wifi: Add support for new revisions of SAR table entries

Existing SAR infrastructure supports only revision 0 of the SAR tables.
This patch modifies it to extend support for intel wifi 6 and wifi 6e
configurations as per the connectivity document:
559910_Intel_Connectivity_Platforms_BIOS_Guidelines_Rev6_4.pdf

The SAR table and WGDS configuration block sizes were static in the
legacy SAR file format. Following is the format of the new binary file.

+------------------------------------------------------------+
| Field     | Size     | Description                         |
+------------------------------------------------------------+
| Marker    | 4 bytes  | "$SAR"                              |
+------------------------------------------------------------+
| Version   | 1 byte   | Current version = 1                 |
+------------------------------------------------------------+
| SAR table | 2 bytes  | Offset of SAR table from start of   |
| offset    |          | the header                          |
+------------------------------------------------------------+
| WGDS      | 2 bytes  | Offset of WGDS table from start of  |
| offset    |          | the header                          |
+------------------------------------------------------------+
| Data      | n bytes  | Data for the different tables       |
+------------------------------------------------------------+

This change supports both the legacy and the new format of SAR file

BUG=b:193665559
TEST=Checked the SSDT entries for WRDS, EWRD and WGDS with different
binaries generated by setting different versions in the config.star

Change-Id: I08c3f321938eba04e8bcff4d87cb215422715bb2
Signed-off-by: Sugnan Prabhu S <sugnan.prabhu.s@intel.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/56750
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Tim Wawrzynczak <twawrzynczak@chromium.org>
This commit is contained in:
Sugnan Prabhu S 2021-07-30 20:12:22 +05:30 committed by Tim Wawrzynczak
parent 93ca873f20
commit fcb4f2d77e
3 changed files with 385 additions and 136 deletions

View File

@ -6,25 +6,14 @@
#include <console/console.h>
#include <device/pci_ids.h>
#include <sar.h>
#include <stdlib.h>
#include <wrdd.h>
#include "chip.h"
#include "wifi_private.h"
/* WRDS Spec Revision */
#define WRDS_REVISION 0x0
/* EWRD Spec Revision */
#define EWRD_REVISION 0x0
/* WRDS Domain type */
#define WRDS_DOMAIN_TYPE_WIFI 0x7
/* EWRD Domain type */
#define EWRD_DOMAIN_TYPE_WIFI 0x7
/* WGDS Domain type */
#define WGDS_DOMAIN_TYPE_WIFI 0x7
/* WIFI Domain type */
#define DOMAIN_TYPE_WIFI 0x7
/*
* WIFI ACPI NAME = "WF" + hex value of last 8 bits of dev_path_encode + '\0'
@ -34,29 +23,33 @@
*/
#define WIFI_ACPI_NAME_MAX_LEN 5
__weak int get_wifi_sar_limits(struct wifi_sar_limits *sar_limits)
__weak int get_wifi_sar_limits(union wifi_sar_limits *sar_limits)
{
return -1;
}
static void emit_sar_acpi_structures(const struct device *dev)
static const uint8_t *sar_fetch_set(const struct sar_profile *sar, size_t set_num)
{
int i, j, package_size;
struct wifi_sar_limits sar_limits;
struct wifi_sar_delta_table *wgds;
const uint8_t *sar_table = &sar->sar_table[0];
/*
* If device type is PCI, ensure that the device has Intel vendor ID. CBFS SAR and SAR
* ACPI tables are currently used only by Intel WiFi devices.
