/* SPDX-License-Identifier: GPL-2.0-only */

#include <tests/test.h>

#include <device/device.h>
#include <device/resource.h>
#include <commonlib/helpers.h>
#include <memrange.h>

#define MEMRANGE_ALIGN (POWER_OF_2(12))

enum mem_types {
	/* Avoid using 0 to verify that UUT really sets this memory,
	   but keep value small, as this will be an index in the table */
	CACHEABLE_TAG = 0x10,
	RESERVED_TAG,
	READONLY_TAG,
	INSERTED_TAG,
	HOLE_TAG,
	END_OF_RESOURCES
};

/* Indices of entries matters, since it must reflect mem_types enum */
struct resource res_mock_1[] = {
	[CACHEABLE_TAG] = { .base = 0xE000, .size = 0xF2000,
	  .next = &res_mock_1[RESERVED_TAG], .flags = IORESOURCE_CACHEABLE | IORESOURCE_MEM },
	[RESERVED_TAG] = { .base = 4ULL * GiB, .size = 4ULL * KiB,
	  .next = &res_mock_1[READONLY_TAG], .flags = IORESOURCE_RESERVE | IORESOURCE_MEM },
	[READONLY_TAG] = { .base = 0xFF0000, .size = 0x10000, .next = NULL,
	  .flags = IORESOURCE_READONLY | IORESOURCE_MEM }
};

/* Boundary 1 byte below 4GiB and 1 byte above 4GiB. */
struct resource res_mock_2[] = {
	[CACHEABLE_TAG] = { .base = 0x1000000, .size = 4ULL * GiB - 0x1000001ULL,
	  .next = &res_mock_2[RESERVED_TAG], .flags = IORESOURCE_CACHEABLE | IORESOURCE_MEM },
	[RESERVED_TAG] = { .base = 4ULL * GiB + 1ULL, .size = 4ULL * GiB,
	  .next = &res_mock_2[READONLY_TAG], .flags = IORESOURCE_RESERVE | IORESOURCE_MEM },
	[READONLY_TAG] = { .base = 0, .size = 0x10000, .next = NULL,
	  .flags = IORESOURCE_READONLY | IORESOURCE_MEM}
};

/* Boundary crossing 4GiB. */
struct resource res_mock_3[] = {
	[CACHEABLE_TAG] = { .base = 0xD000, .size = 0xF3000,
	  .next = &res_mock_3[RESERVED_TAG], .flags = IORESOURCE_CACHEABLE | IORESOURCE_MEM },
	[RESERVED_TAG] = { .base = 1ULL * GiB, .size = 4ULL * GiB,
	  .next = &res_mock_3[READONLY_TAG], .flags = IORESOURCE_RESERVE | IORESOURCE_MEM },
	[READONLY_TAG] = { .base = 0xFF0000, .size = 0x10000, .next = NULL,
	  .flags = IORESOURCE_READONLY | IORESOURCE_MEM}
};


struct device mock_device = { .enabled = 1 };

/* Fake memory devices handle */
struct device *all_devices = &mock_device;

int setup_test_1(void **state)
{
	*state = res_mock_1;
	mock_device.resource_list = &res_mock_1[CACHEABLE_TAG];

	return 0;
}

int setup_test_2(void **state)
{
	*state = res_mock_2;
	mock_device.resource_list = &res_mock_2[CACHEABLE_TAG];

	return 0;
}

int setup_test_3(void **state)
{
	*state = res_mock_3;
	mock_device.resource_list = &res_mock_3[CACHEABLE_TAG];

	return 0;
}

resource_t get_aligned_base(struct resource *res, struct range_entry *entry)
{
	return ALIGN_DOWN(res[range_entry_tag(entry)].base, MEMRANGE_ALIGN);
}

resource_t get_aligned_end(struct resource *res, struct range_entry *entry)
{
	resource_t end = res[range_entry_tag(entry)].base +
			 res[range_entry_tag(entry)].size +
			 (res[range_entry_tag(entry)].base - range_entry_base(entry));
	return ALIGN_UP(end, MEMRANGE_ALIGN);
}

