To support x86 verstage one needs a working buffer for
vboot. That buffer resides in the cache-as-ram region
which persists across verstage and romstage. The current
assumption is that verstage brings cache-as-ram up
and romstage tears cache-as-ram down. The timestamp,
cbmem console, and the vboot work buffer are persistent
through in both romstage and verstage. The vboot
work buffer as well as the cbmem console are permanently
destroyed once cache-as-ram is torn down. The timestamp
region is migrated. When verstage is enabled the assumption
is that _start is the romstage entry point. It's currently
expected that the chipset provides the entry point to
romstage when verstage is employed. Also, the car_var_*()
APIs use direct access when in verstage since its expected
verstage does not tear down cache-as-ram. Lastly, supporting
files were added to verstage-y such that an x86 verstage
will build and link.
BUG=chrome-os-partner:44827
BRANCH=None
TEST=Built and booted glados using separate verstage.
Change-Id: I097aa0b92f3bb95275205a3fd8b21362c67b97aa
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/11822
Tested-by: build bot (Jenkins)
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
It never made sense to have bootblock_* in init, but
pirq_routing.c in boot, and some ld scripts on the main
level while others live in subdirectories.
This patch flattens the directory hierarchy and makes
x86 more similar to the other architectures.
Change-Id: I4056038fe7813e4d3d3042c441e7ab6076a36384
Signed-off-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Reviewed-on: http://review.coreboot.org/10901
Tested-by: build bot (Jenkins)
Tested-by: Raptor Engineering Automated Test Stand <noreply@raptorengineeringinc.com>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2015-07-13 21:04:56 +02:00
Renamed from src/arch/x86/init/bootblock_simple.c (Browse further)