/* * This file is part of the libpayload project. * * Copyright (C) 2010 coresystems GmbH * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include "ehci.h" #include "ehci_private.h" static void dump_td(u32 addr) { qtd_t *td = phys_to_virt(addr); debug("td at phys(%x): status: %x\n\n", addr, td->token & QTD_STATUS_MASK); debug("- cerr: %x, total_len: %x\n\n", (td->token & QTD_CERR_MASK) >> QTD_CERR_SHIFT, (td->token & QTD_TOTAL_LEN_MASK) >> QTD_TOTAL_LEN_SHIFT); } static void ehci_start (hci_t *controller) { EHCI_INST(controller)->operation->usbcmd |= HC_OP_RS; } static void ehci_stop (hci_t *controller) { EHCI_INST(controller)->operation->usbcmd &= ~HC_OP_RS; } static void ehci_reset (hci_t *controller) { } static int ehci_set_periodic_schedule(ehci_t *ehcic, int enable) { /* Set periodic schedule status. */ if (enable) ehcic->operation->usbcmd |= HC_OP_PERIODIC_SCHED_EN; else ehcic->operation->usbcmd &= ~HC_OP_PERIODIC_SCHED_EN; /* Wait for the controller to accept periodic schedule status. * This shouldn't take too long, but we should timeout nevertheless. */ enable = enable ? HC_OP_PERIODIC_SCHED_STAT : 0; int timeout = 100; /* time out after 100ms */ while (((ehcic->operation->usbsts & HC_OP_PERIODIC_SCHED_STAT) != enable) && timeout--) mdelay(1); if (timeout < 0) { debug("ehci periodic schedule status change timed out.\n"); return 1; } return 0; } static void ehci_shutdown (hci_t *controller) { /* Make sure periodic schedule is disabled */ ehci_set_periodic_schedule(EHCI_INST(controller), 0); /* Free periodic frame list */ free(phys_to_virt(EHCI_INST(controller)->operation->periodiclistbase)); EHCI_INST(controller)->operation->configflag = 0; } enum { EHCI_OUT=0, EHCI_IN=1, EHCI_SETUP=2 }; /* * returns the address of the closest USB2.0 hub, which is responsible for * split transactions, along with the number of the used downstream port */ static int closest_usb2_hub(const usbdev_t *dev, int *const addr, int *const port) { const usbdev_t *usb1dev; do { usb1dev = dev; if ((dev->hub > 0) && (dev->hub < 128)) dev = dev->controller->devices[dev->hub]; else dev = NULL; } while (dev && (dev->speed < 2)); if (dev) { *addr = usb1dev->hub; *port = usb1dev->port; return 0; } else { debug("ehci: Couldn't find closest USB2.0 hub.\n"); return 1; } } /* returns handled bytes. assumes that the fields it writes are empty on entry */ static int fill_td(qtd_t *td, void* data, int datalen) { u32 total_len = 0; u32 page_no = 0; u32 start = virt_to_phys(data); u32 page = start & ~4095; u32 offset = start & 4095; u32 page_len = 4096 - offset; td->token |= 0 << QTD_CPAGE_SHIFT; td->bufptrs[page_no++] = start; if (datalen <= page_len) { total_len = datalen; } else { datalen -= page_len; total_len += page_len; while (page_no < 5) { /* we have a continguous mapping between virtual and physical memory */ page += 4096; td->bufptrs[page_no++] = page; if (datalen <= 4096) { total_len += datalen; break; } datalen -= 4096; total_len += 4096; } } td->token |= total_len << QTD_TOTAL_LEN_SHIFT; return total_len; } /* free up data structures */ static void free_qh_and_tds(ehci_qh_t *qh, qtd_t *cur) { qtd_t *next; while (cur) { next = (qtd_t*)phys_to_virt(cur->next_qtd & ~31); free(cur); cur = next; } free(qh); } static int wait_for_tds(qtd_t *head) { int result = 0; qtd_t *cur = head; while (1) { if (0) dump_td(virt_to_phys(cur)); /* wait for results */ /* TOTEST: how long to wait? * tested with some USB2.0 flash sticks: * slowest took around 180ms */ int timeout = 10000; /* time out after 10000 * 50us == 500ms */ while ((cur->token & QTD_ACTIVE) && !