/* * CBFS Image Manipulation * * Copyright (C) 2013 The Chromium OS Authors. All rights reserved. * Copyright (C) 2016 Siemens AG. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <inttypes.h> #include <libgen.h> #include <stddef.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <strings.h> #include <commonlib/endian.h> #include "common.h" #include "cbfs_image.h" #include "elfparsing.h" #include "rmodule.h" /* Even though the file-adding functions---cbfs_add_entry() and * cbfs_add_entry_at()---perform their sizing checks against the beginning of * the subsequent section rather than a stable recorded value such as an empty * file header's len field, it's possible to prove two interesting properties * about their behavior: * - Placing a new file within an empty entry located below an existing file * entry will never leave an aligned flash address containing neither the * beginning of a file header nor part of a file. * - Placing a new file in an empty entry at the very end of the image such * that it fits, but leaves no room for a final header, is guaranteed not to * change the total amount of space for entries, even if that new file is * later removed from the CBFS. * These properties are somewhat nonobvious from the implementation, so the * reader is encouraged to blame this comment and examine the full proofs * in the commit message before making significant changes that would risk * removing said guarantees. */ /* The file name align is not defined in CBFS spec -- only a preference by * (old) cbfstool. */ #define CBFS_FILENAME_ALIGN (16) static const char *lookup_name_by_type(const struct typedesc_t *desc, uint32_t type, const char *default_value) { int i; for (i = 0; desc[i].name; i++) if (desc[i].type == type) return desc[i].name; return default_value; } static int lookup_type_by_name(const struct typedesc_t *desc, const char *name) { int i; for (i = 0; desc[i].name && strcasecmp(name, desc[i].name); ++i); return desc[i].name ? (int)desc[i].type : -1; } static const char *get_cbfs_entry_type_name(uint32_t type) { return lookup_name_by_type(filetypes, type, "(unknown)"); } int cbfs_parse_comp_algo(const char *name) { return lookup_type_by_name(types_cbfs_compression, name); } static const char *get_hash_attr_name(uint16_t hash_type) { return lookup_name_by_type(types_cbfs_hash, hash_type, "(invalid)"); } int cbfs_parse_hash_algo(const char *name) { return lookup_type_by_name(types_cbfs_hash, name); } /* CBFS image */ size_t cbfs_calculate_file_header_size(const char *name) { return (sizeof(struct cbfs_file) + align_up(strlen(name) + 1, CBFS_FILENAME_ALIGN)); } /* Only call on legacy CBFSes possessing a master header. */ static int cbfs_fix_legacy_size(struct cbfs_image *image, char *hdr_loc) { assert(image); assert(cbfs_is_legacy_cbfs(image)); // A bug in old cbfstool may produce extra few bytes (by alignment) and // cause cbfstool to overwrite things after free space -- which is // usually CBFS header on x86. We need to workaround that. // Except when we run across a file that contains the actual header, // in which case this image is a safe, new-style // `cbfstool add-master-header` based image. struct cbfs_file *entry, *first = NULL, *last = NULL; for (first = entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { /* Is the header guarded by a CBFS file entry? Then exit */ if (((char *)entry) + ntohl(entry->offset) == hdr_loc) { return 0; } last = entry; } if ((char *)first < (char *)hdr_loc && (char *)entry > (char *)hdr_loc) { WARN("CBFS image was created with old cbfstool with size bug. " "Fixing size in last entry...\n"); last->len = htonl(ntohl(last->len) - image->header.align); DEBUG("Last entry has been changed from 0x%x to 0x%x.\n", cbfs_get_entry_addr(image, entry), cbfs_get_entry_addr(image, cbfs_find_next_entry(image, last))); } return 0; } void cbfs_put_header(void *dest, const struct cbfs_header *header) { struct buffer outheader; outheader.data = dest; outheader.size = 0; xdr_be.put32(&outheader, header->magic); xdr_be.put32(&outheader, header->version); xdr_be.put32(&outheader, header->romsize); xdr_be.put32(&outheader, header->bootblocksize); xdr_be.put32(&outheader, header->align); xdr_be.put32(&outheader, header->offset); xdr_be.put32(&outheader, header->architecture); } static void cbfs_decode_payload_segment(struct cbfs_payload_segment *output, struct cbfs_payload_segment *input) { struct buffer seg = { .data = (void *)input, .size = sizeof(*input), }; output->type = xdr_be.get32(&seg); output->compression = xdr_be.get32(&seg); output->offset = xdr_be.get32(&seg); output->load_addr = xdr_be.get64(&seg); output->len = xdr_be.get32(&seg); output->mem_len = xdr_be.get32(&seg); assert(seg.size == 0); } static int cbfs_file_get_compression_info(struct cbfs_file *entry, uint32_t *decompressed_size) { unsigned int compression = CBFS_COMPRESS_NONE; if (decompressed_size) *decompressed_size = ntohl(entry->len); for (struct cbfs_file_attribute *attr = cbfs_file_first_attr(entry); attr != NULL; attr = cbfs_file_next_attr(entry, attr)) { if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_COMPRESSION) { struct cbfs_file_attr_compression *ac = (struct cbfs_file_attr_compression *)attr; compression = ntohl(ac->compression); if (decompressed_size) *decompressed_size = ntohl(ac->decompressed_size); } } return compression; } static struct cbfs_file_attr_hash *cbfs_file_get_next_hash( struct cbfs_file *entry, struct cbfs_file_attr_hash *cur) { struct cbfs_file_attribute *attr = (struct cbfs_file_attribute *)cur; if (attr == NULL) { attr = cbfs_file_first_attr(entry); if (attr == NULL) return NULL; if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_HASH) return (struct cbfs_file_attr_hash *)attr; } while ((attr = cbfs_file_next_attr(entry, attr)) != NULL) { if (ntohl(attr->tag) == CBFS_FILE_ATTR_TAG_HASH) return (struct cbfs_file_attr_hash *)attr; }; return NULL; } void cbfs_get_header(struct cbfs_header *header, void *src) { struct buffer outheader; outheader.data = src; /* We're not modifying the data */ outheader.size = 0; header->magic = xdr_be.get32(&outheader); header->version = xdr_be.get32(&outheader); header->romsize = xdr_be.get32(&outheader); header->bootblocksize = xdr_be.get32(&outheader); header->align = xdr_be.get32(&outheader); header->offset = xdr_be.get32(&outheader); header->architecture = xdr_be.get32(&outheader); } int cbfs_image_create(struct cbfs_image *image, size_t entries_size) { assert(image); assert(image->buffer.data); size_t empty_header_len = cbfs_calculate_file_header_size(""); uint32_t entries_offset = 0; uint32_t align = CBFS_ENTRY_ALIGNMENT; if (image->has_header) { entries_offset = image->header.offset; if (entries_offset > image->buffer.size) { ERROR("CBFS file entries are located outside CBFS itself\n"); return -1; } align = image->header.align; } // This attribute must be given in order to prove that this module // correctly preserves certain CBFS properties. See the block comment // near the top of this file (and the associated commit message). if (align < empty_header_len) { ERROR("CBFS must be aligned to at least %zu bytes\n", empty_header_len); return -1; } if (entries_size > image->buffer.size - entries_offset) { ERROR("CBFS doesn't have enough space to fit its file entries\n"); return -1; } if (empty_header_len > entries_size) { ERROR("CBFS is too small to fit any header\n"); return -1; } struct cbfs_file *entry_header = (struct cbfs_file *)(image->buffer.data + entries_offset); // This alignment is necessary in order to prove that this module // correctly preserves certain CBFS properties. See the block comment // near the top of this file (and the associated commit message). entries_size -= entries_size % align; size_t capacity = entries_size - empty_header_len; LOG("Created CBFS (capacity = %zu bytes)\n", capacity); return cbfs_create_empty_entry(entry_header, CBFS_COMPONENT_NULL, capacity, ""); } int cbfs_legacy_image_create(struct cbfs_image *image, uint32_t architecture, uint32_t align, struct buffer *bootblock, uint32_t bootblock_offset, uint32_t header_offset, uint32_t entries_offset) { assert(image); assert(image->buffer.data); assert(bootblock); int32_t *rel_offset; uint32_t cbfs_len; void *header_loc; size_t size = image->buffer.size; DEBUG("cbfs_image_create: bootblock=0x%x+0x%zx, " "header=0x%x+0x%zx, entries_offset=0x%x\n", bootblock_offset, bootblock->size, header_offset, sizeof(image->header), entries_offset); // Adjust legacy top-aligned address to ROM offset. if (IS_TOP_ALIGNED_ADDRESS(entries_offset)) entries_offset = size + (int32_t)entries_offset; if (IS_TOP_ALIGNED_ADDRESS(bootblock_offset)) bootblock_offset = size + (int32_t)bootblock_offset; if (IS_TOP_ALIGNED_ADDRESS(header_offset)) header_offset = size + (int32_t)header_offset; DEBUG("cbfs_create_image: (real offset) bootblock=0x%x, " "header=0x%x, entries_offset=0x%x\n", bootblock_offset, header_offset, entries_offset); // Prepare bootblock if (bootblock_offset + bootblock->size > size) { ERROR("Bootblock (0x%x+0x%zx) exceed ROM size (0x%zx)\n", bootblock_offset, bootblock->size, size); return -1; } if (entries_offset > bootblock_offset && entries_offset < bootblock->size) { ERROR("Bootblock (0x%x+0x%zx) overlap CBFS data (0x%x)\n", bootblock_offset, bootblock->size, entries_offset); return -1; } memcpy(image->buffer.data + bootblock_offset, bootblock->data, bootblock->size); // Prepare header if (header_offset + sizeof(image->header) > size - sizeof(int32_t)) { ERROR("Header (0x%x+0x%zx) exceed ROM size (0x%zx)\n", header_offset, sizeof(image->header), size); return -1; } image->header.magic = CBFS_HEADER_MAGIC; image->header.version = CBFS_HEADER_VERSION; image->header.romsize = size; image->header.bootblocksize = bootblock->size; image->header.align = align; image->header.offset = entries_offset; image->header.architecture = architecture; header_loc = (image->buffer.data + header_offset); cbfs_put_header(header_loc, &image->header); image->has_header = true; // The last 4 byte of the image contain the relative offset from the end // of the image to the master header as a 32-bit signed integer. x86 // relies on this also being its (memory-mapped, top-aligned) absolute // 32-bit address by virtue of how two's complement numbers work. assert(size % sizeof(int32_t) == 0); rel_offset = (int32_t *)(image->buffer.data + size - sizeof(int32_t)); *rel_offset = header_offset - size; // Prepare entries if (align_up(entries_offset, align) != entries_offset) { ERROR("Offset (0x%x) must be aligned to 0x%x.\n", entries_offset, align); return -1; } // To calculate available length, find // e = min(bootblock, header, rel_offset) where e > entries_offset. cbfs_len = size - sizeof(int32_t); if (bootblock_offset > entries_offset && bootblock_offset < cbfs_len) cbfs_len = bootblock_offset; if (header_offset > entries_offset && header_offset < cbfs_len) cbfs_len = header_offset; if (cbfs_image_create(image, cbfs_len - entries_offset)) return -1; return 0; } int cbfs_image_from_buffer(struct cbfs_image *out, struct buffer *in, uint32_t offset) { assert(out); assert(in); assert(in->data); buffer_clone(&out->buffer, in); out->has_header = false; if (cbfs_is_valid_cbfs(out)) { return 0; } void *header_loc = cbfs_find_header(in->data, in->size, offset); if (header_loc) { cbfs_get_header(&out->header, header_loc); out->has_header = true; cbfs_fix_legacy_size(out, header_loc); return 0; } else if (offset != ~0u) { ERROR("The -H switch is only valid on legacy images having CBFS master headers.\n"); return 1; } ERROR("Selected image region is not a valid CBFS.\n"); return 1; } int cbfs_copy_instance(struct cbfs_image *image, struct buffer *dst) { assert(image); struct cbfs_file *src_entry, *dst_entry; size_t align; ssize_t last_entry_size; size_t copy_end = buffer_size(dst); align = CBFS_ENTRY_ALIGNMENT; dst_entry = (struct cbfs_file *)buffer_get(dst); /* Copy non-empty files */ for (src_entry = cbfs_find_first_entry(image); src_entry && cbfs_is_valid_entry(image, src_entry); src_entry = cbfs_find_next_entry(image, src_entry)) { size_t entry_size; if ((src_entry->type == htonl(CBFS_COMPONENT_NULL)) || (src_entry->type == htonl(CBFS_COMPONENT_CBFSHEADER)) || (src_entry->type == htonl(CBFS_COMPONENT_DELETED))) continue; entry_size = htonl(src_entry->len) + htonl(src_entry->offset); memcpy(dst_entry, src_entry, entry_size); dst_entry = (struct cbfs_file *)( (uintptr_t)dst_entry + align_up(entry_size, align)); if ((size_t)((void *)dst_entry - buffer_get(dst)) >= copy_end) { ERROR("Ran out of room in copy region.\n"); return 1; } } /* Last entry size is all the room above it, except for top 4 bytes * which may be used by the master header pointer. This messes with * the ability to stash something "top-aligned" into the region, but * keeps things simpler. */ last_entry_size = copy_end - ((void *)dst_entry - buffer_get(dst)) - cbfs_calculate_file_header_size("") - sizeof(int32_t); if (last_entry_size < 0) WARN("No room to create the last entry!\n") else cbfs_create_empty_entry(dst_entry, CBFS_COMPONENT_NULL, last_entry_size, ""); return 0; } int cbfs_expand_to_region(struct buffer *region) { if (buffer_get(region) == NULL) return 1; struct cbfs_image image; memset(&image, 0, sizeof(image)); if (cbfs_image_from_buffer(&image, region, 0)) { ERROR("reading CBFS failed!