*/
if (dev->path.type == DEVICE_PATH_PCI && dev->vendor != PCI_VENDOR_ID_INTEL)
return;
return sar_table + (sar->chains_count * sar->subbands_count * set_num);
}
/* Retrieve the sar limits data */
if (get_wifi_sar_limits(&sar_limits) < 0) {
printk(BIOS_DEBUG, "failed from getting SAR limits!\n");
static const uint8_t *wgds_fetch_set(struct geo_profile *wgds, size_t set_num)
{
const uint8_t *wgds_table = &wgds->wgds_table[0];
return wgds_table + (wgds->bands_count * set_num);
}
static void sar_emit_wrds(const struct sar_profile *sar)
{
int i;
size_t package_size, table_size;
const uint8_t *set;
if (sar == NULL)
return;
}
/*
* Name ("WRDS", Package () {
@ -64,22 +57,42 @@ static void emit_sar_acpi_structures(const struct device *dev)
* Package () {
* Domain Type, // 0x7:WiFi
* WiFi SAR BIOS, // BIOS SAR Enable/disable
* SAR Table Set // Set#1 of SAR Table (10 bytes)
* SAR Table Set // Set#1 of SAR Table
* }
* })
*/
if (sar->revision > MAX_SAR_REVISION) {
printk(BIOS_ERR, "ERROR: Invalid SAR table revision: %d\n", sar->revision);
return;
}
acpigen_write_name("WRDS");
acpigen_write_package(2);
acpigen_write_dword(WRDS_REVISION);
/* Emit 'Domain Type' + 'WiFi SAR BIOS' + 10 bytes for Set#1 */
package_size = 1 + 1 + BYTES_PER_SAR_LIMIT;
acpigen_write_dword(sar->revision);
table_size = sar->chains_count * sar->subbands_count;
/* Emit 'Domain Type' + 'WiFi SAR Enable' + Set#1 */
package_size = 1 + 1 + table_size;
acpigen_write_package(package_size);
acpigen_write_dword(WRDS_DOMAIN_TYPE_WIFI);
acpigen_write_dword(CONFIG(SAR_ENABLE));
for (i = 0; i < BYTES_PER_SAR_LIMIT; i++)
acpigen_write_byte(sar_limits.sar_limit[0][i]);
acpigen_pop_len();
acpigen_pop_len();
acpigen_write_dword(DOMAIN_TYPE_WIFI);
acpigen_write_dword(1);
set = sar_fetch_set(sar, 0);
for (i = 0; i < table_size; i++)
acpigen_write_byte(set[i]);
acpigen_write_package_end();
acpigen_write_package_end();
}
static void sar_emit_ewrd(const struct sar_profile *sar)
{
int i;
size_t package_size, set_num, table_size;
const uint8_t *set;
if (sar == NULL)
return;
/*
* Name ("EWRD", Package () {
@ -88,31 +101,58 @@ static void emit_sar_acpi_structures(const struct device *dev)
* Domain Type, // 0x7:WiFi
* Dynamic SAR Enable, // Dynamic SAR Enable/disable
* Extended SAR sets, // Number of optional SAR table sets
* SAR Table Set, // Set#2 of SAR Table (10 bytes)
* SAR Table Set, // Set#3 of SAR Table (10 bytes)
* SAR Table Set // Set#4 of SAR Table (10 bytes)
* SAR Table Set, // Set#2 of SAR Table
* SAR Table Set, // Set#3 of SAR Table
* SAR Table Set // Set#4 of SAR Table
* }
* })
*/
if (sar->revision > MAX_SAR_REVISION) {
printk(BIOS_ERR, "ERROR: Invalid SAR table revision: %d\n", sar->revision);
return;
}
if (sar->dsar_set_count == 0) {
printk(BIOS_WARNING, "WARNING: DSAR set count is 0\n");
return;
}
acpigen_write_name("EWRD");
acpigen_write_package(2);
acpigen_write_dword(EWRD_REVISION);
acpigen_write_dword(sar->revision);
table_size = sar->chains_count * sar->subbands_count;
/*
* Emit 'Domain Type' + "Dynamic SAR Enable' + 'Extended SAR sets'
* Emit 'Domain Type' + 'Dynamic SAR Enable' + 'Extended SAR sets count'
* + number of bytes for Set#2 & 3 & 4
*/
package_size = 1 + 1 + 1 + (NUM_SAR_LIMITS - 1) * BYTES_PER_SAR_LIMIT;
package_size = 1 + 1 + 1 + table_size * sar->dsar_set_count;
acpigen_write_package(package_size);
acpigen_write_dword(EWRD_DOMAIN_TYPE_WIFI);
