amd/amdmct/mct_ddr3: Partially fix up registered DIMMs on Fam10h

Sufficient support has been added to allow booting with registered
DIMMs on the KGPE-D16 in certain slots.  ECC support needs additional
work; the ECC data lanes appear to cause boot failures in some slots.

Change-Id: Ieaf4cbf351908e5a89760be49a6667dc55dbc575
Signed-off-by: Timothy Pearson <tpearson@raptorengineeringinc.com>
Reviewed-on: http://review.coreboot.org/12017
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
This commit is contained in:
Timothy Pearson 2015-07-26 00:55:43 -05:00 committed by Martin Roth
parent 474ff3dee5
commit f682d0028c
7 changed files with 399 additions and 144 deletions

View File

@ -311,6 +311,120 @@ static uint16_t mhz_to_memclk_config(uint16_t freq)
return fam10h_mhz_to_memclk_config(freq) + 1; return fam10h_mhz_to_memclk_config(freq) + 1;
} }
static uint32_t fam10h_address_timing_compensation_code(struct DCTStatStruc *pDCTstat, uint8_t dct)
{
uint8_t MaxDimmsInstallable = mctGet_NVbits(NV_MAX_DIMMS_PER_CH);
uint8_t package_type;
uint32_t calibration_code = 0;
package_type = mctGet_NVbits(NV_PACK_TYPE);
uint16_t MemClkFreq = (Get_NB32_DCT(pDCTstat->dev_dct, dct, 0x94) & 0x7) + 1;
/* Obtain number of DIMMs on channel */
uint8_t dimm_count = pDCTstat->MAdimms[dct];
uint8_t rank_count_dimm0;
uint8_t rank_count_dimm1;
if (package_type == PT_GR) {
/* Socket G34 */
if (pDCTstat->Status & (1 << SB_Registered)) {
/* RDIMM */
/* Fam10h BKDG Rev. 3.62 section 2.8.9.5.8 Tables 60 - 61 */
if (MaxDimmsInstallable == 1) {
if (MemClkFreq == 0x4) {
/* DDR3-800 */
calibration_code = 0x00000000;
} else if (MemClkFreq == 0x5) {
/* DDR3-1066 */
calibration_code = 0x003c3c3c;
} else if (MemClkFreq == 0x6) {
/* DDR3-1333 */
calibration_code = 0x003a3a3a;
}
} else if (MaxDimmsInstallable == 2) {
if (dimm_count == 1) {
/* 1 DIMM detected */
if (MemClkFreq == 0x4) {
/* DDR3-800 */
calibration_code = 0x00000000;
} else if (MemClkFreq == 0x5) {
/* DDR3-1066 */
calibration_code = 0x003c3c3c;
} else if (MemClkFreq == 0x6) {
/* DDR3-1333 */
calibration_code = 0x003a3a3a;
}
} else if (dimm_count == 2) {
/* 2 DIMMs detected */
if (MemClkFreq == 0x4) {
/* DDR3-800 */
calibration_code = 0x00000000;
} else if (MemClkFreq == 0x5) {
/* DDR3-1066 */
calibration_code = 0x003a3c3a;
} else if (MemClkFreq == 0x6) {
/* DDR3-1333 */
calibration_code = 0x00383a38;
}
}
} else if (MaxDimmsInstallable == 3) {
/* TODO
* 3 DIMM/channel support unimplemented
*/
}
} else {
/* UDIMM */
/* Fam10h BKDG Rev. 3.62 section 2.8.9.5.8 Table 56 */
if (dimm_count == 1) {
/* 1 DIMM detected */
rank_count_dimm0 = pDCTstat->DimmRanks[(1 * 2) + dct];
if (MemClkFreq == 0x4) {
/* DDR3-800 */
if (rank_count_dimm0 == 1)
calibration_code = 0x00000000;
else
calibration_code = 0x003b0000;
} else if (MemClkFreq == 0x5) {
/* DDR3-1066 */
if (rank_count_dimm0 == 1)
calibration_code = 0x00000000;
else
calibration_code = 0x00380000;
} else if (MemClkFreq == 0x6) {
/* DDR3-1333 */
if (rank_count_dimm0 == 1)
calibration_code = 0x00000000;
else
calibration_code = 0x00360000;
}
} else if (dimm_count == 2) {
/* 2 DIMMs detected */
rank_count_dimm0 = pDCTstat->DimmRanks[(0 * 2) + dct];
rank_count_dimm1 = pDCTstat->DimmRanks[(1 * 2) + dct];
if (MemClkFreq == 0x4) {
/* DDR3-800 */
calibration_code = 0x00390039;
} else if (MemClkFreq == 0x5) {
/* DDR3-1066 */
calibration_code = 0x00350037;
} else if (MemClkFreq == 0x6) {
/* DDR3-1333 */
calibration_code = 0x00000035;
}
}
}
} else {
/* TODO
* Other socket support unimplemented
*/
}
return calibration_code;
}
static uint32_t fam15h_phy_predriver_calibration_code(struct DCTStatStruc *pDCTstat, uint8_t dct, uint8_t drive_strength) static uint32_t fam15h_phy_predriver_calibration_code(struct DCTStatStruc *pDCTstat, uint8_t dct, uint8_t drive_strength)
{ {
uint8_t lrdimm = 0; uint8_t lrdimm = 0;
@ -1005,7 +1119,7 @@ static uint32_t fam15h_address_timing_compensation_code(struct DCTStatStruc *pDC
/* Fam15h BKDG Rev. 3.14 section 2.10.5.3.4 Table 74 */ /* Fam15h BKDG Rev. 3.14 section 2.10.5.3.4 Table 74 */
if (MaxDimmsInstallable == 1) { if (MaxDimmsInstallable == 1) {
if ((MemClkFreq == 0x4) || (MemClkFreq == 0x6)) { if ((MemClkFreq == 0x4) || (MemClkFreq == 0x6)) {
/* DDR3-667 - DDR3-800*/ /* DDR3-667 - DDR3-800 */
calibration_code = 0x00000000; calibration_code = 0x00000000;
} else if (MemClkFreq == 0xa) { } else if (MemClkFreq == 0xa) {
