/* * This file is part of the libpayload project. * * Copyright (C) 2013 secunet Security Networks AG * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ //#define XHCI_SPEW_DEBUG #include <arch/virtual.h> #include <usb/usb.h> #include "xhci_private.h" static u32 xhci_gen_route(xhci_t *const xhci, const int hubport, const int hubaddr) { if (!hubaddr) return 0; u32 route_string = SC_GET(ROUTE, xhci->dev[hubaddr].ctx.slot); int i; for (i = 0; i < 20; i += 4) { if (!(route_string & (0xf << i))) { route_string |= (hubport & 0xf) << i; break; } } return route_string; } static int xhci_get_rh_port(xhci_t *const xhci, const int hubport, const int hubaddr) { if (!hubaddr) return hubport; return SC_GET(RHPORT, xhci->dev[hubaddr].ctx.slot); } static int xhci_get_tt(xhci_t *const xhci, const usb_speed speed, const int hubport, const int hubaddr, int *const tt, int *const tt_port) { if (!hubaddr) return 0; const slotctx_t *const slot = xhci->dev[hubaddr].ctx.slot; if ((*tt = SC_GET(TTID, slot))) { *tt_port = SC_GET(TTPORT, slot); } else if (speed < HIGH_SPEED && SC_GET(SPEED1, slot) - 1 == HIGH_SPEED) { *tt = hubaddr; *tt_port = hubport; } return *tt != 0; } static inputctx_t * xhci_make_inputctx(const size_t ctxsize) { int i; const size_t size = (1 + NUM_EPS) * ctxsize; inputctx_t *const ic = malloc(sizeof(*ic)); void *dma_buffer = dma_memalign(64, size); if (!ic || !dma_buffer) { free(ic); free(dma_buffer); return NULL; } memset(dma_buffer, 0, size); ic->drop = dma_buffer + 0; ic->add = dma_buffer + 4; dma_buffer += ctxsize; for (i = 0; i < NUM_EPS; i++, dma_buffer += ctxsize) ic->dev.ep[i] = dma_buffer; return ic; } usbdev_t * xhci_set_address (hci_t *controller, usb_speed speed, int hubport, int hubaddr) { xhci_t *const xhci = XHCI_INST(controller); const size_t ctxsize = CTXSIZE(xhci); devinfo_t *di = NULL; usbdev_t *dev = NULL; int i; inputctx_t *const ic = xhci_make_inputctx(ctxsize); transfer_ring_t *const tr = malloc(sizeof(*tr)); if (tr) tr->ring = xhci_align(16, TRANSFER_RING_SIZE * sizeof(trb_t)); if (!ic || !tr || !tr->ring) { xhci_debug("Out of memory\n"); goto _free_return; } int slot_id; int cc = xhci_cmd_enable_slot(xhci, &slot_id); if (cc != CC_SUCCESS) { xhci_debug("Enable slot failed: %d\n", cc); goto _free_return; } else { xhci_debug("Enabled slot %d\n", slot_id); } di = &xhci->dev[slot_id]; void *dma_buffer = dma_memalign(64, NUM_EPS * ctxsize); if (!dma_buffer) goto _disable_return; memset(dma_buffer, 0, NUM_EPS * ctxsize); for (i = 0; i < NUM_EPS; i++, dma_buffer += ctxsize) di->ctx.ep[i] = dma_buffer; *ic->add = (1 << 0) /* Slot Context */ | (1 << 1) /* EP0 Context */ ; SC_SET(ROUTE, ic->dev.slot, xhci_gen_route(xhci, hubport, hubaddr)); SC_SET(SPEED1, ic->dev.slot, speed + 1); SC_SET(CTXENT, ic->dev.slot, 1); /* the endpoint 0 context */ SC_SET(RHPORT, ic->dev.slot, xhci_get_rh_port(xhci, hubport, hubaddr)); int tt, tt_port; if (xhci_get_tt(xhci, speed, hubport, hubaddr, &tt, &tt_port)) { xhci_debug("TT for %d: %d[%d]\n", slot_id, tt, tt_port); SC_SET(MTT, ic->dev.slot, SC_GET(MTT, xhci->dev[tt].ctx.slot)); SC_SET(TTID, ic->dev.slot, tt); SC_SET(TTPORT, ic->dev.slot, tt_port); } di->transfer_rings[1] = tr; xhci_init_cycle_ring(tr, TRANSFER_RING_SIZE); ic->dev.ep0->tr_dq_low = virt_to_phys(tr->ring); ic->dev.ep0->tr_dq_high = 0; EC_SET(TYPE, ic->dev.ep0, EP_CONTROL); EC_SET(AVRTRB, ic->dev.ep0, 8); EC_SET(MPS, ic->dev.ep0, 8); EC_SET(CERR, ic->dev.ep0, 3); EC_SET(DCS, ic->dev.ep0, 1); xhci->dcbaa[slot_id] = virt_to_phys(di->ctx.raw); cc = xhci_cmd_address_device(xhci, slot_id, ic); if (cc != CC_SUCCESS) { xhci_debug("Address device failed: %d\n", cc); goto _disable_return; } else { xhci_debug("Addressed device %d (USB: %d)\n", slot_id, SC_GET(UADDR, di->ctx.slot)); } mdelay(SET_ADDRESS_MDELAY); dev = init_device_entry(controller, slot_id); if (!dev) goto _disable_return; dev->address = slot_id; dev->hub = hubaddr; dev->port = hubport; dev->speed = speed; dev->endpoints[0].dev = dev; dev->endpoints[0].endpoint = 0; dev->endpoints[0].toggle = 0; dev->endpoints[0].direction = SETUP; dev->endpoints[0].type = CONTROL; u8 buf[8]; if (get_descriptor(dev, gen_bmRequestType(device_to_host, standard_type, dev_recp), DT_DEV, 0, buf, sizeof(buf)) != sizeof(buf)) { usb_debug("first get_descriptor(DT_DEV) failed\n"); goto _disable_return; } dev->endpoints[0].maxpacketsize = usb_decode_mps0(speed, buf[7]); if (dev->endpoints[0].maxpacketsize != 8) { memset((void *)ic->dev.ep0, 0x00, ctxsize); *ic->add = (1 << 1); /* EP0 Context */ EC_SET(MPS, ic->dev.ep0, dev->endpoints[0].maxpacketsize); cc = xhci_cmd_evaluate_context(xhci, slot_id, ic); if (cc != CC_SUCCESS) { xhci_debug("Context evaluation failed: %d\n", cc); goto _disable_return; } } goto _free_ic_return; _disable_return: xhci_cmd_disable_slot(xhci, slot_id); xhci->dcbaa[slot_id] = 0; usb_detach_device(controller, slot_id); dev = NULL; _free_return: if (tr) free((void *)tr->ring); free(tr); if (di) free(di->ctx.raw); _free_ic_return: if (ic) free(ic->raw); free(ic); return dev; } static int xhci_finish_hub_config(usbdev_t *const dev, inputctx_t *const ic) { hub_descriptor_t desc; if (get_descriptor(dev, gen_bmRequestType(device_to_host, class_type, dev_recp), 0x29, 0, &desc, sizeof(desc)) != sizeof(desc)) { xhci_debug("Failed to fetch hub descriptor\n"); return COMMUNICATION_ERROR; } SC_SET(HUB, ic->dev.slot, 1); SC_SET(MTT, ic->dev.slot, 0); /* No support for Multi-TT */ SC_SET(NPORTS, ic->dev.slot, desc.bNbrPorts); if (dev->speed == HIGH_SPEED) SC_SET(TTT, ic->dev.slot, (desc.wHubCharacteristics >> 5) & 0x0003); return 0; } static size_t xhci_bound_interval(const endpoint_t *const ep) { if ( (ep->dev->speed == LOW_SPEED && (ep->type == ISOCHRONOUS || ep->type == INTERRUPT)) || (ep->dev->speed == FULL_SPEED && ep->type == INTERRUPT)) { if (ep->interval < 3) return 3; else if (ep->interval > 11) return 11; else return ep->interval; } else { if (ep->interval < 0) return 0; else if (ep->interval > 15) return 15; else return ep->interval; } } static int xhci_finish_ep_config(const endpoint_t *const ep, inputctx_t *const ic) { xhci_t *const xhci = XHCI_INST(ep->dev->controller); const int ep_id = xhci_ep_id(ep); xhci_debug("ep_id: %d\n", ep_id); if (ep_id <= 1 || 32 <= ep_id) return DRIVER_ERROR; transfer_ring_t *const tr = malloc(sizeof(*tr)); if (tr) tr->ring = xhci_align(16, TRANSFER_RING_SIZE * sizeof(trb_t)); if (!tr || !tr->ring) { free(tr); xhci_debug("Out of memory\n"); return OUT_OF_MEMORY; } xhci->dev[ep->dev->address].transfer_rings[ep_id] = tr; xhci_init_cycle_ring(tr, TRANSFER_RING_SIZE); *ic->add |= (1 << ep_id); if (SC_GET(CTXENT, ic->dev.slot) < ep_id) SC_SET(CTXENT, ic->dev.slot, ep_id); epctx_t *const epctx = ic->dev.ep[ep_id]; xhci_debug("Filling epctx (@%p)\n", epctx); epctx->tr_dq_low = virt_to_phys(tr->ring); epctx->tr_dq_high = 0; EC_SET(INTVAL, epctx, xhci_bound_interval(ep)); EC_SET(CERR, epctx, 3); EC_SET(TYPE, epctx, ep->type | ((ep->direction != OUT) << 2)); EC_SET(MPS, epctx, ep->maxpacketsize); EC_SET(DCS, epctx, 1); size_t avrtrb; switch (ep->type) { case BULK: case ISOCHRONOUS: avrtrb = 3 * 1024; break; case INTERRUPT: avrtrb = 1024; break; default: avrtrb = 8; break; } EC_SET(AVRTRB, epctx, avrtrb); EC_SET(MXESIT, epctx, EC_GET(MPS, epctx) * EC_GET(MBS, epctx)); if (IS_ENABLED(CONFIG_LP_USB_XHCI_MTK_QUIRK)) { /* The MTK xHCI defines some extra SW parameters which are * put into reserved DWs in Slot and Endpoint Contexts for * synchronous endpoints. But for non-isochronous transfers, * it is enough to set the following two fields to 1, and others * are set to 0. */ EC_SET(BPKTS, epctx, 1); EC_SET(BBM, epctx, 1); } return 0; } int xhci_finish_device_config(usbdev_t *const dev) { xhci_t *const xhci = XHCI_INST(dev->controller); devinfo_t *const di = &xhci->dev[dev->address]; int i, ret = 0; inputctx_t *const ic = xhci_make_inputctx(CTXSIZE(xhci)); if (!ic) { xhci_debug("Out of memory\n"); return OUT_OF_MEMORY; } *ic->add = (1 << 0); /* Slot Context */ xhci_dump_slotctx(di->ctx.slot); ic->dev.slot->f1 = di->ctx.slot->f1; ic->dev.slot->f2 = di->ctx.slot->f2; ic->dev.slot->f3 = di->ctx.slot->f3; if (dev->descriptor->bDeviceClass == 0x09 && dev->speed < SUPER_SPEED) { ret = xhci_finish_hub_config(dev, ic); if (ret) goto _free_return; } for (i = 1; i < dev->num_endp; ++i) { ret = xhci_finish_ep_config(&dev->endpoints[i], ic); if (ret) goto _free_ep_ctx_return; } xhci_dump_inputctx(ic); const int config_id = dev->configuration->bConfigurationValue; xhci_debug("config_id: %d\n", config_id); const int cc = xhci_cmd_configure_endpoint(xhci, dev->address, config_id, ic); if (cc != CC_SUCCESS) { xhci_debug("Configure endpoint failed: %d\n", cc); ret = CONTROLLER_ERROR; goto _free_ep_ctx_return; } else { xhci_debug("Endpoints configured\n"); } goto _free_return; _free_ep_ctx_return: for (i = 2; i < 31; ++i) { if (di->transfer_rings[i]) free((void *)di->transfer_rings[i]->ring); free(di->transfer_rings[i]); di->transfer_rings[i] = NULL; } _free_return: free(ic->raw); free(ic); return ret; } void xhci_destroy_dev(hci_t *const controller, const int slot_id) { xhci_t *const xhci = XHCI_INST(controller); if (slot_id <= 0 || slot_id > xhci->max_slots_en) return; int i; const int cc = xhci_cmd_disable_slot(xhci, slot_id); if (cc != CC_SUCCESS) xhci_debug("Failed to disable slot %d: %d\n", slot_id, cc); devinfo_t *const di = &xhci->dev[slot_id]; for (i = 1; i < 31; ++i) { if (di->transfer_rings[i]) free((void *)di->transfer_rings[i]->ring); free(di->transfer_rings[i]); free(di->interrupt_queues[i]); } xhci->dcbaa[slot_id] = 0; }