Revert "coreboot table: use memrange library"

This reverts commit 56075eaefc

Change-Id: I8a37ce1f5ce36e4a120941ec264140abc9447ff5
Reviewed-on: http://review.coreboot.org/2915
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Tested-by: build bot (Jenkins)
This commit is contained in:
Aaron Durbin 2013-03-26 18:07:32 +01:00 committed by Stefan Reinauer
parent 5a767fdfcb
commit cf4a3f4a97
1 changed files with 220 additions and 55 deletions

View File

@ -29,7 +29,6 @@
#include <stdlib.h> #include <stdlib.h>
#include <cbfs.h> #include <cbfs.h>
#include <cbmem.h> #include <cbmem.h>
#include <memrange.h>
#if CONFIG_USE_OPTION_TABLE #if CONFIG_USE_OPTION_TABLE
#include <option_table.h> #include <option_table.h>
#endif #endif
@ -357,7 +356,54 @@ static struct lb_forward *lb_forward(struct lb_header *header, struct lb_header
return forward; return forward;
} }
static unsigned long lb_table_fini(struct lb_header *head) static void lb_memory_range(struct lb_memory *mem,
uint32_t type, uint64_t start, uint64_t size)
{
int entries;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
mem->map[entries].start = pack_lb64(start);
mem->map[entries].size = pack_lb64(size);
mem->map[entries].type = type;
mem->size += sizeof(mem->map[0]);
}
static void lb_reserve_table_memory(struct lb_header *head)
{
/* Dynamic cbmem has already reserved the memory where the coreboot tables
* reside. Therefore, there is nothing to fix up. */
#if !CONFIG_DYNAMIC_CBMEM
struct lb_record *last_rec;
struct lb_memory *mem;
uint64_t start;
uint64_t end;
int i, entries;
last_rec = lb_last_record(head);
mem = get_lb_mem();
start = (unsigned long)head;
end = (unsigned long)last_rec;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
/* Resize the right two memory areas so this table is in
* a reserved area of memory. Everything has been carefully
* setup so that is all we need to do.
*/
for(i = 0; i < entries; i++ ) {
uint64_t map_start = unpack_lb64(mem->map[i].start);
uint64_t map_end = map_start + unpack_lb64(mem->map[i].size);
/* Does this area need to be expanded? */
if (map_end == start) {
mem->map[i].size = pack_lb64(end - map_start);
}
/* Does this area need to be contracted? */
else if (map_start == start) {
mem->map[i].start = pack_lb64(end);
mem->map[i].size = pack_lb64(map_end - end);
}
}
#endif
}
static unsigned long lb_table_fini(struct lb_header *head, int fixup)
{ {
struct lb_record *rec, *first_rec; struct lb_record *rec, *first_rec;
rec = lb_last_record(head); rec = lb_last_record(head);
@ -365,6 +411,9 @@ static unsigned long lb_table_fini(struct lb_header *head)
head->table_bytes += rec->size; head->table_bytes += rec->size;
} }
if (fixup)
lb_reserve_table_memory(head);
first_rec = lb_first_record(head); first_rec = lb_first_record(head);
head->table_checksum = compute_ip_checksum(first_rec, head->table_bytes); head->table_checksum = compute_ip_checksum(first_rec, head->table_bytes);
head->header_checksum = 0; head->header_checksum = 0;
@ -375,6 +424,144 @@ static unsigned long lb_table_fini(struct lb_header *head)
return (unsigned long)rec + rec->size; return (unsigned long)rec + rec->size;
} }
static void lb_cleanup_memory_ranges(struct lb_memory *mem)
{
int entries;
int i, j;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
/* Sort the lb memory ranges */
for(i = 0; i < entries; i++) {
uint64_t entry_start = unpack_lb64(mem->map[i].start);
for(j = i + 1; j < entries; j++) {
uint64_t temp_start = unpack_lb64(mem->map[j].start);
if (temp_start < entry_start) {
struct lb_memory_range tmp;
tmp = mem->map[i];
mem->map[i] = mem->map[j];
mem->map[j] = tmp;
}
}
}