(cur->token & QTD_HALTED) && timeout--) udelay(50); if (timeout < 0) { printf("Error: ehci: queue transfer " "processing timed out.\n"); return 1; } if (cur->token & QTD_HALTED) { printf("ERROR with packet\n"); dump_td(virt_to_phys(cur)); debug("-----------------\n"); return 1; } if (cur->next_qtd & 1) { return 0; } if (0) dump_td(virt_to_phys(cur)); /* helps debugging the TD chain */ if (0) debug("\nmoving from %x to %x\n", cur, phys_to_virt(cur->next_qtd)); cur = phys_to_virt(cur->next_qtd); } return result; } static int ehci_set_async_schedule(ehci_t *ehcic, int enable) { /* Set async schedule status. */ if (enable) ehcic->operation->usbcmd |= HC_OP_ASYNC_SCHED_EN; else ehcic->operation->usbcmd &= ~HC_OP_ASYNC_SCHED_EN; /* Wait for the controller to accept async schedule status. * This shouldn't take too long, but we should timeout nevertheless. */ enable = enable ? HC_OP_ASYNC_SCHED_STAT : 0; int timeout = 100; /* time out after 100ms */ while (((ehcic->operation->usbsts & HC_OP_ASYNC_SCHED_STAT) != enable) && timeout--) mdelay(1); if (timeout < 0) { debug("ehci async schedule status change timed out.\n"); return 1; } return 0; } static int ehci_process_async_schedule( ehci_t *ehcic, ehci_qh_t *qhead, qtd_t *head) { int result; /* make sure async schedule is disabled */ if (ehci_set_async_schedule(ehcic, 0)) return 1; /* hook up QH */ ehcic->operation->asynclistaddr = virt_to_phys(qhead); /* start async schedule */ if (ehci_set_async_schedule(ehcic, 1)) return 1; /* wait for result */ result = wait_for_tds(head); /* disable async schedule */ ehci_set_async_schedule(ehcic, 0); return result; } static int ehci_bulk (endpoint_t *ep, int size, u8 *data, int finalize) { int result = 0; int endp = ep->endpoint & 0xf; int pid = (ep->direction==IN)?EHCI_IN:EHCI_OUT; int hubaddr = 0, hubport = 0; if (ep->dev->speed < 2) { /* we need a split transaction */ if (closest_usb2_hub(ep->dev, &hubaddr, &hubport)) return 1; } qtd_t *head = memalign(32, sizeof(qtd_t)); qtd_t *cur = head; while (1) { memset(cur, 0, sizeof(qtd_t)); cur->token = QTD_ACTIVE | (pid << QTD_PID_SHIFT) | (0 << QTD_CERR_SHIFT); u32 chunk = fill_td(cur, data, size); size -= chunk; data += chunk; cur->alt_next_qtd = QTD_TERMINATE; if (size == 0) { cur->next_qtd = virt_to_phys(0) | QTD_TERMINATE; break; } else { qtd_t *next = memalign(32, sizeof(qtd_t)); cur->next_qtd = virt_to_phys(next); cur = next; } } /* create QH */ ehci_qh_t *qh = memalign(32, sizeof(ehci_qh_t)); memset(qh, 0, sizeof(ehci_qh_t)); qh->horiz_link_ptr = virt_to_phys(qh) | QH_QH; qh->epchar = ep->dev->address | (endp << QH_EP_SHIFT) | (ep->dev->speed << QH_EPS_SHIFT) | (0 << QH_DTC_SHIFT) | (1 << QH_RECLAIM_HEAD_SHIFT) | (ep->maxpacketsize << QH_MPS_SHIFT) | (0 << QH_NAK_CNT_SHIFT); qh->epcaps = (3 << QH_PIPE_MULTIPLIER_SHIFT) | (hubport << QH_PORT_NUMBER_SHIFT) | (hubaddr << QH_HUB_ADDRESS_SHIFT); qh->td.next_qtd = virt_to_phys(head); qh->td.token |= (ep->toggle?QTD_TOGGLE_DATA1:0); head->token |= (ep->toggle?QTD_TOGGLE_DATA1:0); result = ehci_process_async_schedule( EHCI_INST(ep->dev->controller), qh, head); ep->toggle = (cur->token & QTD_TOGGLE_MASK) >> QTD_TOGGLE_SHIFT; free_qh_and_tds(qh, head); return result; } /* FIXME: Handle control transfers as 3 QHs, so the 2nd stage can be >0x4000 bytes */ static int ehci_control (usbdev_t *dev, direction_t dir, int drlen, void *devreq, int dalen, u8 *data) { int endp = 0; // this is control. always 0 (for now) int toggle = 0; int mlen = dev->endpoints[0].maxpacketsize; int result = 0; int hubaddr = 0, hubport = 0, non_hs_ctrl_ep = 0; if (dev->speed < 2) { /* we need a split transaction */ if (closest_usb2_hub(dev, &hubaddr, &hubport)) return 1; non_hs_ctrl_ep = 1; } /* create qTDs */ qtd_t *head = memalign(32, sizeof(qtd_t)); qtd_t *cur = head; memset(cur, 0, sizeof(qtd_t)); cur->token = QTD_ACTIVE | (toggle?QTD_TOGGLE_DATA1:0) | (EHCI_SETUP << QTD_PID_SHIFT) | (3 << QTD_CERR_SHIFT); if (fill_td(cur, devreq, drlen) != drlen) { printf("ERROR: couldn't send the entire device request\n"); } qtd_t *next = memalign(32, sizeof(qtd_t)); cur->next_qtd = virt_to_phys(next); cur->alt_next_qtd = QTD_TERMINATE; /* FIXME: We're limited to 16-20K (depending on alignment) for payload for now. * Figure out, how toggle can be set sensibly in this scenario */ if (dalen > 0) { toggle ^= 1; cur = next; memset(cur, 0, sizeof(qtd_t)); cur->token = QTD_ACTIVE | (toggle?QTD_TOGGLE_DATA1:0) | (((dir == OUT)?EHCI_OUT:EHCI_IN) << QTD_PID_SHIFT) | (3 << QTD_CERR_SHIFT); if (fill_td(cur, data, dalen) != dalen) { printf("ERROR: couldn't send the entire control payload\n"); } next = memalign(32, sizeof(qtd_t)); cur->next_qtd = virt_to_phys(next); cur->alt_next_qtd = QTD_TERMINATE; } toggle = 1; cur = next; memset(cur, 0, sizeof(qtd_t)); cur->token = QTD_ACTIVE | (toggle?QTD_TOGGLE_DATA1:QTD_TOGGLE_DATA0) | ((dir == OUT)?EHCI_IN:EHCI_OUT) << QTD_PID_SHIFT | (0 << QTD_CERR_SHIFT); fill_td(cur, NULL, 0); cur->next_qtd = virt_to_phys(0) | QTD_TERMINATE; cur->alt_next_qtd = QTD_TERMINATE; /* create QH */ ehci_qh_t *qh = memalign(32, sizeof(ehci_qh_t)); memset(qh, 0, sizeof(ehci_qh_t)); qh->horiz_link_ptr = virt_to_phys(qh) | QH_QH; qh->epchar = dev->address | (endp << QH_EP_SHIFT) | (dev->speed << QH_EPS_SHIFT) | (1 << QH_DTC_SHIFT) | /* ctrl transfers are special: take toggle bit from TD */ (1 << QH_RECLAIM_HEAD_SHIFT) | (mlen << QH_MPS_SHIFT) | (non_hs_ctrl_ep << QH_NON_HS_CTRL_EP_SHIFT) | (0 << QH_NAK_CNT_SHIFT); qh->epcaps = (3 << QH_PIPE_MULTIPLIER_SHIFT) | (hubport << QH_PORT_NUMBER_SHIFT) | (hubaddr << QH_HUB_ADDRESS_SHIFT); qh->td.next_qtd = virt_to_phys(head); result = ehci_process_async_schedule( EHCI_INST(dev->controller), qh, head); free_qh_and_tds(qh, head); return result; } typedef struct _intr_qtd_t intr_qtd_t; struct _intr_qtd_t { volatile qtd_t td; u8 *data; intr_qtd_t *next; }; typedef struct { volatile ehci_qh_t qh; intr_qtd_t *head; intr_qtd_t *tail; u8 *data; endpoint_t *endp; int reqsize; } intr_queue_t; static void fill_intr_queue_td( intr_queue_t *const intrq, intr_qtd_t *const intr_qtd, u8 *const data) { const int pid = (intrq->endp->direction == IN) ? EHCI_IN : (intrq->endp->direction == OUT) ? EHCI_OUT : EHCI_SETUP; const int cerr = (intrq->endp->dev->speed < 2) ? 