\n"); return 1; } uint32_t region_sz = buffer_size(region); struct cbfs_file *entry; for (entry = buffer_get(region); cbfs_is_valid_entry(&image, entry); entry = cbfs_find_next_entry(&image, entry)) { /* just iterate through */ } /* entry now points to the first aligned address after the last valid * file header. That's either outside the image or exactly the place * where we need to create a new file. */ int last_entry_size = region_sz - ((void *)entry - buffer_get(region)) - cbfs_calculate_file_header_size("") - sizeof(int32_t); if (last_entry_size > 0) { cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL, last_entry_size, ""); /* If the last entry was an empty file, merge them. */ cbfs_walk(&image, cbfs_merge_empty_entry, NULL); } return 0; } int cbfs_truncate_space(struct buffer *region, uint32_t *size) { if (buffer_get(region) == NULL) return 1; struct cbfs_image image; memset(&image, 0, sizeof(image)); if (cbfs_image_from_buffer(&image, region, 0)) { ERROR("reading CBFS failed!\n"); return 1; } struct cbfs_file *entry, *trailer; for (trailer = entry = buffer_get(region); cbfs_is_valid_entry(&image, entry); trailer = entry, entry = cbfs_find_next_entry(&image, entry)) { /* just iterate through */ } /* trailer now points to the last valid CBFS entry's header. * If that file is empty, remove it and report its header's offset as * maximum size. */ if ((strlen(trailer->filename) != 0) && (trailer->type != htonl(CBFS_COMPONENT_NULL)) && (trailer->type != htonl(CBFS_COMPONENT_DELETED))) { /* nothing to truncate. Return de-facto CBFS size in case it * was already truncated. */ *size = (void *)entry - buffer_get(region); return 0; } *size = (void *)trailer - buffer_get(region); memset(trailer, 0xff, buffer_size(region) - *size); return 0; } static size_t cbfs_file_entry_metadata_size(const struct cbfs_file *f) { return ntohl(f->offset); } static size_t cbfs_file_entry_data_size(const struct cbfs_file *f) { return ntohl(f->len); } static size_t cbfs_file_entry_size(const struct cbfs_file *f) { return cbfs_file_entry_metadata_size(f) + cbfs_file_entry_data_size(f); } int cbfs_compact_instance(struct cbfs_image *image) { assert(image); struct cbfs_file *prev; struct cbfs_file *cur; /* The prev entry will always be an empty entry. */ prev = NULL; /* * Note: this function does not honor alignment or fixed location files. * It's behavior is akin to cbfs_copy_instance() in that it expects * the caller to understand the ramifications of compacting a * fragmented CBFS image. */ for (cur = cbfs_find_first_entry(image); cur && cbfs_is_valid_entry(image, cur); cur = cbfs_find_next_entry(image, cur)) { size_t prev_size; size_t cur_size; size_t empty_metadata_size; size_t spill_size; uint32_t type = htonl(cur->type); /* Current entry is empty. Kepp track of it. */ if ((type == htonl(CBFS_COMPONENT_NULL)) || (type == htonl(CBFS_COMPONENT_DELETED))) { prev = cur; continue; } /* Need to ensure the previous entry is an empty one. */ if (prev == NULL) continue; /* At this point prev is an empty entry. Put the non-empty * file in prev's location. Then add a new emptry entry. This * essentialy bubbles empty entries towards the end. */ prev_size = cbfs_file_entry_size(prev); cur_size = cbfs_file_entry_size(cur); /* * Adjust the empty file size by the actual space occupied * bewtween the beginning of the empty file and the non-empty * file. */ prev_size += (cbfs_get_entry_addr(image, cur) - cbfs_get_entry_addr(image, prev)) - prev_size; /* Move the non-empty file over the empty file. */ memmove(prev, cur, cur_size); /* * Get location of the empty file. Note that since prev was * overwritten with the non-empty file the previously moved * file needs to be used to calculate the empty file's location. */ cur = cbfs_find_next_entry(image, prev); /* * The total space to work with for swapping the 2 entries * consists of the 2 files' sizes combined. However, the * cbfs_file entries start on CBFS_ALIGNMENT boundaries. * Because of this the empty file size may end up smaller * because of the non-empty file's metadata and data length. * * Calculate the spill size which is the amount of data lost * due to the alignment constraints after moving the non-empty * file. */ spill_size = (cbfs_get_entry_addr(image, cur) - cbfs_get_entry_addr(image, prev)) - cur_size; empty_metadata_size = cbfs_calculate_file_header_size(""); /* Check if new empty size can contain the metadata. */ if (empty_metadata_size + spill_size > prev_size) { ERROR("Unable to swap '%s' with prev empty entry.\n", prev->filename); return 1; } /* Update the empty file's size. */ prev_size -= spill_size + empty_metadata_size; /* Create new empty file. */ cbfs_create_empty_entry(cur, CBFS_COMPONENT_NULL, prev_size, ""); /* Merge any potential empty entries together. */ cbfs_walk(image, cbfs_merge_empty_entry, NULL); /* * Since current switched to an empty file keep track of it. * Even if any empty files were merged the empty entry still * starts at previously calculated location. */ prev = cur; } return 0; } int cbfs_image_delete(struct cbfs_image *image) { if (image == NULL) return 0; buffer_delete(&image->buffer); return 0; } /* Tries to add an entry with its data (CBFS_SUBHEADER) at given offset. */ static int cbfs_add_entry_at(struct cbfs_image *image, struct cbfs_file *entry, const void *data, uint32_t content_offset, const struct cbfs_file *header) { struct cbfs_file *next = cbfs_find_next_entry(image, entry); uint32_t addr = cbfs_get_entry_addr(image, entry), addr_next = cbfs_get_entry_addr(image, next); uint32_t min_entry_size = cbfs_calculate_file_header_size(""); uint32_t len, header_offset; uint32_t align = image->has_header ? image->header.align : CBFS_ENTRY_ALIGNMENT; uint32_t header_size = ntohl(header->offset); header_offset = content_offset - header_size; if (header_offset % align) header_offset -= header_offset % align; if (header_offset < addr) { ERROR("No space to hold cbfs_file header."); return -1; } // Process buffer BEFORE content_offset. if (header_offset - addr > min_entry_size) { DEBUG("|min|...|header|content|... <create new entry>\n"); len = header_offset - addr - min_entry_size; cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL, len, ""); if (verbose > 1) cbfs_print_entry_info(image, entry, stderr); entry = cbfs_find_next_entry(image, entry); addr = cbfs_get_entry_addr(image, entry); } len = content_offset - addr - header_size; memcpy(entry, header, header_size); if (len != 0) { /* the header moved backwards a bit to accomodate cbfs_file * alignment requirements, so patch up ->offset to still point * to file data. */ DEBUG("|..