struct imdr *imdr;
const struct imd_entry *e = NULL;
/*
* Determine if requested size is less than 1/4 of small data
* region is left.
*/
imdr = &imd->sm;
r = imdr_root(imdr);
/* No small region. Use the large region. */
if (r == NULL)
return imdr_entry_add(&imd->lg, id, size);
else if (size <= r->entry_align || size <= imd_root_data_left(r) / 4)
e = imdr_entry_add(imdr, id, size);
/* Fall back on large region allocation. */
if (e == NULL)
e = imdr_entry_add(&imd->lg, id, size);
return e;
}
const struct imd_entry *imd_entry_find(const struct imd *imd, uint32_t id)
{
const struct imd_entry *e;
/* Many of the smaller allocations are used a lot. Therefore, try
* the small region first. */
e = imdr_entry_find(&imd->sm, id);
if (e == NULL)
e = imdr_entry_find(&imd->lg, id);
return e; return e;
} }
@ -407,26 +609,32 @@ const struct imd_entry *imd_entry_find_or_add(const struct imd *imd,
size_t imd_entry_size(const struct imd *imd, const struct imd_entry *entry) size_t imd_entry_size(const struct imd *imd, const struct imd_entry *entry)
{ {
return entry->size; return imdr_entry_size(NULL, entry);
} }
void *imd_entry_at(const struct imd *imd, const struct imd_entry *entry) void *imd_entry_at(const struct imd *imd, const struct imd_entry *entry)
{ {
struct imd_root *r; const struct imdr *imdr;
r = imd_root(imd); imdr = imd_entry_to_imdr(imd, entry);
if (r == NULL) if (imdr == NULL)
return NULL; return NULL;
return relative_pointer(r, entry->start_offset); return imdr_entry_at(imdr, entry);
} }
int imd_entry_remove(const struct imd *imd, const struct imd_entry *entry) int imd_entry_remove(const struct imd *imd, const struct imd_entry *entry)
{ {
struct imd_root *r; struct imd_root *r;
const struct imdr *imdr;
r = imd_root(imd); imdr = imd_entry_to_imdr(imd, entry);
if (imdr == NULL)
return - 1;
r = imdr_root(imdr);
if (r == NULL) if (r == NULL)
return -1; return -1;
@ -442,20 +650,17 @@ int imd_entry_remove(const struct imd *imd, const struct imd_entry *entry)
return 0; return 0;
} }
int imd_print_entries(const struct imd *imd, const struct imd_lookup *lookup, static void imdr_print_entries(const struct imdr *imdr, const char *indent,
size_t size) const struct imd_lookup *lookup, size_t size)
{ {
struct imd_root *r; struct imd_root *r;
size_t i; size_t i;
size_t j; size_t j;
if (imd == NULL) if (imdr == NULL)
return -1; return;
r = imd_root(imd); r = imdr_root(imdr);
if (r == NULL)
return -1;
for (i = 0; i < r->num_entries; i++) { for (i = 0; i < r->num_entries; i++) {
const char *name = NULL; const char *name = NULL;
@ -468,13 +673,28 @@ int imd_print_entries(const struct imd *imd, const struct imd_lookup *lookup,
} }
} }
printk(BIOS_DEBUG, "%s", indent);
if (name == NULL) if (name == NULL)
printk(BIOS_DEBUG, "%08x ", e->id); printk(BIOS_DEBUG, "%08x ", e->id);
else else
printk(BIOS_DEBUG, "%s", name); printk(BIOS_DEBUG, "%s", name);
printk(BIOS_DEBUG, "%2zu. ", i); printk(BIOS_DEBUG, "%2zu. ", i);
printk(BIOS_DEBUG, "%p ", imd_entry_at(imd, e)); printk(BIOS_DEBUG, "%p ", imdr_entry_at(imdr, e));
printk(BIOS_DEBUG, "%08zx\n", imd_entry_size(imd, e)); printk(BIOS_DEBUG, "%08zx\n", imdr_entry_size(imdr, e));
}
}
int imd_print_entries(const struct imd *imd, const struct imd_lookup *lookup,
size_t size)
{
if (imdr_root(&imd->lg) == NULL)
return -1;
imdr_print_entries(&imd->lg, "", lookup, size);
if (imdr_root(&imd->sm) != NULL) {
printk(BIOS_DEBUG, "IMD small region:\n");
imdr_print_entries(&imd->sm, " ", lookup, size);
} }
return 0; return 0;