acpigen_write_dword(CONFIG(DSAR_ENABLE));
acpigen_write_dword(CONFIG_DSAR_SET_NUM);
for (i = 1; i < NUM_SAR_LIMITS; i++)
for (j = 0; j < BYTES_PER_SAR_LIMIT; j++)
acpigen_write_byte(sar_limits.sar_limit[i][j]);
acpigen_pop_len();
acpigen_pop_len();
acpigen_write_dword(DOMAIN_TYPE_WIFI);
acpigen_write_dword(1);
acpigen_write_dword(sar->dsar_set_count);
if (!CONFIG(GEO_SAR_ENABLE))
for (set_num = 1; set_num <= sar->dsar_set_count; set_num++) {
set = sar_fetch_set(sar, set_num);
for (i = 0; i < table_size; i++)
acpigen_write_byte(set[i]);
}
/* wifi driver always expects 3 DSAR sets */
for (i = 0; i < (table_size * (MAX_DSAR_SET_COUNT - sar->dsar_set_count)); i++)
acpigen_write_byte(0);
acpigen_write_package_end();
acpigen_write_package_end();
}
static void sar_emit_wgds(struct geo_profile *wgds)
{
int i;
size_t package_size, set_num;
const uint8_t *set;
if (wgds == NULL)
return;
/*
@ -126,43 +166,78 @@ static void emit_sar_acpi_structures(const struct device *dev)
* WgdsWiFiSarDeltaGroup1PowerMax2, // Group 1 FCC 5200 Max
* WgdsWiFiSarDeltaGroup1PowerChainA2, // Group 1 FCC 5200 A Offset
* WgdsWiFiSarDeltaGroup1PowerChainB2, // Group 1 FCC 5200 B Offset
* WgdsWiFiSarDeltaGroup1PowerMax3, // Group 1 FCC 6000-7000 Max
* WgdsWiFiSarDeltaGroup1PowerChainA3, // Group 1 FCC 6000-7000 A Offset
* WgdsWiFiSarDeltaGroup1PowerChainB3, // Group 1 FCC 6000-7000 B Offset
* WgdsWiFiSarDeltaGroup2PowerMax1, // Group 2 EC Jap 2400 Max
* WgdsWiFiSarDeltaGroup2PowerChainA1, // Group 2 EC Jap 2400 A Offset
* WgdsWiFiSarDeltaGroup2PowerChainB1, // Group 2 EC Jap 2400 B Offset
* WgdsWiFiSarDeltaGroup2PowerMax2, // Group 2 EC Jap 5200 Max
* WgdsWiFiSarDeltaGroup2PowerChainA2, // Group 2 EC Jap 5200 A Offset
* WgdsWiFiSarDeltaGroup2PowerChainB2, // Group 2 EC Jap 5200 B Offset
* WgdsWiFiSarDeltaGroup2PowerMax3, // Group 2 EC Jap 6000-7000 Max
* WgdsWiFiSarDeltaGroup2PowerChainA3, // Group 2 EC Jap 6000-7000 A Offset
* WgdsWiFiSarDeltaGroup2PowerChainB3, // Group 2 EC Jap 6000-7000 B Offset
* WgdsWiFiSarDeltaGroup3PowerMax1, // Group 3 ROW 2400 Max
* WgdsWiFiSarDeltaGroup3PowerChainA1, // Group 3 ROW 2400 A Offset
* WgdsWiFiSarDeltaGroup3PowerChainB1, // Group 3 ROW 2400 B Offset
* WgdsWiFiSarDeltaGroup3PowerMax2, // Group 3 ROW 5200 Max
* WgdsWiFiSarDeltaGroup3PowerChainA2, // Group 3 ROW 5200 A Offset
* WgdsWiFiSarDeltaGroup3PowerChainB2, // Group 3 ROW 5200 B Offset
* WgdsWiFiSarDeltaGroup3PowerMax3, // Group 3 ROW 6000-7000 Max
* WgdsWiFiSarDeltaGroup3PowerChainA3, // Group 3 ROW 6000-7000 A Offset
* WgdsWiFiSarDeltaGroup3PowerChainB3, // Group 3 ROW 6000-7000 B Offset
* }
* })
*/
if (wgds->revision > MAX_GEO_OFFSET_REVISION) {
printk(BIOS_ERR, "ERROR: Invalid WGDS revision: %d\n", wgds->revision);
return;
}
package_size = 1 + wgds->chains_count * wgds->bands_count;
wgds = &sar_limits.wgds;
acpigen_write_name("WGDS");
acpigen_write_package(2);
acpigen_write_dword(wgds->version);
acpigen_write_dword(wgds->revision);
/* Emit 'Domain Type' +
* Group specific delta of power (6 bytes * NUM_WGDS_SAR_GROUPS)
*/
package_size = sizeof(sar_limits.wgds.group) + 1;
acpigen_write_package(package_size);
acpigen_write_dword(WGDS_DOMAIN_TYPE_WIFI);
for (i = 0; i < SAR_NUM_WGDS_GROUPS; i++) {
acpigen_write_byte(wgds->group[i].power_max_2400mhz);
acpigen_write_byte(wgds->group[i].power_chain_a_2400mhz);