/* DDR3-1066 */ /* DDR3-1066 */
@ -1021,7 +1135,7 @@ static uint32_t fam15h_address_timing_compensation_code(struct DCTStatStruc *pDC
if (dimm_count == 1) { if (dimm_count == 1) {
/* 1 DIMM detected */ /* 1 DIMM detected */
if ((MemClkFreq == 0x4) || (MemClkFreq == 0x6)) { if ((MemClkFreq == 0x4) || (MemClkFreq == 0x6)) {
/* DDR3-667 - DDR3-800*/ /* DDR3-667 - DDR3-800 */
calibration_code = 0x00000000; calibration_code = 0x00000000;
} else if (MemClkFreq == 0xa) { } else if (MemClkFreq == 0xa) {
/* DDR3-1066 */ /* DDR3-1066 */
@ -1036,7 +1150,7 @@ static uint32_t fam15h_address_timing_compensation_code(struct DCTStatStruc *pDC
} else if (dimm_count == 2) { } else if (dimm_count == 2) {
/* 2 DIMMs detected */ /* 2 DIMMs detected */
if ((MemClkFreq == 0x4) || (MemClkFreq == 0x6)) { if ((MemClkFreq == 0x4) || (MemClkFreq == 0x6)) {
/* DDR3-667 - DDR3-800*/ /* DDR3-667 - DDR3-800 */
calibration_code = 0x00000000; calibration_code = 0x00000000;
} else if (MemClkFreq == 0xa) { } else if (MemClkFreq == 0xa) {
/* DDR3-1066 */ /* DDR3-1066 */
@ -1314,6 +1428,26 @@ static void read_spd_bytes(struct MCTStatStruc *pMCTstat,
} }
} }
#ifdef DEBUG_DIMM_SPD
static void dump_spd_bytes(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, uint8_t dimm)
{
uint16_t byte;
printk(BIOS_DEBUG, "SPD dump for DIMM %d\n ", dimm);
for (byte = 0; byte < 16; byte++) {
printk(BIOS_DEBUG, "%02x ", byte);
}
for (byte = 0; byte < 256; byte++) {
if ((byte & 0xf) == 0x0) {
printk(BIOS_DEBUG, "\n%02x ", byte >> 4);
}
printk(BIOS_DEBUG, "%02x ", pDCTstat->spd_data.spd_bytes[dimm][byte]);
}
printk(BIOS_DEBUG, "\n");
}
#endif
#if IS_ENABLED(CONFIG_HAVE_ACPI_RESUME) #if IS_ENABLED(CONFIG_HAVE_ACPI_RESUME)
static void calculate_and_store_spd_hashes(struct MCTStatStruc *pMCTstat, static void calculate_and_store_spd_hashes(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat) struct DCTStatStruc *pDCTstat)
@ -1515,12 +1649,14 @@ restartinit:
pMCTstat->GStatus |= 1 << GSB_ConfigRestored; pMCTstat->GStatus |= 1 << GSB_ConfigRestored;
#endif #endif
printk(BIOS_DEBUG, "mctAutoInitMCT_D: mct_ForceNBPState0_Dis_Fam15\n"); if (is_fam15h()) {
for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) { printk(BIOS_DEBUG, "mctAutoInitMCT_D: mct_ForceNBPState0_Dis_Fam15\n");
struct DCTStatStruc *pDCTstat; for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
pDCTstat = pDCTstatA + Node; struct DCTStatStruc *pDCTstat;
pDCTstat = pDCTstatA + Node;
mct_ForceNBPState0_Dis_Fam15(pMCTstat, pDCTstat); mct_ForceNBPState0_Dis_Fam15(pMCTstat, pDCTstat);
}
} }
} else { } else {
NodesWmem = 0; NodesWmem = 0;
@ -1682,14 +1818,14 @@ restartinit:
printk(BIOS_DEBUG, "mctAutoInitMCT_D: UMAMemTyping_D\n"); printk(BIOS_DEBUG, "mctAutoInitMCT_D: UMAMemTyping_D\n");
UMAMemTyping_D(pMCTstat, pDCTstatA); /* Fix up for UMA sizing */ UMAMemTyping_D(pMCTstat, pDCTstatA); /* Fix up for UMA sizing */
}
printk(BIOS_DEBUG, "mctAutoInitMCT_D: mct_ForceNBPState0_Dis_Fam15\n"); printk(BIOS_DEBUG, "mctAutoInitMCT_D: mct_ForceNBPState0_Dis_Fam15\n");
for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) { for (Node = 0; Node < MAX_NODES_SUPPORTED; Node++) {
struct DCTStatStruc *pDCTstat; struct DCTStatStruc *pDCTstat;
pDCTstat = pDCTstatA + Node; pDCTstat = pDCTstatA + Node;
mct_ForceNBPState0_Dis_Fam15(pMCTstat, pDCTstat); mct_ForceNBPState0_Dis_Fam15(pMCTstat, pDCTstat);
}
} }
if (is_fam15h()) { if (is_fam15h()) {
@ -2727,6 +2863,10 @@ static void DCTFinalInit_D(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *p
dword = 1 << DisDramInterface; dword = 1 << DisDramInterface;
Set_NB32_DCT(pDCTstat->dev_dct, dct, 0x94, dword); Set_NB32_DCT(pDCTstat->dev_dct, dct, 0x94, dword);
dword = Get_NB32_DCT(pDCTstat->dev_dct, dct, 0x90);
dword &= ~(1 << ParEn);
Set_NB32_DCT(pDCTstat->dev_dct, dct, 0x90, dword);
/* To maximize power savings when DisDramInterface=1b, /* To maximize power savings when DisDramInterface=1b,
* all of the MemClkDis bits should also be set. * all of the MemClkDis bits should also be set.
*/ */
@ -3610,7 +3750,9 @@ static u8 AutoConfig_D(struct MCTStatStruc *pMCTstat,
dword++; dword++;
} }
if (!(Status & (1 << SB_Registered))) if (Status & (1 << SB_Registered))
DramConfigLo |= 1 << ParEn; /* Registered DIMMs */
else
DramConfigLo |= 1 << UnBuffDimm; /* Unbuffered DIMMs */ DramConfigLo |= 1 << UnBuffDimm; /* Unbuffered DIMMs */