|header|content|... <use offset to create entry>\n"); DEBUG("before: offset=0x%x\n", ntohl(entry->offset)); // TODO reset expanded name buffer to 0xFF. entry->offset = htonl(ntohl(entry->offset) + len); DEBUG("after: offset=0x%x\n", ntohl(entry->len)); } // Ready to fill data into entry. DEBUG("content_offset: 0x%x, entry location: %x\n", content_offset, (int)((char*)CBFS_SUBHEADER(entry) - image->buffer.data)); assert((char*)CBFS_SUBHEADER(entry) - image->buffer.data == (ptrdiff_t)content_offset); memcpy(CBFS_SUBHEADER(entry), data, ntohl(entry->len)); if (verbose > 1) cbfs_print_entry_info(image, entry, stderr); // Process buffer AFTER entry. entry = cbfs_find_next_entry(image, entry); addr = cbfs_get_entry_addr(image, entry); if (addr == addr_next) return 0; assert(addr < addr_next); if (addr_next - addr < min_entry_size) { DEBUG("No need for new \"empty\" entry\n"); /* No need to increase the size of the just * stored file to extend to next file. Alignment * of next file takes care of this. */ return 0; } len = addr_next - addr - min_entry_size; /* keep space for master header pointer */ if ((void *)entry + min_entry_size + len > buffer_get(&image->buffer) + buffer_size(&image->buffer) - sizeof(int32_t)) { len -= sizeof(int32_t); } cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL, len, ""); if (verbose > 1) cbfs_print_entry_info(image, entry, stderr); return 0; } int cbfs_add_entry(struct cbfs_image *image, struct buffer *buffer, uint32_t content_offset, struct cbfs_file *header) { assert(image); assert(buffer); assert(buffer->data); assert(!IS_TOP_ALIGNED_ADDRESS(content_offset)); const char *name = header->filename; uint32_t entry_type; uint32_t addr, addr_next; struct cbfs_file *entry, *next; uint32_t need_size; uint32_t header_size = ntohl(header->offset); need_size = header_size + buffer->size; DEBUG("cbfs_add_entry('%s'@0x%x) => need_size = %u+%zu=%u\n", name, content_offset, header_size, buffer->size, need_size); // Merge empty entries. DEBUG("(trying to merge empty entries...)\n"); cbfs_walk(image, cbfs_merge_empty_entry, NULL); for (entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { entry_type = ntohl(entry->type); if (entry_type != CBFS_COMPONENT_NULL) continue; addr = cbfs_get_entry_addr(image, entry); next = cbfs_find_next_entry(image, entry); addr_next = cbfs_get_entry_addr(image, next); DEBUG("cbfs_add_entry: space at 0x%x+0x%x(%d) bytes\n", addr, addr_next - addr, addr_next - addr); /* Will the file fit? Don't yet worry if we have space for a new * "empty" entry. We take care of that later. */ if (addr + need_size > addr_next) continue; // Test for complicated cases if (content_offset > 0) { if (addr_next < content_offset) { DEBUG("Not for specified offset yet"); continue; } else if (addr > content_offset) { DEBUG("Exceed specified content_offset."); break; } else if (addr + header_size > content_offset) { ERROR("Not enough space for header.\n"); break; } else if (content_offset + buffer->size > addr_next) { ERROR("Not enough space for content.\n"); break; } } // TODO there are more few tricky cases that we may // want to fit by altering offset. if (content_offset == 0) { // we tested every condition earlier under which // placing the file there might fail content_offset = addr + header_size; } DEBUG("section 0x%x+0x%x for content_offset 0x%x.\n", addr, addr_next - addr, content_offset); if (cbfs_add_entry_at(image, entry, buffer->data, content_offset, header) == 0) { return 0; } break; } ERROR("Could not add [%s, %zd bytes (%zd KB)@0x%x]; too big?\n", buffer->name, buffer->size, buffer->size / 1024, content_offset); return -1; } struct cbfs_file *cbfs_get_entry(struct cbfs_image *image, const char *name) { struct cbfs_file *entry; for (entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { if (strcasecmp(entry->filename, name) == 0) { DEBUG("cbfs_get_entry: found %s\n", name); return entry; } } return NULL; } static int cbfs_stage_decompress(struct cbfs_stage *stage, struct buffer *buff) { struct buffer reader; char *orig_buffer; char *new_buffer; size_t new_buff_sz; decomp_func_ptr decompress; buffer_clone(&reader, buff); /* The stage metadata is in little endian. */ stage->compression = xdr_le.get32(&reader); stage->entry = xdr_le.get64(&reader); stage->load = xdr_le.get64(&reader); stage->len = xdr_le.get32(&reader); stage->memlen = xdr_le.get32(&reader); /* Create a buffer just with the uncompressed program now that the * struct cbfs_stage has been peeled off. */ if (stage->compression == CBFS_COMPRESS_NONE) { new_buff_sz = buffer_size(buff) - sizeof(struct cbfs_stage); orig_buffer = buffer_get(buff); new_buffer = calloc(1, new_buff_sz); memcpy(new_buffer, orig_buffer + sizeof(struct cbfs_stage), new_buff_sz); buffer_init(buff, buff->name, new_buffer, new_buff_sz); free(orig_buffer); return 0; } decompress = decompression_function(stage->compression); if (decompress == NULL) return -1; orig_buffer = buffer_get(buff); /* This can be too big of a buffer needed, but there's no current * field indicating decompressed size of data. */ new_buff_sz = stage->memlen; new_buffer = calloc(1, new_buff_sz); if (decompress(orig_buffer + sizeof(struct cbfs_stage), (int)(buffer_size(buff) - sizeof(struct cbfs_stage)), new_buffer, (int)new_buff_sz, &new_buff_sz)) { ERROR("Couldn't decompress stage.\n"); free(new_buffer); return -1; } /* Include correct size for full stage info. */ buffer_init(buff, buff->name, new_buffer, new_buff_sz); /* True decompressed size is just the data size -- no metadata. */ stage->len = new_buff_sz; /* Stage is not compressed. */ stage->compression = CBFS_COMPRESS_NONE; free(orig_buffer); return 0; } static int cbfs_payload_decompress(struct cbfs_payload_segment *segments, struct buffer *buff, int num_seg) { struct buffer new_buffer; struct buffer seg_buffer; size_t new_buff_sz; char *in_ptr; char *out_ptr; size_t new_offset; decomp_func_ptr decompress; new_offset = num_seg * sizeof(*segments); new_buff_sz = num_seg * sizeof(*segments); /* Find out and allocate the amount of memory occupied * by the binary data */ for (int i = 0; i < num_seg; i++) new_buff_sz += segments[i].mem_len; if (buffer_create(&new_buffer, new_buff_sz, "decompressed_buff")) return -1; in_ptr = buffer_get(buff) + new_offset; out_ptr = buffer_get(&new_buffer) + new_offset; for (int i = 0; i < num_seg; i++) { struct buffer tbuff; size_t decomp_size; /* The payload uses an unknown compression algorithm. */ decompress = decompression_function(segments[i].compression); if (decompress == NULL) { ERROR("Unknown decompression algorithm: %u", segments[i].compression); return -1; } /* Segments BSS and ENTRY do not have binary data. */ if (segments[i].type == PAYLOAD_SEGMENT_BSS || segments[i].type == PAYLOAD_SEGMENT_ENTRY) { continue; } else if (segments[i].type == PAYLOAD_SEGMENT_PARAMS) { memcpy(out_ptr, in_ptr, segments[i].len); segments[i].offset = new_offset; new_offset += segments[i].len; in_ptr += segments[i].len; out_ptr += segments[i].len; segments[i].compression = CBFS_COMPRESS_NONE; continue; } if (buffer_create(&tbuff, segments[i].mem_len, "segment")) { buffer_delete(&new_buffer); return -1; } if (decompress(in_ptr, segments[i].len, buffer_get(&tbuff), (int) buffer_size(&tbuff), &decomp_size)) { ERROR("Couldn't decompress payload segment %u\n", i); buffer_delete(&new_buffer); buffer_delete(&tbuff); return -1; } memcpy(out_ptr, buffer_get(&tbuff), decomp_size); in_ptr += segments[i].len; /* Update the offset of the segment. */ segments[i].offset = new_offset; /* True decompressed size is just the data size. No metadata */ segments[i].len = decomp_size; /* Segment is not compressed. */ segments[i].compression = CBFS_COMPRESS_NONE; /* Update the offset and output buffer pointer. */ new_offset += decomp_size; out_ptr += decomp_size; buffer_delete(&tbuff); } buffer_splice(&seg_buffer, &new_buffer, 0, 0); xdr_segs(&seg_buffer, segments, num_seg); buffer_delete(buff); *buff = new_buffer; return 0; } static int init_elf_from_arch(Elf64_Ehdr *ehdr, uint32_t cbfs_arch) { int endian; int nbits; int machine; switch (cbfs_arch) { case CBFS_ARCHITECTURE_X86: endian = ELFDATA2LSB; nbits = ELFCLASS32; machine = EM_386; break; case CBFS_ARCHITECTURE_ARM: endian = ELFDATA2LSB; nbits = ELFCLASS32; machine = EM_ARM; break; case CBFS_ARCHITECTURE_AARCH64: endian = ELFDATA2LSB; nbits = ELFCLASS64; machine = EM_AARCH64; break; case CBFS_ARCHITECTURE_MIPS: endian = ELFDATA2LSB; nbits = ELFCLASS32; machine = EM_MIPS; break; case CBFS_ARCHITECTURE_RISCV: endian = ELFDATA2LSB; nbits = ELFCLASS32; machine = EM_RISCV; break; default: ERROR("Unsupported arch: %x\n", cbfs_arch); return -1; } elf_init_eheader(ehdr, machine, nbits, endian); return 0; } static int cbfs_stage_make_elf(struct buffer *buff, uint32_t arch) { Elf64_Ehdr ehdr; Elf64_Shdr shdr; struct cbfs_stage stage; struct elf_writer *ew; struct buffer elf_out; size_t empty_sz; int rmod_ret; if (arch == CBFS_ARCHITECTURE_UNKNOWN) { ERROR("You need to specify -m ARCH.\n"); return -1; } if (cbfs_stage_decompress(&stage, buff)) { ERROR("Failed to decompress stage.\n"); return -1; } if (init_elf_from_arch(&ehdr, arch)) return -1; ehdr.e_entry = stage.entry; /* Attempt rmodule translation first. */ rmod_ret = rmodule_stage_to_elf(&ehdr, buff); if (rmod_ret < 0) { ERROR("rmodule parsing failed\n"); return -1; } else if (rmod_ret == 0) return 0; /* Rmodule couldn't do anything with the data. Continue on with SELF. */ ew = elf_writer_init(&ehdr); if (ew == NULL) { ERROR("Unable to init ELF writer.\n"); return -1; } memset(&shdr, 0, sizeof(shdr)); shdr.sh_type = SHT_PROGBITS; shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR; shdr.sh_addr = stage.load; shdr.sh_size = stage.len; empty_sz = stage.memlen - stage.len; if (elf_writer_add_section(ew, &shdr, buff, ".program")) { ERROR("Unable to add ELF section: .program\n"); elf_writer_destroy(ew); return -1; } if (empty_sz != 0) { struct buffer b; buffer_init(&b, NULL, NULL, 0); memset(&shdr, 0, sizeof(shdr)); shdr.sh_type = SHT_NOBITS; shdr.sh_flags = SHF_WRITE | SHF_ALLOC; shdr.sh_addr = stage.load + stage.len; shdr.sh_size = empty_sz; if (elf_writer_add_section(ew, &shdr, &b, ".empty")) { ERROR("Unable to add ELF section: .empty\n"); elf_writer_destroy(ew); return -1; } } if (elf_writer_serialize(ew, &elf_out)) { ERROR("Unable to create ELF file from stage.\n"); elf_writer_destroy(ew); return -1; } /* Flip buffer with the created ELF one. */ buffer_delete(buff); *buff = elf_out; elf_writer_destroy(ew); return 0; } static int cbfs_payload_make_elf(struct buffer *buff, uint32_t arch) { Elf64_Ehdr ehdr; Elf64_Shdr shdr; struct cbfs_payload_segment *segs = NULL; struct elf_writer *ew = NULL; struct buffer elf_out; int segments = 0; int retval = -1; if (arch == CBFS_ARCHITECTURE_UNKNOWN) { ERROR("You need to specify -m ARCH.\n"); goto out; } /* Count the number of segments inside buffer */ while (true) { uint32_t payload_type = 0; struct cbfs_payload_segment *seg; seg = buffer_get(buff); payload_type = read_be32(&seg[segments].type); if (payload_type == PAYLOAD_SEGMENT_CODE) { segments++; } else if (payload_type == PAYLOAD_SEGMENT_DATA) { segments++; } else if (payload_type == PAYLOAD_SEGMENT_BSS) { segments++; } else if (payload_type == PAYLOAD_SEGMENT_PARAMS) { segments++; } else if (payload_type == PAYLOAD_SEGMENT_ENTRY) { /* The last segment in a payload is always ENTRY as * specified by the parse_elf_to_payload() function. * Therefore there is no need to continue looking for * segments.*/ segments++; break; } else { ERROR("Unknown payload segment type: %x\n", payload_type); goto out; } } segs = malloc(segments * sizeof(*segs)); /* Decode xdr segments */ for (int i = 0; i < segments; i++) { struct cbfs_payload_segment *serialized_seg = buffer_get(buff); xdr_get_seg(&segs[i], &serialized_seg[i]); } if (cbfs_payload_decompress(segs, buff, segments)) { ERROR("Failed to decompress payload.\n"); goto out; } if (init_elf_from_arch(&ehdr, arch)) goto out; ehdr.e_entry = segs[segments-1].load_addr; ew = elf_writer_init(&ehdr); if (ew == NULL) { ERROR("Unable to init ELF writer.\n"); goto out; } for (int i = 0; i < segments; i++) { struct buffer tbuff; size_t empty_sz = 0; memset(&shdr, 0, sizeof(shdr)); char *name = NULL; if (segs[i].type == PAYLOAD_SEGMENT_CODE) { shdr.sh_type = SHT_PROGBITS; shdr.sh_flags = SHF_WRITE | SHF_ALLOC | SHF_EXECINSTR; shdr.sh_addr = segs[i].load_addr; shdr.sh_size = segs[i].len; empty_sz = segs[i].mem_len - segs[i].len; name = strdup(".text"); buffer_splice(&tbuff, buff, segs[i].offset, segs[i].len); } else if (segs[i].type == PAYLOAD_SEGMENT_DATA) { shdr.sh_type = SHT_PROGBITS; shdr.sh_flags = SHF_ALLOC | SHF_WRITE; shdr.sh_addr = segs[i].load_addr; shdr.sh_size = segs[i].len; empty_sz = segs[i].mem_len - segs[i].len; name = strdup(".data"); buffer_splice(&tbuff, buff, segs[i].offset, segs[i].len); } else if (segs[i].type == PAYLOAD_SEGMENT_BSS) { shdr.sh_type = SHT_NOBITS; shdr.sh_flags = SHF_ALLOC | SHF_WRITE; shdr.sh_addr = segs[i].load_addr; shdr.sh_size = segs[i].len; name = strdup(".bss"); buffer_splice(&tbuff, buff, 0, 0); } else if (segs[i].type == PAYLOAD_SEGMENT_PARAMS) { shdr.sh_type = SHT_NOTE; shdr.sh_flags = 0; shdr.sh_size = segs[i].len; name = strdup(".note.pinfo"); buffer_splice(&tbuff, buff, segs[i].offset, segs[i].len); } else if (segs[i].type == PAYLOAD_SEGMENT_ENTRY) { break; } else { ERROR("unknown ELF segment type\n"); goto out; } if (!name) { ERROR("out of memory\n"); goto out; } if (elf_writer_add_section(ew, &shdr, &tbuff, name)) { ERROR("Unable to add ELF section: %s\n", name); free(name); goto out; } free(name); if (empty_sz != 0) { struct buffer b; buffer_init(&b, NULL, NULL, 0); memset(&shdr, 0, sizeof(shdr)); shdr.sh_type = SHT_NOBITS; shdr.sh_flags = SHF_WRITE | SHF_ALLOC; shdr.sh_addr = segs[i].load_addr + segs[i].len; shdr.sh_size = empty_sz; name = strdup(".empty"); if (!name) { ERROR("out of memory\n"); goto out; } if (elf_writer_add_section(ew, &shdr, &b, name)) { ERROR("Unable to add ELF section: %s\n", name); free(name); goto out; } free(name); } } if (elf_writer_serialize(ew, &elf_out)) { ERROR("Unable to create ELF file from stage.