1 : 0; memset(intr_qtd, 0, sizeof(*intr_qtd)); intr_qtd->td.next_qtd = QTD_TERMINATE; intr_qtd->td.alt_next_qtd = QTD_TERMINATE; intr_qtd->td.token = QTD_ACTIVE | (pid << QTD_PID_SHIFT) | (cerr << QTD_CERR_SHIFT) | ((intrq->endp->toggle & 1) << QTD_TOGGLE_SHIFT); fill_td(&intr_qtd->td, data, intrq->reqsize); intr_qtd->data = data; intr_qtd->next = NULL; intrq->endp->toggle ^= 1; } static void ehci_destroy_intr_queue(endpoint_t *const, void *const); static void *ehci_create_intr_queue( endpoint_t *const ep, const int reqsize, int reqcount, const int reqtiming) { int i; if ((reqsize > (4 * 4096 + 1)) || /* the maximum for arbitrary aligned data in five 4096 byte pages */ (reqtiming > 1024)) return NULL; if (reqcount < 2) /* we need at least 2: one for processing, one for the hc to advance to */ reqcount = 2; int hubaddr = 0, hubport = 0; if (ep->dev->speed < 2) { /* we need a split transaction */ if (closest_usb2_hub(ep->dev, &hubaddr, &hubport)) return NULL; } intr_queue_t *const intrq = (intr_queue_t *)memalign(32, sizeof(intr_queue_t)); u8 *data = (u8 *)malloc(reqsize * reqcount); if (!intrq || !data) fatal("Not enough memory to create USB interrupt queue.\n"); intrq->data = data; intrq->endp = ep; intrq->reqsize = reqsize; /* create #reqcount transfer descriptors (qTDs) */ intrq->head = (intr_qtd_t *)memalign(32, sizeof(intr_qtd_t)); intr_qtd_t *cur_td = intrq->head; for (i = 0; i < reqcount; ++i) { fill_intr_queue_td(intrq, cur_td, data); data += reqsize; if (i < reqcount - 1) { /* create one more qTD */ intr_qtd_t *const next_td = (intr_qtd_t *)memalign(32, sizeof(intr_qtd_t)); cur_td->td.next_qtd = virt_to_phys(&next_td->td); cur_td->next = next_td; cur_td = next_td; } } intrq->tail = cur_td; /* initialize QH */ const int endp = ep->endpoint & 0xf; memset(&intrq->qh, 0, sizeof(intrq->qh)); intrq->qh.horiz_link_ptr = PS_TERMINATE; intrq->qh.epchar = ep->dev->address | (endp << QH_EP_SHIFT) | (ep->dev->speed << QH_EPS_SHIFT) | (1 << QH_DTC_SHIFT) | (0 << QH_RECLAIM_HEAD_SHIFT) | (ep->maxpacketsize << QH_MPS_SHIFT) | (0 << QH_NAK_CNT_SHIFT); intrq->qh.epcaps = (1 << QH_PIPE_MULTIPLIER_SHIFT) | (hubport << QH_PORT_NUMBER_SHIFT) | (hubaddr << QH_HUB_ADDRESS_SHIFT) | (0xfe << QH_UFRAME_CMASK_SHIFT) | 1 /* uFrame S-mask */; intrq->qh.td.next_qtd = virt_to_phys(&intrq->head->td); /* insert QH into periodic schedule */ int nothing_placed = 1; u32 *const ps = (u32 *)phys_to_virt(EHCI_INST(ep->dev->controller) ->operation->periodiclistbase); for (i = 0; i < 1024; i += reqtiming) { /* advance to the next free position */ while ((i < 1024) && !(ps[i] & PS_TERMINATE)) ++i; if (i < 1024) { ps[i] = virt_to_phys(&intrq->qh) | PS_TYPE_QH; nothing_placed = 0; } } if (nothing_placed) { printf("Error: Failed to place ehci interrupt queue head " "into periodic schedule: no space left\n"); ehci_destroy_intr_queue(ep, intrq); return NULL; } return intrq; } static void ehci_destroy_intr_queue(endpoint_t *const ep, void *const queue) { intr_queue_t *const intrq = (intr_queue_t *)queue; /* remove QH from periodic schedule */ int i; u32 *const ps = (u32 *)phys_to_virt(EHCI_INST( ep->dev->controller)->operation->periodiclistbase); for (i = 0; i < 1024; ++i) { if ((ps[i] & PS_PTR_MASK) == virt_to_phys(&intrq->qh)) ps[i] = PS_TERMINATE; } /* wait 1ms for frame to end */ mdelay(1); while (intrq->head) { /* disable qTD and destroy list */ intrq->head->td.next_qtd = QTD_TERMINATE; intrq->head->td.token &= ~QTD_ACTIVE; /* save and advance head ptr */ intr_qtd_t *const to_free = intrq->head; intrq->head = intrq->head->next; /* free current interrupt qTD */ free(to_free); } free(intrq->data); free(intrq); } static u8 *ehci_poll_intr_queue(void *const queue) { intr_queue_t *const intrq = (intr_queue_t *)queue; u8 *ret = NULL; /* process if head qTD is inactive AND QH has been moved forward */ if (!