if (mctGet_NVbits(NV_ECC_CAP)) if (mctGet_NVbits(NV_ECC_CAP))
@ -4099,6 +4241,9 @@ static u8 DIMMPresence_D(struct MCTStatStruc *pMCTstat,
if (status >= 0) { /* SPD access is ok */ if (status >= 0) { /* SPD access is ok */
pDCTstat->DIMMPresent |= 1 << i; pDCTstat->DIMMPresent |= 1 << i;
read_spd_bytes(pMCTstat, pDCTstat, i); read_spd_bytes(pMCTstat, pDCTstat, i);
#ifdef DEBUG_DIMM_SPD
dump_spd_bytes(pMCTstat, pDCTstat, i);
#endif
crc_status = crcCheck(pDCTstat, i); crc_status = crcCheck(pDCTstat, i);
if (!crc_status) { if (!crc_status) {
/* Try again in case there was a transient glitch */ /* Try again in case there was a transient glitch */
@ -4398,6 +4543,10 @@ static void mct_initDCT(struct MCTStatStruc *pMCTstat,
val = 1 << DisDramInterface; val = 1 << DisDramInterface;
Set_NB32_DCT(pDCTstat->dev_dct, 1, 0x94, val); Set_NB32_DCT(pDCTstat->dev_dct, 1, 0x94, val);
val = Get_NB32_DCT(pDCTstat->dev_dct, 1, 0x90);
val &= ~(1 << ParEn);
Set_NB32_DCT(pDCTstat->dev_dct, 1, 0x90, val);
/* To maximize power savings when DisDramInterface=1b, /* To maximize power savings when DisDramInterface=1b,
* all of the MemClkDis bits should also be set. * all of the MemClkDis bits should also be set.
*/ */
@ -4550,8 +4699,9 @@ static u8 mct_PlatformSpec(struct MCTStatStruc *pMCTstat,
} }
for (i=i_start; i<i_end; i++) { for (i=i_start; i<i_end; i++) {
index_reg = 0x98; index_reg = 0x98;
Set_NB32_index_wait_DCT(dev, i, index_reg, 0x00, pDCTstat->CH_ODC_CTL[i]); /* Channel A/B Output Driver Compensation Control */ Set_NB32_index_wait_DCT(dev, i, index_reg, 0x00, pDCTstat->CH_ODC_CTL[i]); /* Channel A/B Output Driver Compensation Control */
Set_NB32_index_wait_DCT(dev, i, index_reg, 0x04, pDCTstat->CH_ADDR_TMG[i]); /* Channel A/B Output Driver Compensation Control */ Set_NB32_index_wait_DCT(dev, i, index_reg, 0x04, pDCTstat->CH_ADDR_TMG[i]); /* Channel A/B Output Driver Compensation Control */
printk(BIOS_SPEW, "Programmed DCT %d timing/termination pattern %08x %08x\n", dct, pDCTstat->CH_ADDR_TMG[i], pDCTstat->CH_ODC_CTL[i]);
} }
return pDCTstat->ErrCode; return pDCTstat->ErrCode;
@ -4608,11 +4758,19 @@ static u8 mct_SPDCalcWidth(struct MCTStatStruc *pMCTstat,
val = Get_NB32_DCT(pDCTstat->dev_dct, 0, 0x94); val = Get_NB32_DCT(pDCTstat->dev_dct, 0, 0x94);
val |= 1 << DisDramInterface; val |= 1 << DisDramInterface;
Set_NB32_DCT(pDCTstat->dev_dct, 0, 0x94, val); Set_NB32_DCT(pDCTstat->dev_dct, 0, 0x94, val);
val = Get_NB32_DCT(pDCTstat->dev_dct, 0, 0x90);
val &= ~(1 << ParEn);
Set_NB32_DCT(pDCTstat->dev_dct, 0, 0x90, val);
} }
if (pDCTstat->DIMMValidDCT[1] == 0) { if (pDCTstat->DIMMValidDCT[1] == 0) {
val = Get_NB32_DCT(pDCTstat->dev_dct, 1, 0x94); val = Get_NB32_DCT(pDCTstat->dev_dct, 1, 0x94);
val |= 1 << DisDramInterface; val |= 1 << DisDramInterface;
Set_NB32_DCT(pDCTstat->dev_dct, 1, 0x94, val); Set_NB32_DCT(pDCTstat->dev_dct, 1, 0x94, val);
val = Get_NB32_DCT(pDCTstat->dev_dct, 1, 0x90);
val &= ~(1 << ParEn);
Set_NB32_DCT(pDCTstat->dev_dct, 1, 0x90, val);
} }
printk(BIOS_DEBUG, "SPDCalcWidth: Status %x\n", pDCTstat->Status); printk(BIOS_DEBUG, "SPDCalcWidth: Status %x\n", pDCTstat->Status);
@ -6043,6 +6201,8 @@ static void mct_ProgramODT_D(struct MCTStatStruc *pMCTstat,
dword &= ~(0xf); /* RdOdtTrnOnDly = read_odt_delay */ dword &= ~(0xf); /* RdOdtTrnOnDly = read_odt_delay */
dword |= (read_odt_delay & 0xf); dword |= (read_odt_delay & 0xf);
Set_NB32_DCT(dev, dct, 0x240, dword); Set_NB32_DCT(dev, dct, 0x240, dword);
printk(BIOS_SPEW, "Programmed ODT pattern %08x %08x %08x %08x\n", odt_pattern_0, odt_pattern_1, odt_pattern_2, odt_pattern_3);
} else if (pDCTstat->LogicalCPUID & AMD_DR_Dx) { } else if (pDCTstat->LogicalCPUID & AMD_DR_Dx) {
if (pDCTstat->Speed == 3) if (pDCTstat->Speed == 3)
dword = 0x00000800; dword = 0x00000800;
@ -6178,6 +6338,8 @@ static void mct_ProgramODT_D(struct MCTStatStruc *pMCTstat,
Set_NB32_index_wait_DCT(dev, i, 0xf0, 0x181, odt_pattern_0); Set_NB32_index_wait_DCT(dev, i, 0xf0, 0x181, odt_pattern_0);
Set_NB32_index_wait_DCT(dev, i, 0xf0, 0x182, odt_pattern_3); Set_NB32_index_wait_DCT(dev, i, 0xf0, 0x182, odt_pattern_3);
Set_NB32_index_wait_DCT(dev, i, 0xf0, 0x183, odt_pattern_2); Set_NB32_index_wait_DCT(dev, i, 0xf0, 0x183, odt_pattern_2);
printk(BIOS_SPEW, "Programmed ODT pattern %08x %08x %08x %08x\n", odt_pattern_0, odt_pattern_1, odt_pattern_2, odt_pattern_3);
} }
} }