/* Merge adjacent entries */
for(i = 0; (i + 1) < entries; i++) {
uint64_t start, end, nstart, nend;
if (mem->map[i].type != mem->map[i + 1].type) {
continue;
}
start = unpack_lb64(mem->map[i].start);
end = start + unpack_lb64(mem->map[i].size);
nstart = unpack_lb64(mem->map[i + 1].start);
nend = nstart + unpack_lb64(mem->map[i + 1].size);
if ((start <= nstart) && (end >= nstart)) {
if (start > nstart) {
start = nstart;
}
if (end < nend) {
end = nend;
}
/* Record the new region size */
mem->map[i].start = pack_lb64(start);
mem->map[i].size = pack_lb64(end - start);
/* Delete the entry I have merged with */
memmove(&mem->map[i + 1], &mem->map[i + 2],
((entries - i - 2) * sizeof(mem->map[0])));
mem->size -= sizeof(mem->map[0]);
entries -= 1;
/* See if I can merge with the next entry as well */
i -= 1;
}
}
}
static void lb_remove_memory_range(struct lb_memory *mem,
uint64_t start, uint64_t size)
{
uint64_t end;
int entries;
int i;
end = start + size;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
/* Remove a reserved area from the memory map */
for(i = 0; i < entries; i++) {
uint64_t map_start = unpack_lb64(mem->map[i].start);
uint64_t map_end = map_start + unpack_lb64(mem->map[i].size);
if ((start <= map_start) && (end >= map_end)) {
/* Remove the completely covered range */
memmove(&mem->map[i], &mem->map[i + 1],
((entries - i - 1) * sizeof(mem->map[0])));
mem->size -= sizeof(mem->map[0]);
entries -= 1;
/* Since the index will disappear revisit what will appear here */
i -= 1;
}
else if ((start > map_start) && (end < map_end)) {
/* Split the memory range */
memmove(&mem->map[i + 1], &mem->map[i],
((entries - i) * sizeof(mem->map[0])));
mem->size += sizeof(mem->map[0]);
entries += 1;
/* Update the first map entry */
mem->map[i].size = pack_lb64(start - map_start);
/* Update the second map entry */
mem->map[i + 1].start = pack_lb64(end);
mem->map[i + 1].size = pack_lb64(map_end - end);
/* Don't bother with this map entry again */
i += 1;
}
else if ((start <= map_start) && (end > map_start)) {
/* Shrink the start of the memory range */
mem->map[i].start = pack_lb64(end);
mem->map[i].size = pack_lb64(map_end - end);
}
else if ((start < map_end) && (start > map_start)) {
/* Shrink the end of the memory range */
mem->map[i].size = pack_lb64(start - map_start);
}
}
}
void lb_add_memory_range(struct lb_memory *mem,
uint32_t type, uint64_t start, uint64_t size)
{
lb_remove_memory_range(mem, start, size);
lb_memory_range(mem, type, start, size);
lb_cleanup_memory_ranges(mem);
}
static void lb_dump_memory_ranges(struct lb_memory *mem)
{
int entries;
int i;
entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
printk(BIOS_DEBUG, "coreboot memory table:\n");
for(i = 0; i < entries; i++) {
uint64_t entry_start = unpack_lb64(mem->map[i].start);
uint64_t entry_size = unpack_lb64(mem->map[i].size);
const char *entry_type;
switch (mem->map[i].type) {
case LB_MEM_RAM: entry_type="RAM"; break;
case LB_MEM_RESERVED: entry_type="RESERVED"; break;
case LB_MEM_ACPI: entry_type="ACPI"; break;
case LB_MEM_NVS: entry_type="NVS"; break;
case LB_MEM_UNUSABLE: entry_type="UNUSABLE"; break;
case LB_MEM_VENDOR_RSVD: entry_type="VENDOR RESERVED"; break;
case LB_MEM_TABLE: entry_type="CONFIGURATION TABLES"; break;
default: entry_type="UNKNOWN!"; break;
}
printk(BIOS_DEBUG, "%2d. %016llx-%016llx: %s\n",
i, entry_start, entry_start+entry_size-1, entry_type);
}
}
/* Routines to extract part so the coreboot table or /* Routines to extract part so the coreboot table or
* information from the coreboot table after we have written it. * information from the coreboot table after we have written it.