(intrq->head->td.token & QTD_ACTIVE) && (intrq->qh.current_td_ptr != virt_to_phys(&intrq->head->td))) { if (!(intrq->head->td.token & QTD_STATUS_MASK)) ret = intrq->head->data; else debug("ehci_poll_intr_queue: transfer failed, " "status == 0x%02x\n", intrq->head->td.token & QTD_STATUS_MASK); /* save and advance our head ptr */ intr_qtd_t *const new_td = intrq->head; intrq->head = intrq->head->next; /* reuse executed qTD */ fill_intr_queue_td(intrq, new_td, new_td->data); /* at last insert reused qTD at the * end and advance our tail ptr */ intrq->tail->td.next_qtd = virt_to_phys(&new_td->td); intrq->tail->next = new_td; intrq->tail = intrq->tail->next; } return ret; } hci_t * ehci_init (pcidev_t addr) { int i; hci_t *controller = new_controller (); if (!controller) fatal("Could not create USB controller instance.\n"); controller->instance = malloc (sizeof (ehci_t)); if(!controller->instance) fatal("Not enough memory creating USB controller instance.\n"); #define PCI_COMMAND 4 #define PCI_COMMAND_IO 1 #define PCI_COMMAND_MEMORY 2 #define PCI_COMMAND_MASTER 4 u32 pci_command = pci_read_config32(addr, PCI_COMMAND); pci_command = (pci_command | PCI_COMMAND_MEMORY) & ~PCI_COMMAND_IO ; pci_write_config32(addr, PCI_COMMAND, pci_command); controller->start = ehci_start; controller->stop = ehci_stop; controller->reset = ehci_reset; controller->shutdown = ehci_shutdown; controller->bulk = ehci_bulk; controller->control = ehci_control; controller->create_intr_queue = ehci_create_intr_queue; controller->destroy_intr_queue = ehci_destroy_intr_queue; controller->poll_intr_queue = ehci_poll_intr_queue; controller->bus_address = addr; for (i = 0; i < 128; i++) { controller->devices[i] = 0; } init_device_entry (controller, 0); EHCI_INST(controller)->capabilities = phys_to_virt(pci_read_config32(addr, USBBASE)); EHCI_INST(controller)->operation = (hc_op_t *)(phys_to_virt(pci_read_config32(addr, USBBASE)) + EHCI_INST(controller)->capabilities->caplength); /* default value for frame length adjust */ pci_write_config8(addr, FLADJ, FLADJ_framelength(60000)); /* Enable operation of controller */ controller->start(controller); /* take over all ports. USB1 should be blind now */ EHCI_INST(controller)->operation->configflag = 1; /* Initialize periodic frame list */ /* 1024 32-bit pointers, 4kb aligned */ u32 *const periodic_list = (u32 *)memalign(4096, 1024 * sizeof(u32)); if (!periodic_list) fatal("Not enough memory creating EHCI periodic frame list.\n"); for (i = 0; i < 1024; ++i) periodic_list[i] = PS_TERMINATE; /* Make sure periodic schedule is disabled */ ehci_set_periodic_schedule(EHCI_INST(controller), 0); /* Set periodic frame list pointer */ EHCI_INST(controller)->operation->periodiclistbase = virt_to_phys(periodic_list); /* Enable use of periodic schedule */ ehci_set_periodic_schedule(EHCI_INST(controller), 1); /* TODO lots of stuff missing */ controller->devices[0]->controller = controller; controller->devices[0]->init = ehci_rh_init; controller->devices[0]->init (controller->devices[0]); return controller; }