View File

@ -17,7 +17,7 @@
/* AM3/ASB2/C32/G34 DDR3 */ /* AM3/ASB2/C32/G34 DDR3 */
static void Get_ChannelPS_Cfg0_D(u8 MAAdimms, u8 Speed, u8 MAAload, static void Get_ChannelPS_Cfg0_D(u8 MAAdimms, u8 Speed, u8 MAAload,
u32 *AddrTmgCTL, u32 *ODC_CTL, u32 *ODC_CTL,
u8 *CMDmode); u8 *CMDmode);
void mctGet_PS_Cfg_D(struct MCTStatStruc *pMCTstat, void mctGet_PS_Cfg_D(struct MCTStatStruc *pMCTstat,
@ -30,9 +30,14 @@ void mctGet_PS_Cfg_D(struct MCTStatStruc *pMCTstat,
} else { } else {
Get_ChannelPS_Cfg0_D(pDCTstat->MAdimms[dct], pDCTstat->Speed, Get_ChannelPS_Cfg0_D(pDCTstat->MAdimms[dct], pDCTstat->Speed,
pDCTstat->MAload[dct], pDCTstat->MAload[dct],
&(pDCTstat->CH_ADDR_TMG[dct]), &(pDCTstat->CH_ODC_CTL[dct]), &(pDCTstat->CH_ODC_CTL[dct]),
&pDCTstat->_2Tmode); &pDCTstat->_2Tmode);
if (pDCTstat->Status & (1 << SB_Registered)) {
pDCTstat->_2Tmode = 1; /* Disable slow access mode */
}
pDCTstat->CH_ADDR_TMG[dct] = fam10h_address_timing_compensation_code(pDCTstat, dct);
pDCTstat->CH_ODC_CTL[dct] |= 0x20000000; /* 60ohms */ pDCTstat->CH_ODC_CTL[dct] |= 0x20000000; /* 60ohms */
} }
@ -50,42 +55,25 @@ void mctGet_PS_Cfg_D(struct MCTStatStruc *pMCTstat,
* : ODC_CTL - Output Driver Compensation Control Register Value * : ODC_CTL - Output Driver Compensation Control Register Value
* : CMDmode - CMD mode * : CMDmode - CMD mode
*/ */
static void Get_ChannelPS_Cfg0_D( u8 MAAdimms, u8 Speed, u8 MAAload, static void Get_ChannelPS_Cfg0_D(u8 MAAdimms, u8 Speed, u8 MAAload,
u32 *AddrTmgCTL, u32 *ODC_CTL, u32 *ODC_CTL,
u8 *CMDmode) u8 *CMDmode)
{ {
*AddrTmgCTL = 0;
*ODC_CTL = 0; *ODC_CTL = 0;
*CMDmode = 1; *CMDmode = 1;
if(MAAdimms == 1) { if (MAAdimms == 1) {
if(MAAload >= 16) {
if(Speed == 4)
*AddrTmgCTL = 0x003B0000;
else if (Speed == 5)
*AddrTmgCTL = 0x00380000;
else if (Speed == 6)
*AddrTmgCTL = 0x00360000;
else
*AddrTmgCTL = 0x00340000;
} else {
*AddrTmgCTL = 0x00000000;
}
*ODC_CTL = 0x00113222; *ODC_CTL = 0x00113222;
*CMDmode = 1; *CMDmode = 1;
} else /* if(MAAdimms == 0) */ { } else /* if(MAAdimms == 0) */ {
if(Speed == 4) { if(Speed == 4) {
*CMDmode = 1; *CMDmode = 1;
*AddrTmgCTL = 0x00390039;
} else if(Speed == 5) { } else if(Speed == 5) {
*CMDmode = 1; *CMDmode = 1;
*AddrTmgCTL = 0x00350037;
} else if(Speed == 6) { } else if(Speed == 6) {
*CMDmode = 2; *CMDmode = 2;
*AddrTmgCTL = 0x00000035;
} else { } else {
*CMDmode = 2; *CMDmode = 2;
*AddrTmgCTL = 0x00000033;
} }
*ODC_CTL = 0x00223323; *ODC_CTL = 0x00223323;
} }

View File

@ -237,37 +237,53 @@ static void CalcEccDQSPos_D(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, struct DCTStatStruc *pDCTstat,
u16 like, u8 scale, u8 ChipSel) u16 like, u8 scale, u8 ChipSel)
{ {
u8 DQSDelay0, DQSDelay1; uint8_t DQSDelay0, DQSDelay1;
u16 DQSDelay; int16_t delay_differential;
uint16_t DQSDelay;
if (pDCTstat->Status & (1 << SB_Registered)) { if (pDCTstat->Status & (1 << SB_Registered)) {
return; pDCTstat->ByteLane = 0x2;
} GetDQSDatStrucVal_D(pMCTstat, pDCTstat, ChipSel);
DQSDelay0 = pDCTstat->DQSDelay;
pDCTstat->ByteLane = like & 0xff; pDCTstat->ByteLane = 0x3;
GetDQSDatStrucVal_D(pMCTstat, pDCTstat, ChipSel); GetDQSDatStrucVal_D(pMCTstat, pDCTstat, ChipSel);
DQSDelay0 = pDCTstat->DQSDelay; DQSDelay1 = pDCTstat->DQSDelay;
pDCTstat->ByteLane = (like >> 8) & 0xff; if (pDCTstat->Direction == DQS_READDIR) {
GetDQSDatStrucVal_D(pMCTstat, pDCTstat, ChipSel); DQSDelay = DQSDelay1;
DQSDelay1 = pDCTstat->DQSDelay; } else {
delay_differential = (int16_t)DQSDelay1 - (int16_t)DQSDelay0;
delay_differential += (int16_t)DQSDelay1;
if (DQSDelay0>DQSDelay1) { DQSDelay = delay_differential;
DQSDelay = DQSDelay0 - DQSDelay1; }
} else { } else {
DQSDelay = DQSDelay1 - DQSDelay0; pDCTstat->ByteLane = like & 0xff;
} GetDQSDatStrucVal_D(pMCTstat, pDCTstat, ChipSel);
DQSDelay0 = pDCTstat->DQSDelay;
DQSDelay = DQSDelay * (~scale); pDCTstat->ByteLane = (like >> 8) & 0xff;
GetDQSDatStrucVal_D(pMCTstat, pDCTstat, ChipSel);
DQSDelay1 = pDCTstat->DQSDelay;
DQSDelay += 0x80; /* round it */ if (DQSDelay0>DQSDelay1) {
DQSDelay = DQSDelay0 - DQSDelay1;
} else {
DQSDelay = DQSDelay1 - DQSDelay0;
}
DQSDelay >>= 8; /* 256 */ DQSDelay = DQSDelay * (~scale);
if (DQSDelay0>DQSDelay1) { DQSDelay += 0x80; /* round it */
DQSDelay = DQSDelay1 - DQSDelay;
} else { DQSDelay >>= 8; /* 256 */
DQSDelay += DQSDelay1;
if (DQSDelay0>DQSDelay1) {
DQSDelay = DQSDelay1 - DQSDelay;
} else {
DQSDelay += DQSDelay1;
}
} }
pDCTstat->DQSDelay = (u8)DQSDelay; pDCTstat->DQSDelay = (u8)DQSDelay;