/*
 * This test verifies memranges_init(), memranges_add_resources() and memranges_teardown()
 * functions. It covers basic functionality of memrange library - implementation of creating
 * memrange structure from resources available on the platform and method for free'ing
 * allocated memory.
 *
 * Example memory ranges (res_mock1) for test_memrange_basic.
 * Ranges marked with asterisks (***) are not added to the test_memrange.
 *
 *     +--------CACHEABLE_TAG--------+ <-0xE000
 *     |                             |
 *     |                             |
 *     |                             |
 *     +-----------------------------+ <-0x100000
 *
 *
 *
 *     +-----***READONLY_TAG***------+ <-0xFF0000
 *     |                             |
 *     |                             |
 *     |                             |
 *     +-----------------------------+ <-0x1000000
 *
 *
 *     +--------RESERVED_TAG---------+ <-0x100000000
 *     |                             |
 *     +-----------------------------+ <-0x100001000
 */
static void test_memrange_basic(void **state)
{
	int counter = 0;
	const unsigned long cacheable = IORESOURCE_CACHEABLE;
	const unsigned long reserved = IORESOURCE_RESERVE;
	struct range_entry *ptr;
	struct memranges test_memrange;
	struct resource *res_mock = *state;
	resource_t prev_base = 0;

	memranges_init(&test_memrange, cacheable, cacheable, CACHEABLE_TAG);
	memranges_add_resources(&test_memrange, reserved, reserved, RESERVED_TAG);

	/* There should be two entries, since cacheable and
	   reserved regions are not neighbors */
	memranges_each_entry(ptr, &test_memrange) {
		assert_in_range(range_entry_tag(ptr), CACHEABLE_TAG, RESERVED_TAG);
		assert_int_equal(range_entry_base(ptr), get_aligned_base(res_mock, ptr));

		assert_int_equal(range_entry_end(ptr), get_aligned_end(res_mock, ptr));

		/* Ranges have to be returned in increasing order */
		assert_true(prev_base <= range_entry_base(ptr));

		prev_base = range_entry_base(ptr);
		counter++;
	};
	assert_int_equal(counter, 2);
	counter = 0;

	/* Remove initial memrange */
	memranges_teardown(&test_memrange);
	memranges_each_entry(ptr, &test_memrange)
		counter++;
	assert_int_equal(counter, 0);
}

/*
 * This test verifies memranges_clone(), memranges_insert() and memranges_update_tag()
 * functions. All operations are performed on cloned memrange. One of the most important thing
 * to check, is that memrange_insert() should remove all ranges which are covered by the newly
 * inserted one.
 *
 * Example memory ranges (res_mock1) for test_memrange_clone_insert.
 * Ranges marked with asterisks (***) are not added to the clone_memrange.
 * Ranges marked with (^) have tag value changed during test.
 *
 *                +--------CACHEABLE_TAG--------+ <-0xE000
 *         +------|----INSERTED_TAG----------+  | <-0xF000
 *         |      |  (^READONLY_TAG^)        |  |
 *         |      |                          |  |
 *         |      +-----------------------------+ <-0x100000
 *         +---------------------------------+    <-0x101000
 *
 *
 *                +-----***READONLY_TAG***------+ <-0xFF0000
 *                |                             |
 *                |                             |
 *                |                             |
 *                +-----------------------------+ <-0x1000000
 *
 *
 *         +------+---------RESERVED_TAG-----+--+ <-0x100000000
 *         |      |                          |  |
 *         |      +-----------------------------+ <-0x100001000
 *         +-----------INSERTED_TAG----------+    <-0x100002000
 */
static void test_memrange_clone_insert(void **state)
{
	int counter = 0;
	const unsigned long cacheable = IORESOURCE_CACHEABLE;
	const unsigned long reserved = IORESOURCE_RESERVE;
	struct range_entry *ptr;
	struct memranges test_memrange, clone_memrange;
	struct resource *res_mock = *state;
	const resource_t new_range_begin_offset = 1ULL << 12;

	memranges_init(&test_memrange, cacheable, cacheable, CACHEABLE_TAG);
	memranges_add_resources(&test_memrange, reserved, reserved, RESERVED_TAG);

	memranges_clone(&clone_memrange, &test_memrange);
	memranges_teardown(&test_memrange);

