/* * This file is part of the coreboot project. * * Copyright 2015 Google, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc. */ #include #include #include #include #include #include /* For more details on implementation and usage please see the imd.h header. */ static const uint32_t IMD_ROOT_PTR_MAGIC = 0xc0389481; static const uint32_t IMD_ENTRY_MAGIC = ~0xc0389481; static const size_t LIMIT_ALIGN = 4096; /* In-memory data structures. */ struct imd_root_pointer { uint32_t magic; /* Relative to upper limit/offset. */ int32_t root_offset; } __attribute__((packed)); struct imd_entry { uint32_t magic; /* start is located relative to imd_root */ int32_t start_offset; uint32_t size; uint32_t id; } __attribute__((packed)); struct imd_root { uint32_t max_entries; uint32_t num_entries; uint32_t flags; uint32_t entry_align; /* Used for fixing the size of an imd. Relative to the root. */ int32_t max_offset; struct imd_entry entries[0]; } __attribute__((packed)); #define IMD_FLAG_LOCKED 1 static void *relative_pointer(void *base, ssize_t offset) { intptr_t b = (intptr_t)base; b += offset; return (void *)b; } static bool imd_root_pointer_valid(const struct imd_root_pointer *rp) { return !!(rp->magic == IMD_ROOT_PTR_MAGIC); } static struct imd_root *imd_root(const struct imd *imd) { return imd->r; } /* * The root pointer is relative to the upper limit of the imd. i.e. It sits * just below the upper limit. */ static struct imd_root_pointer *imd_get_root_pointer(const struct imd *imd) { struct imd_root_pointer *rp; rp = relative_pointer((void *)imd->limit, -sizeof(*rp)); return rp; } static void imd_link_root(struct imd_root_pointer *rp, struct imd_root *r) { rp->magic = IMD_ROOT_PTR_MAGIC; rp->root_offset = (int32_t)((intptr_t)r - (intptr_t)rp); } static void imd_entry_assign(struct imd_entry *e, uint32_t id, ssize_t offset, size_t size) { e->magic = IMD_ENTRY_MAGIC; e->start_offset = offset; e->size = size; e->id = id; } static bool root_is_locked(const struct imd_root *r) { return !!(r->flags & IMD_FLAG_LOCKED); } static struct imd_entry *root_last_entry(struct imd_root *r) { return &r->entries[r->num_entries - 1]; } /* Initialize imd handle. */ void imd_handle_init(struct imd *imd, void *upper_limit) { uintptr_t limit = (uintptr_t)upper_limit; /* Upper limit is aligned down to 4KiB */ imd->limit = ALIGN_DOWN(limit, LIMIT_ALIGN); imd->r = NULL; } void imd_handle_init_partial_recovery(struct imd *imd) { struct imd_root_pointer *rp; imd_handle_init(imd, (void *)imd->limit); rp = imd_get_root_pointer(imd); imd->r = relative_pointer(rp, rp->root_offset); } int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align) { struct imd_root_pointer *rp; struct imd_root *r; struct imd_entry *e; ssize_t root_offset; size_t entries_size; if (!imd->limit) return -1; /* root_size and entry_align should be a power of 2. */ assert(IS_POWER_OF_2(root_size)); assert(IS_POWER_OF_2(entry_align)); /* * root_size needs to be large enough to accomodate root pointer and * root book keeping structure. The caller needs to ensure there's * enough room for tracking individual allocations. */ if (root_size < (sizeof(*rp) + sizeof(*r))) return -1; /* For simplicity don't allow sizes or alignments to exceed LIMIT_ALIGN. */ if (root_size > LIMIT_ALIGN || entry_align > LIMIT_ALIGN) return -1; /* Additionally, don't handle an entry alignment > root_size. */ if (entry_align > root_size) return -1; rp = imd_get_root_pointer(imd); root_offset = -(ssize_t)root_size; /* Set root pointer. */ imd->r = relative_pointer((void *)imd->limit, root_offset); r = imd_root(imd); imd_link_root(rp, r); memset(r, 0, sizeof(*r)); r->entry_align = entry_align; /* Calculate size left for entries. */ entries_size = root_size; entries_size -= sizeof(*rp); entries_size -= sizeof(*r); r->max_entries = entries_size / sizeof(r->entries[0]); /* Fill in first entry covering the root region. */ r->num_entries = 1; e = &r->entries[0]; imd_entry_assign(e, CBMEM_ID_IMD_ROOT, 0, root_size); printk(BIOS_DEBUG, "IMD: root @ %p %u entries.