View File

@ -14,12 +14,39 @@
* GNU General Public License for more details. * GNU General Public License for more details.
*/ */
static uint16_t memclk_to_freq(uint16_t memclk) {
uint16_t fam10h_freq_tab[] = {0, 0, 0, 400, 533, 667, 800};
uint16_t fam15h_freq_tab[] = {0, 0, 0, 0, 333, 0, 400, 0, 0, 0, 533, 0, 0, 0, 667, 0, 0, 0, 800, 0, 0, 0, 933};
uint16_t mem_freq = 0;
if (is_fam15h()) {
if (memclk < 0x17) {
mem_freq = fam15h_freq_tab[memclk];
}
} else {
if ((memclk > 0x0) && (memclk < 0x8)) {
mem_freq = fam10h_freq_tab[memclk - 1];
}
}
return mem_freq;
}
static uint32_t rc_word_value_to_ctl_bits(uint32_t value) {
return ((value >> 2) & 3) << 16 | ((value & 3) << 3);
}
static u32 mct_ControlRC(struct MCTStatStruc *pMCTstat, static u32 mct_ControlRC(struct MCTStatStruc *pMCTstat,
struct DCTStatStruc *pDCTstat, u32 MrsChipSel, u32 CtrlWordNum) struct DCTStatStruc *pDCTstat, u32 MrsChipSel, u32 CtrlWordNum)
{ {
u8 Dimms, DimmNum, MaxDimm, Speed; u8 Dimms, DimmNum;
u32 val; u32 val;
u32 dct = 0; u32 dct = 0;
uint8_t ddr_voltage_index;
uint16_t mem_freq;
uint8_t package_type = mctGet_NVbits(NV_PACK_TYPE);
uint8_t MaxDimmsInstallable = mctGet_NVbits(NV_MAX_DIMMS_PER_CH);
DimmNum = (MrsChipSel >> 20) & 0xFE; DimmNum = (MrsChipSel >> 20) & 0xFE;
@ -28,54 +55,64 @@ static u32 mct_ControlRC(struct MCTStatStruc *pMCTstat,
/* DimmNum ++; */ /* DimmNum ++; */
/* cl +=8; */ /* cl +=8; */
MaxDimm = mctGet_NVbits(NV_MAX_DIMMS); mem_freq = memclk_to_freq(pDCTstat->DIMMAutoSpeed);
Speed = pDCTstat->DIMMAutoSpeed;
if (pDCTstat->CSPresent_DCT[0] > 0) { if (pDCTstat->CSPresent_DCT[0] > 0) {
dct = 0; dct = 0;
} else if (pDCTstat->CSPresent_DCT[1] > 0 ){ } else if (pDCTstat->CSPresent_DCT[1] > 0 ) {
dct = 1; dct = 1;
DimmNum ++; DimmNum++;
} }
Dimms = pDCTstat->MAdimms[dct]; Dimms = pDCTstat->MAdimms[dct];
ddr_voltage_index = dct_ddr_voltage_index(pDCTstat, dct);
val = 0; val = 0;
if (CtrlWordNum == 0) if (CtrlWordNum == 0)
val |= 1 << 1; val = 0x2;
else if (CtrlWordNum == 1) { else if (CtrlWordNum == 1) {
if (!((pDCTstat->DimmDRPresent | pDCTstat->DimmQRPresent) & (1 << DimmNum))) if (!((pDCTstat->DimmDRPresent | pDCTstat->DimmQRPresent) & (1 << DimmNum)))
val |= 0xC; /* if single rank, set DBA1 and DBA0 */ val = 0xC; /* if single rank, set DBA1 and DBA0 */
} else if (CtrlWordNum == 2) { } else if (CtrlWordNum == 2) {
if (MaxDimm == 4) { if (package_type == PT_GR) {
if (Speed == 4) { /* Socket G34 */
if (((pDCTstat->DimmQRPresent & (1 << DimmNum)) && (Dimms == 1)) || (Dimms == 2)) if (MaxDimmsInstallable == 2) {
if (!(pDCTstat->MirrPresU_NumRegR & (1 << DimmNum))) if (Dimms > 1)
val |= 1 << 2; val = 0x4;
} else {
if (pDCTstat->MirrPresU_NumRegR & (1 << DimmNum))
val |= 1 << 2;
} }
} else {
if (Dimms > 1)
val |= 1 << 2;
} }
} else if (CtrlWordNum == 3) { } else if (CtrlWordNum == 3) {
val |= (pDCTstat->CtrlWrd3 >> (DimmNum << 2)) & 0xFF; val = (pDCTstat->CtrlWrd3 >> (DimmNum << 2)) & 0xFF;
} else if (CtrlWordNum == 4) { } else if (CtrlWordNum == 4) {
val |= (pDCTstat->CtrlWrd4 >> (DimmNum << 2)) & 0xFF; val = (pDCTstat->CtrlWrd4 >> (DimmNum << 2)) & 0xFF;
} else if (CtrlWordNum == 5) { } else if (CtrlWordNum == 5) {
val |= (pDCTstat->CtrlWrd5 >> (DimmNum << 2)) & 0xFF; val = (pDCTstat->CtrlWrd5 >> (DimmNum << 2)) & 0xFF;
} else if (CtrlWordNum == 8) { } else if (CtrlWordNum == 8) {
if (MaxDimm == 4) if (package_type == PT_GR) {
if (Speed == 4) /* Socket G34 */
if (pDCTstat->MirrPresU_NumRegR & (1 << DimmNum)) if (MaxDimmsInstallable == 2) {
val |= 1 << 2; val = 0x0;
}
}
} else if (CtrlWordNum == 9) { } else if (CtrlWordNum == 9) {
val |= 0xD; /* DBA1, DBA0, DA3 = 0 */ val = 0xD; /* DBA1, DBA0, DA3 = 0 */
} else if (CtrlWordNum == 10) {
val = 0x0; /* Lowest operating frequency */
} else if (CtrlWordNum == 11) {