acpigen_write_byte(wgds->group[i].power_chain_b_2400mhz);
acpigen_write_byte(wgds->group[i].power_max_5200mhz);
acpigen_write_byte(wgds->group[i].power_chain_a_5200mhz);
acpigen_write_byte(wgds->group[i].power_chain_b_5200mhz);
acpigen_write_dword(DOMAIN_TYPE_WIFI);
for (set_num = 0; set_num < wgds->chains_count; set_num++) {
set = wgds_fetch_set(wgds, set_num);
for (i = 0; i < wgds->bands_count; i++)
acpigen_write_byte(set[i]);
}
acpigen_pop_len();
acpigen_pop_len();
acpigen_write_package_end();
acpigen_write_package_end();
}
static void emit_sar_acpi_structures(const struct device *dev)
{
union wifi_sar_limits sar_limits;
/*
* If device type is PCI, ensure that the device has Intel vendor ID. CBFS SAR and SAR
* ACPI tables are currently used only by Intel WiFi devices.
*/
if (dev->path.type == DEVICE_PATH_PCI && dev->vendor != PCI_VENDOR_ID_INTEL)
return;
/* Retrieve the sar limits data */
if (get_wifi_sar_limits(&sar_limits) < 0) {
printk(BIOS_ERR, "ERROR: failed getting SAR limits!\n");
return;
}
sar_emit_wrds(sar_limits.sar);
sar_emit_ewrd(sar_limits.sar);
sar_emit_wgds(sar_limits.wgds);
free(sar_limits.sar);
}
static void wifi_ssdt_write_device(const struct device *dev, const char *path)
@ -197,7 +272,7 @@ static void wifi_ssdt_write_properties(const struct device *dev, const char *sco
* Name ("WRDD", Package () {
* WRDD_REVISION, // Revision
* Package () {
* WRDD_DOMAIN_TYPE_WIFI, // Domain Type, 7:WiFi
* DOMAIN_TYPE_WIFI, // Domain Type, 7:WiFi
* wifi_regulatory_domain() // Country Identifier
* }
* })
@ -206,7 +281,7 @@ static void wifi_ssdt_write_properties(const struct device *dev, const char *sco
acpigen_write_package(2);
acpigen_write_integer(WRDD_REVISION);
acpigen_write_package(2);
acpigen_write_dword(WRDD_DOMAIN_TYPE_WIFI);
acpigen_write_dword(DOMAIN_TYPE_WIFI);
acpigen_write_dword(wifi_regulatory_domain());
acpigen_pop_len();
acpigen_pop_len();

View File

@ -4,42 +4,54 @@
#include <stdint.h>
#define NUM_SAR_LIMITS 4
#define BYTES_PER_SAR_LIMIT 10
enum {
SAR_FCC,
SAR_EUROPE_JAPAN,
SAR_REST_OF_WORLD,
SAR_NUM_WGDS_GROUPS
};
#define MAX_DSAR_SET_COUNT 3
#define MAX_GEO_OFFSET_REVISION 3
#define MAX_PROFILE_COUNT 2
#define MAX_SAR_REVISION 2
#define REVISION_SIZE 1
#define SAR_REV0_CHAINS_COUNT 2
#define SAR_REV0_SUBBANDS_COUNT 5
#define SAR_FILE_REVISION 1
#define SAR_STR_PREFIX "$SAR"
#define SAR_STR_PREFIX_SIZE 4
struct wifi_sar_delta_table {
struct geo_profile {
uint8_t revision;
uint8_t chains_count;
uint8_t bands_count;
uint8_t wgds_table[0];
} __packed;
struct sar_profile {
uint8_t revision;
uint8_t dsar_set_count;
uint8_t chains_count;
uint8_t subbands_count;
uint8_t sar_table[0];
} __packed;
struct sar_header {
char marker[SAR_STR_PREFIX_SIZE];
uint8_t version;
struct {
uint8_t power_max_2400mhz;
uint8_t power_chain_a_2400mhz;
uint8_t power_chain_b_2400mhz;
uint8_t power_max_5200mhz;
uint8_t power_chain_a_5200mhz;
uint8_t power_chain_b_5200mhz;
} __packed group[SAR_NUM_WGDS_GROUPS];
uint16_t offsets[0];
} __packed;
/* Wifi SAR limit table structure */
struct wifi_sar_limits {
/* Total 4 SAR limit sets, each has 10 bytes */
uint8_t sar_limit[NUM_SAR_LIMITS][BYTES_PER_SAR_LIMIT];
struct wifi_sar_delta_table wgds;
} __packed;
union wifi_sar_limits {
struct {
struct sar_profile *sar;
struct geo_profile *wgds;
};
void *profile[MAX_PROFILE_COUNT];
};
/*
* Retrieve the SAR limits data from VPD and decode it.