\n", r, r->max_entries); return 0; } int imd_limit_size(struct imd *imd, size_t max_size) { struct imd_root *r; ssize_t smax_size; size_t root_size; r = imd_root(imd); if (r == NULL) return -1; root_size = imd->limit - (uintptr_t)r; if (max_size < root_size) return -1; /* Take into account the root size. */ smax_size = max_size - root_size; smax_size = -smax_size; r->max_offset = smax_size; return 0; } int imd_recover(struct imd *imd) { struct imd_root_pointer *rp; struct imd_root *r; uintptr_t low_limit; size_t i; if (!imd->limit); return -1; rp = imd_get_root_pointer(imd); if (!imd_root_pointer_valid(rp)) return -1; r = relative_pointer(rp, rp->root_offset); /* Confirm the root and root pointer are just under the limit. */ if (ALIGN_UP((uintptr_t)&r->entries[r->max_entries], LIMIT_ALIGN) != imd->limit) return -1; if (r->num_entries > r->max_entries) return -1; /* Entry alignment should be power of 2. */ if (!IS_POWER_OF_2(r->entry_align)) return -1; low_limit = (uintptr_t)relative_pointer(r, r->max_offset); /* If no max_offset then lowest limit is 0. */ if (low_limit == (uintptr_t)r) low_limit = 0; for (i = 0; i < r->num_entries; i++) { uintptr_t start_addr; const struct imd_entry *e = &r->entries[i]; if (e->magic != IMD_ENTRY_MAGIC) return -1; start_addr = (uintptr_t)relative_pointer(r, e->start_offset); if (start_addr < low_limit) return -1; if (start_addr >= imd->limit || (start_addr + e->size) > imd->limit) return -1; } /* Set root pointer. */ imd->r = r; return 0; } int imd_lockdown(struct imd *imd) { struct imd_root *r; r = imd_root(imd); if (r == NULL) return -1; r->flags |= IMD_FLAG_LOCKED; return 0; } int imd_region_used(struct imd *imd, void **base, size_t *size) { struct imd_root *r; struct imd_entry *e; void *low_addr; size_t sz_used; if (!imd->limit) return -1; r = imd_root(imd); if (r == NULL) return -1; /* Use last entry to obtain lowest address. */ e = root_last_entry(r); low_addr = relative_pointer(r, e->start_offset); /* Total size used is the last entry's base up to the limit. */ sz_used = imd->limit - (uintptr_t)low_addr; *base = low_addr; *size = sz_used; return 0; } static struct imd_entry *imd_entry_add_to_root(struct imd_root *r, uint32_t id, size_t size) { struct imd_entry *entry; struct imd_entry *last_entry; ssize_t e_offset; size_t used_size; if (r->num_entries == r->max_entries) return NULL; /* Determine total size taken up by entry. */ used_size = ALIGN_UP(size, r->entry_align); last_entry = root_last_entry(r); /* See if size overflows imd total size. */ if (r->max_offset != 0) { size_t remaining = last_entry->start_offset - r->max_offset; if (used_size > remaining) return NULL; } /* * Determine if offset field overflows. All offsets should be lower * than the previous one. */ e_offset = last_entry->start_offset; e_offset -= (ssize_t)used_size; if (e_offset > last_entry->start_offset) return NULL; entry = root_last_entry(r) + 1; r->num_entries++; imd_entry_assign(entry, id, e_offset, size); return entry; } const struct imd_entry *imd_entry_add(const struct imd *imd, uint32_t id, size_t size) { struct imd_root *r; r = imd_root(imd); if (r == NULL) return NULL; if (root_is_locked(r)) return NULL; return imd_entry_add_to_root(r, id, size); } const struct imd_entry *imd_entry_find(const struct imd *imd, uint32_t id) { struct imd_root *r; struct imd_entry *e; size_t i; r = imd_root(imd); if (r == NULL) return NULL; e = NULL; /* Skip first entry covering the root. */ for (i = 1; i < r->num_entries; i++) { if (id == r->entries[i].id) { e = &r->entries[i]; break; } } return e; } const struct imd_entry *imd_entry_find_or_add(const struct imd *imd, uint32_t id, size_t size) { const struct imd_entry *e; e = imd_entry_find(imd, id); if (e != NULL) return e; return imd_entry_add(imd, id, size); } size_t imd_entry_size(const struct imd *imd, const struct imd_entry *entry) { return entry->size; } void *imd_entry_at(const struct imd *imd, const struct imd_entry *entry) { struct imd_root *r; r = imd_root(imd); if (r == NULL) return NULL; return relative_pointer(r, entry->start_offset); } int imd_entry_remove(const struct imd *imd, const struct imd_entry *entry) { struct imd_root *r; r = imd_root(imd); if (r == NULL) return -1; if (root_is_locked(r)) return -1; if (entry != root_last_entry(r)) return -1; r->num_entries--; return 0; } int imd_print_entries(const struct imd *imd, const struct imd_lookup *lookup, size_t size) { struct imd_root *r; size_t i; size_t j; if (imd == NULL) return -1; r = imd_root(imd); if (r == NULL) return -1; for (i = 0; i < r->num_entries; i++) { const char *name = NULL; const struct imd_entry *e = &r->entries[i]; for (j = 0; j < size; j++) { if (lookup[j].id == e->id) { name = lookup[j].name; break; } } if (name == NULL) printk(BIOS_DEBUG, "%08x ", e->id); else printk(BIOS_DEBUG, "%s", name); printk(BIOS_DEBUG, "%2zu. ", i); printk(BIOS_DEBUG, "%p ", imd_entry_at(imd, e)); printk(BIOS_DEBUG, "%08zx\n", imd_entry_size(imd, e)); } return 0; }