if (ddr_voltage_index & 0x4)
val = 0x2; /* 1.25V */
else if (ddr_voltage_index & 0x2)
val = 0x1; /* 1.35V */
else
val = 0x0; /* 1.5V */
} else if (CtrlWordNum >= 12) {
val = 0x0; /* Unset */
} }
val &= 0xffffff0f; val &= 0xf;
val = MrsChipSel | ((val >> 2) & 3) << 16 | ((val & 3) << 3); printk(BIOS_SPEW, "Preparing to send DIMM RC%d: %02x\n", CtrlWordNum, val);
val = MrsChipSel | rc_word_value_to_ctl_bits(val);
/* transfer Control word number to address [BA2,A2,A1,A0] */ /* transfer Control word number to address [BA2,A2,A1,A0] */
if (CtrlWordNum > 7) { if (CtrlWordNum > 7) {
@ -125,18 +162,18 @@ void mct_DramControlReg_Init_D(struct MCTStatStruc *pMCTstat,
val &= ~(0xF << 8); val &= ~(0xF << 8);
switch (MrsChipSel) { switch (MrsChipSel) {
case 0: case 0:
case 1: case 1:
val |= 3 << 8; val |= 3 << 8;
case 2: case 2:
case 3: case 3:
val |= (3 << 2) << 8; val |= (3 << 2) << 8;
case 4: case 4:
case 5: case 5:
val |= (3 << 4) << 8; val |= (3 << 4) << 8;
case 6: case 6:
case 7: case 7:
val |= (3 << 6) << 8; val |= (3 << 6) << 8;
} }
Set_NB32_DCT(dev, dct, 0xa8, val); Set_NB32_DCT(dev, dct, 0xa8, val);
@ -160,8 +197,10 @@ void FreqChgCtrlWrd(struct MCTStatStruc *pMCTstat,
u32 MrsChipSel; u32 MrsChipSel;
u32 dev = pDCTstat->dev_dct; u32 dev = pDCTstat->dev_dct;
u32 val; u32 val;
uint16_t mem_freq;
pDCTstat->DIMMAutoSpeed = pDCTstat->TargetFreq; pDCTstat->DIMMAutoSpeed = pDCTstat->TargetFreq;
mem_freq = memclk_to_freq(pDCTstat->TargetFreq);
for (MrsChipSel=0; MrsChipSel < 8; MrsChipSel++, MrsChipSel++) { for (MrsChipSel=0; MrsChipSel < 8; MrsChipSel++, MrsChipSel++) {
if (pDCTstat->CSPresent & (1 << MrsChipSel)) { if (pDCTstat->CSPresent & (1 << MrsChipSel)) {
/* 2. Program F2x[1, 0]A8[CtrlWordCS]=bit mask for target chip selects. */ /* 2. Program F2x[1, 0]A8[CtrlWordCS]=bit mask for target chip selects. */
@ -171,19 +210,31 @@ void FreqChgCtrlWrd(struct MCTStatStruc *pMCTstat,
Set_NB32_DCT(dev, 0, 0xA8, val); /* TODO: dct 0 / 1 select */ Set_NB32_DCT(dev, 0, 0xA8, val); /* TODO: dct 0 / 1 select */
/* Resend control word 10 */ /* Resend control word 10 */
uint8_t freq_ctl_val = 0;
mct_Wait(1600); mct_Wait(1600);
switch (pDCTstat->TargetFreq) { switch (mem_freq) {
case 5: case 333:
mct_SendCtrlWrd(pMCTstat, pDCTstat, MrsChipSel << 20 | 0x4000A); case 400:
break; freq_ctl_val = 0x0;
case 6: break;
mct_SendCtrlWrd(pMCTstat, pDCTstat, MrsChipSel << 20 | 0x40012); case 533:
break; freq_ctl_val = 0x1;
case 7: break;
mct_SendCtrlWrd(pMCTstat, pDCTstat, MrsChipSel << 20 | 0x4001A); case 667:
break; freq_ctl_val = 0x2;
break;
case 800:
freq_ctl_val = 0x3;
break;
case 933:
freq_ctl_val = 0x4;
break;
} }
printk(BIOS_SPEW, "Preparing to send DIMM RC%d: %02x\n", 10, freq_ctl_val);
mct_SendCtrlWrd(pMCTstat, pDCTstat, MrsChipSel << 20 | 0x40002 | rc_word_value_to_ctl_bits(freq_ctl_val));
mct_Wait(1600); mct_Wait(1600);
/* Resend control word 2 */ /* Resend control word 2 */

View File

@ -492,6 +492,8 @@ static u32 mct_MR2(struct MCTStatStruc *pMCTstat,
ret |= ((dword >> 10) & 3) << 9; ret |= ((dword >> 10) & 3) << 9;
} }
printk(BIOS_SPEW, "Going to send MR2 control word %08x\n", ret);
return ret; return ret;
} }
@ -521,6 +523,8 @@ static u32 mct_MR3(struct MCTStatStruc *pMCTstat,
ret |= (dword >> 24) & 7; ret |= (dword >> 24) & 7;
} }
printk(BIOS_SPEW, "Going to send MR3 control word %08x\n", ret);
return ret; return ret;
} }
@ -615,6 +619,8 @@ static u32 mct_MR1(struct MCTStatStruc *pMCTstat,
ret |= 1 << 12; ret |= 1 << 12;
} }
printk(BIOS_SPEW, "Going to send MR1 control word %08x\n", ret);
return ret; return ret;
} }
@ -734,6 +740,8 @@ static u32 mct_MR0(struct MCTStatStruc *pMCTstat,
ret |= 1 << 8; ret |= 1 << 8;
} }
printk(BIOS_SPEW, "Going to send MR0 control word %08x\n", ret);
return ret; return ret;
} }