* Retrieve the wifi ACPI configuration data from CBFS and decode it
* sar_limits: Pointer to wifi_sar_limits where the resulted data is stored
*
* Returns: 0 on success, -1 on errors (The VPD entry doesn't exist, or the
* VPD entry contains non-heximal value.)
* Returns: 0 on success, -1 on errors (The .hex file doesn't exist, or the decode failed)
*/
int get_wifi_sar_limits(struct wifi_sar_limits *sar_limits);
int get_wifi_sar_limits(union wifi_sar_limits *sar_limits);
#define WIFI_SAR_CBFS_DEFAULT_FILENAME "wifi_sar_defaults.hex"

View File

@ -9,79 +9,241 @@
#include <string.h>
#include <types.h>
#define LEGACY_BYTES_PER_GEO_OFFSET 6
#define LEGACY_BYTES_PER_SAR_LIMIT 10
#define LEGACY_NUM_SAR_LIMITS 4
#define LEGACY_SAR_BIN_SIZE 81
#define LEGACY_SAR_WGDS_BIN_SIZE 119
#define LEGACY_SAR_NUM_WGDS_GROUPS 3
static uint8_t *wifi_hextostr(const char *sar_str, size_t str_len, size_t *sar_bin_len,
bool legacy_hex_format)
{
uint8_t *sar_bin = NULL;
size_t bin_len;
if (!legacy_hex_format) {
sar_bin = malloc(str_len);
if (!sar_bin) {
printk(BIOS_ERR, "ERROR: Failed to allocate space for SAR binary!\n");
return NULL;
}
memcpy(sar_bin, sar_str, str_len);
*sar_bin_len = str_len;
} else {
bin_len = ((str_len - 1) / 2);
sar_bin = malloc(bin_len);
if (!sar_bin) {
printk(BIOS_ERR, "ERROR: Failed to allocate space for SAR binary!\n");
return NULL;
}
if (hexstrtobin(sar_str, (uint8_t *)sar_bin, bin_len) != bin_len) {
printk(BIOS_ERR, "ERROR: sar_limits contains non-hex value!\n");
free(sar_bin);
return NULL;
}
*sar_bin_len = bin_len;
}
return sar_bin;
}
static int sar_table_size(const struct sar_profile *sar)
{
if (sar == NULL)
return 0;
return (sizeof(struct sar_profile) + ((1 + sar->dsar_set_count) * sar->chains_count *
sar->subbands_count));
}
static int wgds_table_size(const struct geo_profile *geo)
{
if (geo == NULL)
return 0;
return sizeof(struct geo_profile) + (geo->chains_count * geo->bands_count);
}
static bool valid_legacy_length(size_t bin_len)
{
if (bin_len == LEGACY_SAR_WGDS_BIN_SIZE)
return true;
if (bin_len == LEGACY_SAR_BIN_SIZE && !CONFIG(GEO_SAR_ENABLE))
return true;
return false;
}
static int sar_header_size(void)
{
return (MAX_PROFILE_COUNT * sizeof(uint16_t)) + sizeof(struct sar_header);
}
static int fill_wifi_sar_limits(union wifi_sar_limits *sar_limits, const uint8_t *sar_bin,
size_t sar_bin_size)
{
struct sar_header *header;
size_t i = 0, expected_sar_bin_size;
size_t header_size = sar_header_size();
if (sar_bin_size < header_size) {
printk(BIOS_ERR, "ERROR: Invalid SAR format!\n");
return -1;
}
header = (struct sar_header *)sar_bin;
if (header->version != SAR_FILE_REVISION) {