\n"); goto out; } /* Flip buffer with the created ELF one. */ buffer_delete(buff); *buff = elf_out; retval = 0; out: free(segs); elf_writer_destroy(ew); return retval; } int cbfs_export_entry(struct cbfs_image *image, const char *entry_name, const char *filename, uint32_t arch) { struct cbfs_file *entry = cbfs_get_entry(image, entry_name); struct buffer buffer; if (!entry) { ERROR("File not found: %s\n", entry_name); return -1; } unsigned int decompressed_size = 0; unsigned int compression = cbfs_file_get_compression_info(entry, &decompressed_size); decomp_func_ptr decompress = decompression_function(compression); if (!decompress) { ERROR("looking up decompression routine failed\n"); return -1; } LOG("Found file %.30s at 0x%x, type %.12s, size %d\n", entry_name, cbfs_get_entry_addr(image, entry), get_cbfs_entry_type_name(ntohl(entry->type)), decompressed_size); buffer_init(&buffer, strdup("(cbfs_export_entry)"), NULL, 0); buffer.data = malloc(decompressed_size); buffer.size = decompressed_size; if (decompress(CBFS_SUBHEADER(entry), ntohl(entry->len), buffer.data, buffer.size, NULL)) { ERROR("decompression failed for %s\n", entry_name); buffer_delete(&buffer); return -1; } /* * The stage metadata is never compressed proper for cbfs_stage * files. The contents of the stage data can be though. Therefore * one has to do a second pass for stages to potentially decompress * the stage data to make it more meaningful. */ if (ntohl(entry->type) == CBFS_COMPONENT_STAGE) { if (cbfs_stage_make_elf(&buffer, arch)) { buffer_delete(&buffer); return -1; } } else if (ntohl(entry->type) == CBFS_COMPONENT_PAYLOAD) { if (cbfs_payload_make_elf(&buffer, arch)) { buffer_delete(&buffer); return -1; } } if (buffer_write_file(&buffer, filename) != 0) { ERROR("Failed to write %s into %s.\n", entry_name, filename); buffer_delete(&buffer); return -1; } buffer_delete(&buffer); INFO("Successfully dumped the file to: %s\n", filename); return 0; } int cbfs_remove_entry(struct cbfs_image *image, const char *name) { struct cbfs_file *entry; entry = cbfs_get_entry(image, name); if (!entry) { ERROR("CBFS file %s not found.\n", name); return -1; } DEBUG("cbfs_remove_entry: Removed %s @ 0x%x\n", entry->filename, cbfs_get_entry_addr(image, entry)); entry->type = htonl(CBFS_COMPONENT_DELETED); cbfs_walk(image, cbfs_merge_empty_entry, NULL); return 0; } int cbfs_print_header_info(struct cbfs_image *image) { char *name = strdup(image->buffer.name); assert(image); printf("%s: %zd kB, bootblocksize %d, romsize %d, offset 0x%x\n" "alignment: %d bytes, architecture: %s\n\n", basename(name), image->buffer.size / 1024, image->header.bootblocksize, image->header.romsize, image->header.offset, image->header.align, arch_to_string(image->header.architecture)); free(name); return 0; } static int cbfs_print_stage_info(struct cbfs_stage *stage, FILE* fp) { fprintf(fp, " %s compression, entry: 0x%" PRIx64 ", load: 0x%" PRIx64 ", " "length: %d/%d\n", lookup_name_by_type(types_cbfs_compression, stage->compression, "(unknown)"), stage->entry, stage->load, stage->len, stage->memlen); return 0; } static int cbfs_print_decoded_payload_segment_info( struct cbfs_payload_segment *seg, FILE *fp) { /* The input (seg) must be already decoded by * cbfs_decode_payload_segment. */ switch (seg->type) { case PAYLOAD_SEGMENT_CODE: case PAYLOAD_SEGMENT_DATA: fprintf(fp, " %s (%s compression, offset: 0x%x, " "load: 0x%" PRIx64 ", length: %d/%d)\n", (seg->type == PAYLOAD_SEGMENT_CODE ? "code " : "data"), lookup_name_by_type(types_cbfs_compression, seg->compression, "(unknown)"), seg->offset, seg->load_addr, seg->len, seg->mem_len); break; case PAYLOAD_SEGMENT_ENTRY: fprintf(fp, " entry (0x%" PRIx64 ")\n", seg->load_addr); break; case PAYLOAD_SEGMENT_BSS: fprintf(fp, " BSS (address 0x%016" PRIx64 ", " "length 0x%x)\n", seg->load_addr, seg->len); break; case PAYLOAD_SEGMENT_PARAMS: fprintf(fp, " parameters\n"); break; default: fprintf(fp, " 0x%x (%s compression, offset: 0x%x, " "load: 0x%" PRIx64 ", length: %d/%d\n", seg->type, lookup_name_by_type(types_cbfs_compression, seg->compression, "(unknown)"), seg->offset, seg->load_addr, seg->len, seg->mem_len); break; } return 0; } int cbfs_print_entry_info(struct cbfs_image *image, struct cbfs_file *entry, void *arg) { const char *name = entry->filename; struct cbfs_payload_segment *payload; FILE *fp = (FILE *)arg; if (!cbfs_is_valid_entry(image, entry)) { ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n", cbfs_get_entry_addr(image, entry)); return -1; } if (!fp) fp = stdout; unsigned int decompressed_size = 0; unsigned int compression = cbfs_file_get_compression_info(entry, &decompressed_size); const char *compression_name = lookup_name_by_type( types_cbfs_compression, compression, "????"); if (compression == CBFS_COMPRESS_NONE) fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s\n", *name ? name : "(empty)", cbfs_get_entry_addr(image, entry), get_cbfs_entry_type_name(ntohl(entry->type)), ntohl(entry->len), compression_name ); else fprintf(fp, "%-30s 0x%-8x %-12s %8d %-4s (%d decompressed)\n", *name ? name : "(empty)", cbfs_get_entry_addr(image, entry), get_cbfs_entry_type_name(ntohl(entry->type)), ntohl(entry->len), compression_name, decompressed_size ); struct cbfs_file_attr_hash *hash = NULL; while ((hash = cbfs_file_get_next_hash(entry, hash)) != NULL) { unsigned int hash_type = ntohl(hash->hash_type); if (hash_type >= CBFS_NUM_SUPPORTED_HASHES) { fprintf(fp, "invalid hash type %d\n", hash_type); break; } size_t hash_len = widths_cbfs_hash[hash_type]; char *hash_str = bintohex(hash->hash_data, hash_len); uint8_t local_hash[hash_len]; if (vb2_digest_buffer(CBFS_SUBHEADER(entry), ntohl(entry->len), hash_type, local_hash, hash_len) != VB2_SUCCESS) { fprintf(fp, "failed to hash '%s'\n", name); free(hash_str); break; } int valid = memcmp(local_hash, hash->hash_data, hash_len) == 0; const char *valid_str = valid ? "valid" : "invalid"; fprintf(fp, " hash %s:%s %s\n", get_hash_attr_name(hash_type), hash_str, valid_str); free(hash_str); } if (!verbose) return 0; DEBUG(" cbfs_file=0x%x, offset=0x%x, content_address=0x%x+0x%x\n", cbfs_get_entry_addr(image, entry), ntohl(entry->offset), cbfs_get_entry_addr(image, entry) + ntohl(entry->offset), ntohl(entry->len)); /* note the components of the subheader may be in host order ... */ switch (ntohl(entry->type)) { case CBFS_COMPONENT_STAGE: cbfs_print_stage_info((struct cbfs_stage *) CBFS_SUBHEADER(entry), fp); break; case CBFS_COMPONENT_PAYLOAD: payload = (struct cbfs_payload_segment *) CBFS_SUBHEADER(entry); while (payload) { struct cbfs_payload_segment seg; cbfs_decode_payload_segment(&seg, payload); cbfs_print_decoded_payload_segment_info( &seg, fp); if (seg.type == PAYLOAD_SEGMENT_ENTRY) break; else payload ++; } break; default: break; } return 0; } static int cbfs_print_parseable_entry_info(struct cbfs_image *image, struct cbfs_file *entry, void *arg) { FILE *fp = (FILE *)arg; const char *name; const char *type; size_t offset; size_t metadata_size; size_t data_size; const char *sep = "\t"; if (!cbfs_is_valid_entry(image, entry)) { ERROR("cbfs_print_entry_info: Invalid entry at 0x%x\n", cbfs_get_entry_addr(image, entry)); return -1; } name = entry->filename; if (*name == '\0') name = "(empty)"; type = get_cbfs_entry_type_name(ntohl(entry->type)), metadata_size = ntohl(entry->offset); data_size = ntohl(entry->len); offset = cbfs_get_entry_addr(image, entry); fprintf(fp, "%s%s", name, sep); fprintf(fp, "0x%zx%s", offset, sep); fprintf(fp, "%s%s", type, sep); fprintf(fp, "0x%zx%s", metadata_size, sep); fprintf(fp, "0x%zx%s", data_size, sep); fprintf(fp, "0x%zx\n", metadata_size + data_size); return 0; } int cbfs_print_directory(struct cbfs_image *image) { if (cbfs_is_legacy_cbfs(image)) cbfs_print_header_info(image); printf("%-30s %-10s %-12s Size Comp\n", "Name", "Offset", "Type"); cbfs_walk(image, cbfs_print_entry_info, NULL); return 0; } int cbfs_print_parseable_directory(struct cbfs_image *image) { size_t i; const char *header[] = { "Name", "Offset", "Type", "Metadata Size", "Data Size", "Total Size", }; const char *sep = "\t"; for (i = 0; i < ARRAY_SIZE(header) - 1; i++) fprintf(stdout, "%s%s", header[i], sep); fprintf(stdout, "%s\n", header[i]); cbfs_walk(image, cbfs_print_parseable_entry_info, stdout); return 0; } int cbfs_merge_empty_entry(struct cbfs_image *image, struct cbfs_file *entry, unused void *arg) { struct cbfs_file *next; uint8_t *name; uint32_t type, addr, last_addr; type = ntohl(entry->type); if (type == CBFS_COMPONENT_DELETED) { // Ready to be recycled. type = CBFS_COMPONENT_NULL; entry->type = htonl(type); // Place NUL byte as first byte of name to be viewed as "empty". name = (void *)&entry[1]; *name = '\0'; } if (type != CBFS_COMPONENT_NULL) return 0; next = cbfs_find_next_entry(image, entry); while (next && cbfs_is_valid_entry(image, next)) { type = ntohl(next->type); if (type == CBFS_COMPONENT_DELETED) { type = CBFS_COMPONENT_NULL; next->type = htonl(type); } if (type != CBFS_COMPONENT_NULL) return 0; addr = cbfs_get_entry_addr(image, entry); last_addr = cbfs_get_entry_addr( image, cbfs_find_next_entry(image, next)); // Now, we find two deleted/empty entries; try to merge now. DEBUG("join_empty_entry: combine 0x%x+0x%x and 0x%x+0x%x.\n", cbfs_get_entry_addr(image, entry), ntohl(entry->len), cbfs_get_entry_addr(image, next), ntohl(next->len)); cbfs_create_empty_entry(entry, CBFS_COMPONENT_NULL, (last_addr - addr - cbfs_calculate_file_header_size("")), ""); DEBUG("new empty entry: length=0x%x\n", ntohl(entry->len)); next = cbfs_find_next_entry(image, entry); } return 0; } int cbfs_walk(struct cbfs_image *image, cbfs_entry_callback callback, void *arg) { int count = 0; struct cbfs_file *entry; for (entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { count ++; if (callback(image, entry, arg) != 0) break; } return count; } static int cbfs_header_valid(struct cbfs_header *header) { if ((ntohl(header->magic) == CBFS_HEADER_MAGIC) && ((ntohl(header->version) == CBFS_HEADER_VERSION1) || (ntohl(header->version) == CBFS_HEADER_VERSION2)) && (ntohl(header->offset) < ntohl(header->romsize))) return 1; return 0; } struct cbfs_header *cbfs_find_header(char *data, size_t size, uint32_t forced_offset) { size_t offset; int found = 0; int32_t rel_offset; struct cbfs_header *header, *result = NULL; if (forced_offset < (size - sizeof(struct cbfs_header))) { /* Check if the forced header is valid. */ header = (struct cbfs_header *)(data + forced_offset); if (cbfs_header_valid(header)) return header; return NULL; } // Try finding relative offset of master header at end of file first. rel_offset = *(int32_t *)(data + size - sizeof(int32_t)); offset = size + rel_offset; DEBUG("relative offset: %#zx(-%#zx), offset: %#zx\n", (size_t)rel_offset, (size_t)-rel_offset, offset); if (offset >= size - sizeof(*header) || !cbfs_header_valid((struct cbfs_header *)(data + offset))) { // Some use cases append non-CBFS data to the end of the ROM. DEBUG("relative offset seems wrong, scanning whole image...\n"); offset = 0; } for (; offset + sizeof(*header) < size; offset++) { header = (struct cbfs_header *)(data + offset); if (!cbfs_header_valid(header)) continue; if (!found++) result = header; } if (found > 1) // Top-aligned images usually have a working relative offset // field, so this is more likely to happen on bottom-aligned // ones (where the first header is the "outermost" one) WARN("Multiple (%d) CBFS headers found, using the first one.\n", found); return result; } struct cbfs_file *cbfs_find_first_entry(struct cbfs_image *image) { assert(image); if (image->has_header) /* header.offset is relative to start of flash, not * start of region, so use it with the full image. */ return (struct cbfs_file *) (buffer_get_original_backing(&image->buffer) + image->header.offset); else return (struct cbfs_file *)buffer_get(&image->buffer); } struct cbfs_file *cbfs_find_next_entry(struct cbfs_image *image, struct cbfs_file *entry) { uint32_t addr = cbfs_get_entry_addr(image, entry); int align = image->has_header ? image->header.align : CBFS_ENTRY_ALIGNMENT; assert(entry && cbfs_is_valid_entry(image, entry)); addr += ntohl(entry->offset) + ntohl(entry->len); addr = align_up(addr, align); return (struct cbfs_file *)(image->buffer.data + addr); } uint32_t cbfs_get_entry_addr(struct cbfs_image *image, struct cbfs_file *entry) { assert(image && image->buffer.data && entry); return (int32_t)((char *)entry - image->buffer.data); } int cbfs_is_valid_cbfs(struct cbfs_image *image) { return buffer_check_magic(&image->buffer, CBFS_FILE_MAGIC, strlen(CBFS_FILE_MAGIC)); } int cbfs_is_legacy_cbfs(struct cbfs_image *image) { return image->has_header; } int cbfs_is_valid_entry(struct cbfs_image *image, struct cbfs_file *entry) { uint32_t offset = cbfs_get_entry_addr(image, entry); if (offset >= image->buffer.size) return 0; struct buffer entry_data; buffer_clone(&entry_data, &image->buffer); buffer_seek(&entry_data, offset); return buffer_check_magic(&entry_data, CBFS_FILE_MAGIC, strlen(CBFS_FILE_MAGIC)); } struct cbfs_file *cbfs_create_file_header(int type, size_t len, const char *name) { struct cbfs_file *entry = malloc(MAX_CBFS_FILE_HEADER_BUFFER); memset(entry, CBFS_CONTENT_DEFAULT_VALUE, MAX_CBFS_FILE_HEADER_BUFFER); memcpy(entry->magic, CBFS_FILE_MAGIC, sizeof(entry->magic)); entry->type = htonl(type); entry->len = htonl(len); entry->attributes_offset = 0; entry->offset = htonl(cbfs_calculate_file_header_size(name)); memset(entry->filename, 0, ntohl(entry->offset) - sizeof(*entry)); strcpy(entry->filename, name); return entry; } int cbfs_create_empty_entry(struct cbfs_file *entry, int type, size_t len, const char *name) { struct