View File

@ -1740,6 +1740,7 @@ static void CalcEccDQSRcvrEn_D(struct MCTStatStruc *pMCTstat,
u16 EccDQSLike; u16 EccDQSLike;
u8 EccDQSScale; u8 EccDQSScale;
u32 val, val0, val1; u32 val, val0, val1;
int16_t delay_differential;
EccDQSLike = pDCTstat->CH_EccDQSLike[Channel]; EccDQSLike = pDCTstat->CH_EccDQSLike[Channel];
EccDQSScale = pDCTstat->CH_EccDQSScale[Channel]; EccDQSScale = pDCTstat->CH_EccDQSScale[Channel];
@ -1749,14 +1750,22 @@ static void CalcEccDQSRcvrEn_D(struct MCTStatStruc *pMCTstat,
u16 *p; u16 *p;
p = pDCTstat->CH_D_B_RCVRDLY[Channel][ChipSel>>1]; p = pDCTstat->CH_D_B_RCVRDLY[Channel][ChipSel>>1];
/* DQS Delay Value of Data Bytelane if (pDCTstat->Status & (1 << SB_Registered)) {
* most like ECC byte lane */ val0 = p[0x2];
val0 = p[EccDQSLike & 0x07]; val1 = p[0x3];
/* DQS Delay Value of Data Bytelane
* 2nd most like ECC byte lane */ delay_differential = (int16_t)val1 - (int16_t)val0;
val1 = p[(EccDQSLike>>8) & 0x07]; delay_differential += (int16_t)val1;
val = delay_differential;
} else {
/* DQS Delay Value of Data Bytelane
* most like ECC byte lane */
val0 = p[EccDQSLike & 0x07];
/* DQS Delay Value of Data Bytelane
* 2nd most like ECC byte lane */
val1 = p[(EccDQSLike>>8) & 0x07];
if (!(pDCTstat->Status & (1 << SB_Registered))) {
if(val0 > val1) { if(val0 > val1) {
val = val0 - val1; val = val0 - val1;
} else { } else {
@ -1771,9 +1780,6 @@ static void CalcEccDQSRcvrEn_D(struct MCTStatStruc *pMCTstat,
} else { } else {
val += val0; val += val0;
} }
} else {
val = val1 - val0;
val += val1;
} }
pDCTstat->CH_D_BC_RCVRDLY[Channel][ChipSel>>1] = val; pDCTstat->CH_D_BC_RCVRDLY[Channel][ChipSel>>1] = val;