* Currently get_lb_mem relies on a global we can change the * Currently get_lb_mem relies on a global we can change the
@ -387,8 +574,11 @@ struct lb_memory *get_lb_mem(void)
return mem_ranges; return mem_ranges;
} }
/* This structure keeps track of the coreboot table memory ranges. */ static void build_lb_mem_range(void *gp, struct device *dev, struct resource *res)
static struct memory_ranges lb_ranges; {
struct lb_memory *mem = gp;
lb_memory_range(mem, LB_MEM_RAM, res->base, res->size);
}
static struct lb_memory *build_lb_mem(struct lb_header *head) static struct lb_memory *build_lb_mem(struct lb_header *head)
{ {
@ -398,61 +588,28 @@ static struct lb_memory *build_lb_mem(struct lb_header *head)
mem = lb_memory(head); mem = lb_memory(head);
mem_ranges = mem; mem_ranges = mem;
/* Fill the memory map out. The order of operations is important in /* Build the raw table of memory */
* that each overlapping range will take over the next. Therefore, search_global_resources(
* add cacheable resources as RAM then add the reserved resources. */ IORESOURCE_MEM | IORESOURCE_CACHEABLE, IORESOURCE_MEM | IORESOURCE_CACHEABLE,
memory_ranges_init(&lb_ranges, IORESOURCE_CACHEABLE, build_lb_mem_range, mem);
IORESOURCE_CACHEABLE, LB_MEM_RAM); lb_cleanup_memory_ranges(mem);
memory_ranges_add_resources(&lb_ranges, IORESOURCE_RESERVE,
IORESOURCE_RESERVE, LB_MEM_RESERVED);
return mem; return mem;
} }
static void commit_lb_memory(struct lb_memory *mem) static void lb_add_rsvd_range(void *gp, struct device *dev, struct resource *res)
{ {
struct memory_range *r; struct lb_memory *mem = gp;
struct lb_memory_range *lb_r; lb_add_memory_range(mem, LB_MEM_RESERVED, res->base, res->size);
int i;
lb_r = &mem->map[0];
i = 0;
memory_ranges_each_entry(r, &lb_ranges) {
const char *entry_type;
switch (memory_range_tag(r)) {
case LB_MEM_RAM: entry_type="RAM"; break;
case LB_MEM_RESERVED: entry_type="RESERVED"; break;
case LB_MEM_ACPI: entry_type="ACPI"; break;
case LB_MEM_NVS: entry_type="NVS"; break;
case LB_MEM_UNUSABLE: entry_type="UNUSABLE"; break;
case LB_MEM_VENDOR_RSVD: entry_type="VENDOR RESERVED"; break;
case LB_MEM_TABLE: entry_type="CONFIGURATION TABLES"; break;
default: entry_type="UNKNOWN!"; break;
}
printk(BIOS_DEBUG, "%2d. %016llx-%016llx: %s\n",
i, memory_range_base(r), memory_range_end(r)-1,
entry_type);
lb_r->start = pack_lb64(memory_range_base(r));
lb_r->size = pack_lb64(memory_range_size(r));
lb_r->type = memory_range_tag(r);
i++;
lb_r++;
mem->size += sizeof(struct lb_memory_range);
}
} }
void lb_add_memory_range(struct lb_memory *mem, static void add_lb_reserved(struct lb_memory *mem)
uint32_t type, uint64_t start, uint64_t size)
{ {
insert_memory_range(&lb_ranges, start, size, type); /* Add reserved ranges */
search_global_resources(
IORESOURCE_MEM | IORESOURCE_RESERVE, IORESOURCE_MEM | IORESOURCE_RESERVE,
lb_add_rsvd_range, mem);
} }
unsigned long write_coreboot_table( unsigned long write_coreboot_table(
unsigned long low_table_start, unsigned long low_table_end, unsigned long low_table_start, unsigned long low_table_end,
unsigned long rom_table_start, unsigned long rom_table_end) unsigned long rom_table_start, unsigned long rom_table_end)
@ -466,7 +623,7 @@ unsigned long write_coreboot_table(
head = lb_table_init(low_table_end); head = lb_table_init(low_table_end);
lb_forward(head, (struct lb_header*)rom_table_end); lb_forward(head, (struct lb_header*)rom_table_end);
low_table_end = (unsigned long) lb_table_fini(head); low_table_end = (unsigned long) lb_table_fini(head, 0);
printk(BIOS_DEBUG, "Table forward entry ends at 0x%08lx.\n", printk(BIOS_DEBUG, "Table forward entry ends at 0x%08lx.\n",
low_table_end); low_table_end);
low_table_end = ALIGN(low_table_end, 4096); low_table_end = ALIGN(low_table_end, 4096);
@ -525,9 +682,17 @@ unsigned long write_coreboot_table(
high_tables_base, high_tables_size); high_tables_base, high_tables_size);
#endif /* CONFIG_DYNAMIC_CBMEM */ #endif /* CONFIG_DYNAMIC_CBMEM */
/* No other memory areas can be added after the memory table has been /* Add reserved regions */
* committed as the entries won't show up in the serialize mem table. */ add_lb_reserved(mem);
commit_lb_memory(mem);
lb_dump_memory_ranges(mem);
/* Note:
* I assume that there is always memory at immediately after
* the low_table_end. This means that after I setup the coreboot table.
* I can trivially fixup the reserved memory ranges to hold the correct
* size of the coreboot table.
*/
/* Record our motherboard */ /* Record our motherboard */
lb_mainboard(head); lb_mainboard(head);
@ -556,5 +721,5 @@ unsigned long write_coreboot_table(
add_cbmem_pointers(head); add_cbmem_pointers(head);
/* Remember where my valid memory ranges are */ /* Remember where my valid memory ranges are */
return lb_table_fini(head); return lb_table_fini(head, 1);
} }