cbfs_file *tmp = cbfs_create_file_header(type, len, name); memcpy(entry, tmp, ntohl(tmp->offset)); free(tmp); memset(CBFS_SUBHEADER(entry), CBFS_CONTENT_DEFAULT_VALUE, len); return 0; } struct cbfs_file_attribute *cbfs_file_first_attr(struct cbfs_file *file) { /* attributes_offset should be 0 when there is no attribute, but all * values that point into the cbfs_file header are invalid, too. */ if (ntohl(file->attributes_offset) <= sizeof(*file)) return NULL; /* There needs to be enough space for the file header and one * attribute header for this to make sense. */ if (ntohl(file->offset) <= sizeof(*file) + sizeof(struct cbfs_file_attribute)) return NULL; return (struct cbfs_file_attribute *) (((uint8_t *)file) + ntohl(file->attributes_offset)); } struct cbfs_file_attribute *cbfs_file_next_attr(struct cbfs_file *file, struct cbfs_file_attribute *attr) { /* ex falso sequitur quodlibet */ if (attr == NULL) return NULL; /* Is there enough space for another attribute? */ if ((uint8_t *)attr + ntohl(attr->len) + sizeof(struct cbfs_file_attribute) >= (uint8_t *)file + ntohl(file->offset)) return NULL; struct cbfs_file_attribute *next = (struct cbfs_file_attribute *) (((uint8_t *)attr) + ntohl(attr->len)); /* If any, "unused" attributes must come last. */ if (ntohl(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED) return NULL; if (ntohl(next->tag) == CBFS_FILE_ATTR_TAG_UNUSED2) return NULL; return next; } struct cbfs_file_attribute *cbfs_add_file_attr(struct cbfs_file *header, uint32_t tag, uint32_t size) { struct cbfs_file_attribute *attr, *next; next = cbfs_file_first_attr(header); do { attr = next; next = cbfs_file_next_attr(header, attr); } while (next != NULL); uint32_t header_size = ntohl(header->offset) + size; if (header_size > MAX_CBFS_FILE_HEADER_BUFFER) { DEBUG("exceeding allocated space for cbfs_file headers"); return NULL; } /* attr points to the last valid attribute now. * If NULL, we have to create the first one. */ if (attr == NULL) { /* New attributes start where the header ends. * header->offset is later set to accomodate the * additional structure. * No endianess translation necessary here, because both * fields are encoded the same way. */ header->attributes_offset = header->offset; attr = (struct cbfs_file_attribute *) (((uint8_t *)header) + ntohl(header->attributes_offset)); } else { attr = (struct cbfs_file_attribute *) (((uint8_t *)attr) + ntohl(attr->len)); } header->offset = htonl(header_size); memset(attr, CBFS_CONTENT_DEFAULT_VALUE, size); attr->tag = htonl(tag); attr->len = htonl(size); return attr; } int cbfs_add_file_hash(struct cbfs_file *header, struct buffer *buffer, enum vb2_hash_algorithm hash_type) { uint32_t hash_index = hash_type; if (hash_index >= CBFS_NUM_SUPPORTED_HASHES) return -1; unsigned hash_size = widths_cbfs_hash[hash_type]; if (hash_size == 0) return -1; struct cbfs_file_attr_hash *attrs = (struct cbfs_file_attr_hash *)cbfs_add_file_attr(header, CBFS_FILE_ATTR_TAG_HASH, sizeof(struct cbfs_file_attr_hash) + hash_size); if (attrs == NULL) return -1; attrs->hash_type = htonl(hash_type); if (vb2_digest_buffer(buffer_get(buffer), buffer_size(buffer), hash_type, attrs->hash_data, hash_size) != VB2_SUCCESS) return -1; return 0; } /* Finds a place to hold whole data in same memory page. */ static int is_in_same_page(uint32_t start, uint32_t size, uint32_t page) { if (!page) return 1; return (start / page) == (start + size - 1) / page; } /* Tests if data can fit in a range by given offset: * start ->| metadata_size | offset (+ size) |<- end */ static int is_in_range(size_t start, size_t end, size_t metadata_size, size_t offset, size_t size) { return (offset >= start + metadata_size && offset + size <= end); } static size_t absolute_align(const struct cbfs_image *image, size_t val, size_t align) { const size_t region_offset = buffer_offset(&image->buffer); /* To perform alignment on absolute address, take the region offset */ /* of the image into account. */ return align_up(val + region_offset, align) - region_offset; } int32_t cbfs_locate_entry(struct cbfs_image *image, size_t size, size_t page_size, size_t align, size_t metadata_size) { struct cbfs_file *entry; size_t need_len; size_t addr, addr_next, addr2, addr3, offset; /* Default values: allow fitting anywhere in ROM. */ if (!page_size) page_size = image->has_header ? image->header.romsize : image->buffer.size; if (!align) align = 1; if (size > page_size) ERROR("Input file size (%zd) greater than page size (%zd).\n", size, page_size); size_t image_align = image->has_header ? image->header.align : CBFS_ENTRY_ALIGNMENT; if (page_size % image_align) WARN("%s: Page size (%#zx) not aligned with CBFS image (%#zx).\n", __func__, page_size, image_align); need_len = metadata_size + size; // Merge empty entries to build get max available space. cbfs_walk(image, cbfs_merge_empty_entry, NULL); /* Three cases of content location on memory page: * case 1. * | PAGE 1 | PAGE 2 | * | <header><content>| Fit. Return start of content. * * case 2. * | PAGE 1 | PAGE 2 | * | <header><content> | Fits when we shift content to align * shift-> | <header>|<content> | at starting of PAGE 2. * * case 3. (large content filling whole page) * | PAGE 1 | PAGE 2 | PAGE 3 | * | <header>< content > | Can't fit. If we shift content to * |trial-> <header>< content > | PAGE 2, header can't fit in free * | shift-> <header><content> space, so we must use PAGE 3. * * The returned address can be then used as "base-address" (-b) in add-* * commands (will be re-calculated and positioned by cbfs_add_entry_at). * For stage targets, the address is also used to re-link stage before * being added into CBFS. */ for (entry = cbfs_find_first_entry(image); entry && cbfs_is_valid_entry(image, entry); entry = cbfs_find_next_entry(image, entry)) { uint32_t type = ntohl(entry->type); if (type != CBFS_COMPONENT_NULL) continue; addr = cbfs_get_entry_addr(image, entry); addr_next = cbfs_get_entry_addr(image, cbfs_find_next_entry( image, entry)); if (addr_next - addr < need_len) continue; offset = absolute_align(image, addr + metadata_size, align); if (is_in_same_page(offset, size, page_size) && is_in_range(addr, addr_next, metadata_size, offset, size)) { DEBUG("cbfs_locate_entry: FIT (PAGE1)."); return offset; } addr2 = align_up(addr, page_size); offset = absolute_align(image, addr2, align); if (is_in_range(addr, addr_next, metadata_size, offset, size)) { DEBUG("cbfs_locate_entry: OVERLAP (PAGE2)."); return offset; } /* Assume page_size >= metadata_size so adding one page will * definitely provide the space for header. */ assert(page_size >= metadata_size); addr3 = addr2 + page_size; offset = absolute_align(image, addr3, align); if (is_in_range(addr, addr_next, metadata_size, offset, size)) { DEBUG("cbfs_locate_entry: OVERLAP+ (PAGE3)."); return offset; } } return -1; }