printk(BIOS_ERR, "ERROR: Invalid SAR file version: %d!\n", header->version);
return -1;
}
for (i = 0; i < MAX_PROFILE_COUNT; i++) {
if (header->offsets[i] > sar_bin_size) {
printk(BIOS_ERR, "ERROR: Offset is outside the file size!\n");
return -1;
}
if (header->offsets[i])
sar_limits->profile[i] = (void *) (sar_bin + header->offsets[i]);
}
expected_sar_bin_size = header_size;
expected_sar_bin_size += sar_table_size(sar_limits->sar);
expected_sar_bin_size += wgds_table_size(sar_limits->wgds);
if (sar_bin_size != expected_sar_bin_size) {
printk(BIOS_ERR, "ERROR: Invalid SAR size, expected: %ld, obtained: %ld\n",
expected_sar_bin_size, sar_bin_size);
return -1;
}
return 0;
}
static int fill_wifi_sar_limits_legacy(union wifi_sar_limits *sar_limits,
const uint8_t *sar_bin, size_t sar_bin_size)
{
uint8_t *new_sar_bin;
size_t size = sar_bin_size + sizeof(struct sar_profile);
if (CONFIG(GEO_SAR_ENABLE))
size += sizeof(struct geo_profile);
new_sar_bin = malloc(size);
if (!new_sar_bin) {
printk(BIOS_ERR, "ERROR: Failed to allocate space for SAR binary!\n");
return -1;
}
sar_limits->sar = (struct sar_profile *) new_sar_bin;
sar_limits->sar->revision = 0;
sar_limits->sar->dsar_set_count = CONFIG_DSAR_SET_NUM;
sar_limits->sar->chains_count = SAR_REV0_CHAINS_COUNT;
sar_limits->sar->subbands_count = SAR_REV0_SUBBANDS_COUNT;
memcpy(&sar_limits->sar->sar_table, sar_bin,
LEGACY_BYTES_PER_SAR_LIMIT * LEGACY_NUM_SAR_LIMITS);
if (!CONFIG(GEO_SAR_ENABLE))
return 0;
sar_limits->wgds = (struct geo_profile *)(new_sar_bin +
sar_table_size(sar_limits->sar));
sar_limits->wgds->revision = 0;
sar_limits->wgds->chains_count = LEGACY_SAR_NUM_WGDS_GROUPS;
sar_limits->wgds->bands_count = LEGACY_BYTES_PER_GEO_OFFSET;
memcpy(&sar_limits->wgds->wgds_table,
sar_bin + LEGACY_BYTES_PER_SAR_LIMIT * LEGACY_NUM_SAR_LIMITS + REVISION_SIZE,
LEGACY_BYTES_PER_GEO_OFFSET * LEGACY_SAR_NUM_WGDS_GROUPS);
return 0;
}
/*
* Retrieve WiFi SAR limits data from CBFS and decode it
* WiFi SAR data is expected in the format: [<WRDD><EWRD>][WGDS]
* Legacy WiFi SAR data is expected in the format: [<WRDD><EWRD>][WGDS]
*
* [<WRDD><EWRD>] = NUM_SAR_LIMITS * BYTES_PER_SAR_LIMIT bytes.
* [WGDS]=[WGDS_VERSION][WGDS_DATA]
* [WGDS]=[WGDS_REVISION][WGDS_DATA]
*
* Current SAR configuration data is expected in the format:
* "$SAR" Marker
* Version
* Offset count
* Offsets
* [SAR_REVISION,DSAR_SET_COUNT,CHAINS_COUNT,SUBBANDS_COUNT <WRDD>[EWRD]]
* [WGDS_REVISION,CHAINS_COUNT,SUBBANDS_COUNT<WGDS_DATA>]
*
* The configuration data will always have the revision added in the file for each of the
* block, based on the revision number and validity, size of the specific block will be
* calculated.
