soc/amd/cezanne: add partial data fabric setup

I'm not 100% sure yet if this code will be common for all AMD SoCs, so
I'll add a copy for Cezanne for now. This part of the code should
probably be reworked after the initial bringup of Cezanne anyway.

DF MMIO register configuration at the beginning of
data_fabric_set_mmio_np:

=== Data Fabric MMIO configuration registers ===
Addresses are shifted to the right by 16 bits.
idx  control     base    limit
  0       a3     fc00     febf
  1       a3  1000000 fffcffff
  2       a3     d000     f7ff
  3       a0        0        0
  4       a3     fed0     fed0
  5       a0        0        0
  6       a0        0        0
  7       a0        0        0

DF MMIO register configuration at the end of data_fabric_set_mmio_np:

=== Data Fabric MMIO configuration registers ===
Addresses are shifted to the right by 16 bits.
idx  control     base    limit
  0       a3     fc00     febf
  1       a3  1000000 fffcffff
  2       a3     d000     f7ff
  3     10a3     fed0     fedf
  4       a0        0        0
  5       a0        0        0
  6       a0        0        0
  7       a0        0        0

Signed-off-by: Felix Held <felix-coreboot@felixheld.de>
Change-Id: Ia243a0cad311eb210d14d6242c52f599db22515c
Reviewed-on: https://review.coreboot.org/c/coreboot/+/50624
Reviewed-by: Marshall Dawson <marshalldawson3rd@gmail.com>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
This commit is contained in:
Felix Held 2021-02-13 01:42:44 +01:00
parent eb89ca67ef
commit ea32c52a0e
5 changed files with 114 additions and 0 deletions

View File

@ -29,6 +29,7 @@ config SOC_SPECIFIC_OPTIONS
select SOC_AMD_COMMON_BLOCK_ACPIMMIO
select SOC_AMD_COMMON_BLOCK_AOAC
select SOC_AMD_COMMON_BLOCK_BANKED_GPIOS
select SOC_AMD_COMMON_BLOCK_DATA_FABRIC
select SOC_AMD_COMMON_BLOCK_LPC
select SOC_AMD_COMMON_BLOCK_NONCAR
select SOC_AMD_COMMON_BLOCK_PCI

View File

@ -27,6 +27,7 @@ romstage-y += uart.c
ramstage-y += acpi.c
ramstage-y += chip.c
ramstage-y += cpu.c
ramstage-y += data_fabric.c
ramstage-y += fch.c
ramstage-y += fsp_params.c
ramstage-y += gpio.c

View File

@ -2,6 +2,7 @@
#include <device/device.h>
#include <fsp/api.h>
#include <soc/data_fabric.h>
#include <soc/southbridge.h>
#include <types.h>
#include "chip.h"
@ -53,6 +54,8 @@ static void soc_init(void *chip_info)
{
fsp_silicon_init();
data_fabric_set_mmio_np();
fch_init(chip_info);
}

View File

@ -0,0 +1,95 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#include <amdblocks/data_fabric.h>
#include <console/console.h>
#include <cpu/x86/lapic_def.h>
#include <soc/data_fabric.h>
#include <soc/iomap.h>
#include <types.h>
void data_fabric_set_mmio_np(void)
{
/*
* Mark region from HPET-LAPIC or 0xfed00000-0xfee00000-1 as NP.
*
* AGESA has already programmed the NB MMIO routing, however nothing
* is yet marked as non-posted.
*
* If there exists an overlapping routing base/limit pair, trim its
* base or limit to avoid the new NP region. If any pair exists
* completely within HPET-LAPIC range, remove it. If any pair surrounds
* HPET-LAPIC, it must be split into two regions.
*
* TODO(b/156296146): Remove the settings from AGESA and allow coreboot
* to own everything. If not practical, consider erasing all settings
* and have coreboot reprogram them. At that time, make the source
* below more flexible.
* * Note that the code relies on the granularity of the HPET and
* LAPIC addresses being sufficiently large that the shifted limits
* +/-1 are always equivalent to the non-shifted values +/-1.
*/
unsigned int i;
int reg;
uint32_t base, limit, ctrl;
const uint32_t np_bot = HPET_BASE_ADDRESS >> D18F0_MMIO_SHIFT;
const uint32_t np_top = (LOCAL_APIC_ADDR - 1) >> D18F0_MMIO_SHIFT;
data_fabric_print_mmio_conf();
for (i = 0; i < NUM_NB_MMIO_REGS; i++) {
/* Adjust all registers that overlap */
ctrl = data_fabric_broadcast_read32(0, NB_MMIO_CONTROL(i));
if (!(ctrl & (MMIO_WE | MMIO_RE)))
continue; /* not enabled */
base = data_fabric_broadcast_read32(0, NB_MMIO_BASE(i));
limit = data_fabric_broadcast_read32(0, NB_MMIO_LIMIT(i));
if (base > np_top || limit < np_bot)
continue; /* no overlap at all */
if (base >= np_bot && limit <= np_top) {
data_fabric_disable_mmio_reg(i); /* 100% within, so remove */
continue;
}
if (base < np_bot && limit > np_top) {
/* Split the configured region */
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1);
reg = data_fabric_find_unused_mmio_reg();
if (reg < 0) {
/* Although a pair could be freed later, this condition is
* very unusual and deserves analysis. Flag an error and
* leave the topmost part unconfigured. */
printk(BIOS_ERR,
"Error: Not enough NB MMIO routing registers\n");
continue;
}
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_top + 1);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), limit);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg), ctrl);
continue;
}
/* If still here, adjust only the base or limit */
if (base <= np_bot)
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(i), np_bot - 1);
else
data_fabric_broadcast_write32(0, NB_MMIO_BASE(i), np_top + 1);
}
reg = data_fabric_find_unused_mmio_reg();
if (reg < 0) {
printk(BIOS_ERR, "Error: cannot configure region as NP\n");
return;
}
data_fabric_broadcast_write32(0, NB_MMIO_BASE(reg), np_bot);
data_fabric_broadcast_write32(0, NB_MMIO_LIMIT(reg), np_top);
data_fabric_broadcast_write32(0, NB_MMIO_CONTROL(reg),
(IOMS0_FABRIC_ID << MMIO_DST_FABRIC_ID_SHIFT) | MMIO_NP | MMIO_WE
| MMIO_RE);
data_fabric_print_mmio_conf();
}

View File

@ -0,0 +1,14 @@
/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef AMD_CEZANNE_DATA_FABRIC_H
#define AMD_CEZANNE_DATA_FABRIC_H
#include <types.h>
#define IOMS0_FABRIC_ID 10
#define NUM_NB_MMIO_REGS 8
void data_fabric_set_mmio_np(void);
#endif /* AMD_CEZANNE_DATA_FABRIC_H */