View File

@ -926,7 +926,9 @@ void programODT(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, ui
else if ((cs == 4) || (cs == 0)) else if ((cs == 4) || (cs == 0))
WrLvOdt1 = (dword & 0xf); WrLvOdt1 = (dword & 0xf);
} else { } else {
if (pDCTData->Status[DCT_STATUS_REGISTERED] == 0) { if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
WrLvOdt1 = WrLvOdtRegDimm(pMCTData, pDCTData, dimm);
} else {
if ((pDCTData->DctCSPresent & 0x05) == 0x05) { if ((pDCTData->DctCSPresent & 0x05) == 0x05) {
WrLvOdt1 = 0x03; WrLvOdt1 = 0x03;
} else if (bitTest((u32)pDCTData->DctCSPresent,(u8)(dimm*2+1))) { } else if (bitTest((u32)pDCTData->DctCSPresent,(u8)(dimm*2+1))) {
@ -934,14 +936,14 @@ void programODT(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, ui
} else { } else {
WrLvOdt1 = (u8)bitTestSet(WrLvOdt1, dimm); WrLvOdt1 = (u8)bitTestSet(WrLvOdt1, dimm);
} }
} else {
WrLvOdt1 = WrLvOdtRegDimm(pMCTData, pDCTData, dimm);
} }
} }
set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT, set_DCT_ADDR_Bits(pDCTData, dct, pDCTData->NodeId, FUN_DCT,
DRAM_ADD_DCT_PHY_CONTROL_REG, 8, 11, (u32)WrLvOdt1); DRAM_ADD_DCT_PHY_CONTROL_REG, 8, 11, (u32)WrLvOdt1);
printk(BIOS_SPEW, "Programmed DCT %d write levelling ODT pattern %08x\n", dct, WrLvOdt1);
} }
#ifdef UNUSED_CODE #ifdef UNUSED_CODE
@ -976,7 +978,7 @@ void procConfig(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, ui
u16 Addl_Data_Offset, Addl_Data_Port; u16 Addl_Data_Offset, Addl_Data_Port;
sMCTStruct *pMCTData = pDCTstat->C_MCTPtr; sMCTStruct *pMCTData = pDCTstat->C_MCTPtr;
sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct]; sDCTStruct *pDCTData = pDCTstat->C_DCTPtr[dct];
u16 fam10h_freq_tab[] = {400, 533, 667, 800}; uint16_t fam10h_freq_tab[] = {0, 0, 0, 400, 533, 667, 800};
uint16_t fam15h_freq_tab[] = {0, 0, 0, 0, 333, 0, 400, 0, 0, 0, 533, 0, 0, 0, 667, 0, 0, 0, 800, 0, 0, 0, 933}; uint16_t fam15h_freq_tab[] = {0, 0, 0, 0, 333, 0, 400, 0, 0, 0, 533, 0, 0, 0, 667, 0, 0, 0, 800, 0, 0, 0, 933};
if (is_fam15h()) { if (is_fam15h()) {
@ -1089,21 +1091,18 @@ void procConfig(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, ui
pDCTData->WLSeedPreGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_PreGross; pDCTData->WLSeedPreGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_PreGross;
} }
} else { } else {
if (pDCTData->Status[DCT_STATUS_REGISTERED]) if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
{ uint8_t AddrCmdPrelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */
if(pDCTData->RegMan1Present & ((1<<(dimm*2+dct))))
{ /* The seed values below assume Pass 1 utilizes a 400MHz clock frequency (DDR3-800) */
if (AddrCmdPrelaunch == 0) {
Seed_Gross = 0x02; Seed_Gross = 0x02;
Seed_Fine = 0x16; Seed_Fine = 0x01;
} } else {
else
{
Seed_Gross = 0x02; Seed_Gross = 0x02;
Seed_Fine = 0x00; Seed_Fine = 0x11;
} }
} } else {
else
{
if (MemClkFreq == 6) { if (MemClkFreq == 6) {
/* DDR-800 */ /* DDR-800 */
Seed_Gross = 0x00; Seed_Gross = 0x00;
@ -1127,6 +1126,7 @@ void procConfig(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, ui
*/ */
pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Gross; pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Gross;
pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine; pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine;
printk(BIOS_SPEW, "\tLane %02x initial seed: %04x\n", ByteLane, ((Seed_Gross & 0x1f) << 5) | (Seed_Fine & 0x1f));
} }
} else { } else {
/* Pass 2 */ /* Pass 2 */
@ -1178,21 +1178,30 @@ void procConfig(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, ui
pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_PreGross; pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_PreGross;
pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine; pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine;
printk(BIOS_SPEW, "\tLane %02x new seed: %04x\n", ByteLane, ((Seed_Gross & 0x1f) << 5) | (Seed_Fine & 0x1f));
} }
} else { } else {
u32 RegisterDelay, SeedTotal; uint32_t RegisterDelay;
uint32_t SeedTotalPreScaling;
uint32_t SeedTotal;
uint8_t AddrCmdPrelaunch = 0; /* TODO: Fetch the correct value from RC2[0] */
for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++) for (ByteLane = 0; ByteLane < MAX_BYTE_LANES; ByteLane++)
{ {
if (pDCTData->Status[DCT_STATUS_REGISTERED]) if (pDCTData->Status[DCT_STATUS_REGISTERED]) {
RegisterDelay = 0x20; /* TODO: ((RCW2 & BIT0) == 0) ? 0x20 : 0x30; */ if (AddrCmdPrelaunch == 0)
else RegisterDelay = 0x20;
else
RegisterDelay = 0x30;
} else {
RegisterDelay = 0; RegisterDelay = 0;
SeedTotal = (pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] & 0x1f) | }
(pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] << 5); SeedTotalPreScaling = ((pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] & 0x1f) |
(pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] << 5)) - RegisterDelay;
/* SeedTotalPreScaling = (the total delay value in F2x[1, 0]9C_x[4A:30] from pass 1 of write levelization /* SeedTotalPreScaling = (the total delay value in F2x[1, 0]9C_x[4A:30] from pass 1 of write levelization
training) - RegisterDelay. */ training) - RegisterDelay. */
SeedTotal = (uint16_t) (RegisterDelay + ((((uint64_t) SeedTotal - RegisterDelay) * SeedTotal = (uint16_t) ((((uint64_t) SeedTotalPreScaling) *
fam10h_freq_tab[MemClkFreq-3] * 100) / (fam10h_freq_tab[0] * 100))); fam10h_freq_tab[MemClkFreq] * 100) / (fam10h_freq_tab[3] * 100));
Seed_Gross = SeedTotal / 32; Seed_Gross = SeedTotal / 32;
Seed_Fine = SeedTotal & 0x1f; Seed_Fine = SeedTotal & 0x1f;
if (Seed_Gross == 0) if (Seed_Gross == 0)
@ -1201,8 +1210,20 @@ void procConfig(struct MCTStatStruc *pMCTstat, struct DCTStatStruc *pDCTstat, ui
Seed_Gross = 1; Seed_Gross = 1;
else else
Seed_Gross = 2; Seed_Gross = 2;
/* The BKDG-recommended algorithm causes problems with registered DIMMs on some systems
* due to the long register delays causing premature total delay wrap-around.
* Attempt to work around this...
*/
SeedTotal = ((Seed_Gross & 0x1f) << 5) | (Seed_Fine & 0x1f);
SeedTotal += RegisterDelay;
Seed_Gross = SeedTotal / 32;
Seed_Fine = SeedTotal & 0x1f;
pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Gross; pDCTData->WLGrossDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Gross;
pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine; pDCTData->WLFineDelay[MAX_BYTE_LANES*dimm+ByteLane] = Seed_Fine;
printk(BIOS_SPEW, "\tLane %02x new seed: %04x\n", ByteLane, ((Seed_Gross & 0x1f) << 5) | (Seed_Fine & 0x1f));
} }
} }
} }
@ -1379,6 +1400,8 @@ void getWLByteDelay(struct DCTStatStruc *pDCTstat, uint8_t dct, u8 ByteLane, u8
gross = get_ADD_DCT_Bits(pDCTData, dct, pDCTData->NodeId, gross = get_ADD_DCT_Bits(pDCTData, dct, pDCTData->NodeId,
FUN_DCT, (u16)addr, grossStartLoc, grossEndLoc); FUN_DCT, (u16)addr, grossStartLoc, grossEndLoc);
printk(BIOS_SPEW, "\tLane %02x raw readback: %04x\n", ByteLane, ((gross & 0x1f) << 5) | (fine & 0x1f));
if (!is_fam15h()) { if (!is_fam15h()) {
/* Adjust seed gross delay overflow (greater than 3): /* Adjust seed gross delay overflow (greater than 3):
* - Adjust the trained gross delay to the original seed gross delay. * - Adjust the trained gross delay to the original seed gross delay.
@ -1402,4 +1425,5 @@ void getWLByteDelay(struct DCTStatStruc *pDCTstat, uint8_t dct, u8 ByteLane, u8
} }
pDCTData->WLFineDelay[index+ByteLane] = (u8)fine; pDCTData->WLFineDelay[index+ByteLane] = (u8)fine;
pDCTData->WLGrossDelay[index+ByteLane] = (u8)gross; pDCTData->WLGrossDelay[index+ByteLane] = (u8)gross;
printk(BIOS_SPEW, "\tLane %02x final adjusted value: %04x\n", ByteLane, ((gross & 0x1f) << 5) | (fine & 0x1f));
} }