*
* For [WGDS_VERSION] 0x00,
* [WGDS_DATA] = [GROUP#0][GROUP#1][GROUP#2]
*
* [GROUP#<i>] =
* [2.4Ghz Max Allowed][2.4Ghz Chain A Offset]
* [2.4Ghz Chain B Offset][5Ghz Max Allowed]
* [5Ghz Chain A Offset][5Ghz Chain B Offset]
* Supported by Revision 0, 1 and 2
* [2.4Ghz - Max Allowed][2.4Ghz - Chain A Offset][2.4Ghz - Chain B Offset]
* [5Ghz - Max Allowed][5Ghz - Chain A Offset][5Ghz - Chain B Offset]
* Supported by Revision 1 and 2
* [6Ghz - Max Allowed][6Ghz - Chain A Offset][6Ghz - Chain B Offset]
*
* [GROUP#0] is for FCC
* [GROUP#1] is for Europe/Japan
* [GROUP#2] is for ROW
*/
int get_wifi_sar_limits(struct wifi_sar_limits *sar_limits)
*/
int get_wifi_sar_limits(union wifi_sar_limits *sar_limits)
{
const char *filename;
size_t sar_str_len, sar_bin_len;
size_t sar_bin_len, sar_str_len;
uint8_t *sar_bin;
char *sar_str;
int ret = -1;
bool legacy_hex_format = false;
filename = get_wifi_sar_cbfs_filename();
if (filename == NULL) {
printk(BIOS_DEBUG, "Filename missing for CBFS SAR file!\n");
printk(BIOS_ERR, "ERROR: Filename missing for CBFS SAR file!\n");
return ret;
}
/*
* If GEO_SAR_ENABLE is not selected, SAR file does not contain
* delta table settings.
*/
if (CONFIG(GEO_SAR_ENABLE))
sar_bin_len = sizeof(struct wifi_sar_limits);
else
sar_bin_len = sizeof(struct wifi_sar_limits) -
sizeof(struct wifi_sar_delta_table);
/*
* Each hex digit is represented as a character in CBFS SAR file. Thus,
* the SAR file is double the size of its binary buffer equivalent.
* Hence, the buffer size allocated for SAR file is:
* `2 * sar_bin_len + 1`
* 1 additional byte is allocated to store the terminating '\0'.
*/
sar_str_len = 2 * sar_bin_len + 1;
sar_str = malloc(sar_str_len);
sar_str = cbfs_map(filename, &sar_str_len);
if (!sar_str) {
printk(BIOS_ERR, "Failed to allocate space for SAR string!\n");
printk(BIOS_ERR, "ERROR: Failed to get the %s file size!\n", filename);
return ret;
}
printk(BIOS_DEBUG, "Checking CBFS for default SAR values\n");
if (strncmp(sar_str, SAR_STR_PREFIX, SAR_STR_PREFIX_SIZE) == 0) {
legacy_hex_format = false;
} else if (valid_legacy_length(sar_str_len)) {
legacy_hex_format = true;
} else {
printk(BIOS_ERR, "ERROR: Invalid SAR format!\n");
goto error;
}
if (cbfs_load(filename, sar_str, sar_str_len) != sar_str_len) {
printk(BIOS_ERR, "%s has bad len in CBFS\n", filename);
goto done;
sar_bin = wifi_hextostr(sar_str, sar_str_len, &sar_bin_len, legacy_hex_format);
if (sar_bin == NULL) {
printk(BIOS_ERR, "ERROR: Failed to parse SAR file %s\n", filename);
goto error;
}
memset(sar_limits, 0, sizeof(*sar_limits));
if (hexstrtobin(sar_str, (uint8_t *)sar_limits, sar_bin_len) != sar_bin_len) {
printk(BIOS_ERR, "Error: wifi_sar contains non-hex value!\n");
goto done;
if (legacy_hex_format) {
ret = fill_wifi_sar_limits_legacy(sar_limits, sar_bin, sar_bin_len);
free(sar_bin);
} else {
ret = fill_wifi_sar_limits(sar_limits, sar_bin, sar_bin_len);
if (ret < 0)
free(sar_bin);
}
ret = 0;
done:
free(sar_str);
error:
cbfs_unmap(sar_str);
return ret;
}