	/* Verify that new one is really a clone */
	memranges_each_entry(ptr, &clone_memrange) {
		assert_in_range(range_entry_tag(ptr), CACHEABLE_TAG, END_OF_RESOURCES - 1);
		assert_int_equal(range_entry_base(ptr), get_aligned_base(res_mock, ptr));

		assert_int_equal(range_entry_end(ptr), get_aligned_end(res_mock, ptr));

		counter++;
	};
	assert_int_equal(counter, 2);
	counter = 0;

	/* Insert new range, which will overlap with first region. */
	memranges_insert(&clone_memrange, res_mock[CACHEABLE_TAG].base + new_range_begin_offset,
			 res_mock[CACHEABLE_TAG].size, INSERTED_TAG);

	/* Three ranges should be there - CACHEABLE(shrunk), INSERTED and RESERVED */
	memranges_each_entry(ptr, &clone_memrange) {
		resource_t expected_end;

		if (range_entry_tag(ptr) == CACHEABLE_TAG) {
			assert_int_equal(range_entry_base(ptr), res_mock[CACHEABLE_TAG].base);

			expected_end = res_mock[CACHEABLE_TAG].base + new_range_begin_offset;
			assert_int_equal(range_entry_end(ptr), expected_end);
		}
		if (range_entry_tag(ptr) == INSERTED_TAG) {
			assert_int_equal(range_entry_base(ptr),
					 res_mock[CACHEABLE_TAG].base + new_range_begin_offset);

			expected_end = res_mock[CACHEABLE_TAG].base + new_range_begin_offset +
				       res_mock[CACHEABLE_TAG].size;
			assert_int_equal(range_entry_end(ptr),
					ALIGN_UP(expected_end, MEMRANGE_ALIGN));
		}
		counter++;
	}
	assert_int_equal(counter, 3);
	counter = 0;

	/* Insert new region, which will shadow readonly range.
	 * Additionally verify API for updating tags */
	memranges_update_tag(&clone_memrange, INSERTED_TAG, READONLY_TAG);

	memranges_each_entry(ptr, &clone_memrange) {
		resource_t expected_end;

		assert_int_not_equal(range_entry_tag(ptr), INSERTED_TAG);
		if (range_entry_tag(ptr) == READONLY_TAG) {
			assert_int_equal(range_entry_base(ptr),
					 res_mock[CACHEABLE_TAG].base + new_range_begin_offset);

			expected_end = res_mock[CACHEABLE_TAG].base + new_range_begin_offset +
				       res_mock[CACHEABLE_TAG].size;
			assert_int_equal(range_entry_end(ptr),
					ALIGN_UP(expected_end, MEMRANGE_ALIGN));
		}
	};

	/* Check if alignment (4KiB) is properly applied, that is begin - DOWN and end - UP */
	memranges_insert(&clone_memrange, res_mock[RESERVED_TAG].base + 0xAD,
			 res_mock[RESERVED_TAG].size, INSERTED_TAG);

	memranges_each_entry(ptr, &clone_memrange) {
		resource_t expected_end;

		assert_int_not_equal(range_entry_tag(ptr), RESERVED_TAG);
		if (range_entry_tag(ptr) == INSERTED_TAG) {
			assert_int_equal(range_entry_base(ptr),
					ALIGN_DOWN(res_mock[RESERVED_TAG].base,
							MEMRANGE_ALIGN));

			expected_end = ALIGN_DOWN(res_mock[RESERVED_TAG].base, MEMRANGE_ALIGN) +
					new_range_begin_offset + res_mock[RESERVED_TAG].size;
			expected_end = ALIGN_UP(expected_end, MEMRANGE_ALIGN);

			assert_int_equal(range_entry_end(ptr), expected_end);
		}
		counter++;
	}
	assert_int_equal(counter, 3);

	/* Free clone */
	memranges_teardown(&clone_memrange);
}

/*
 * This test verifies memranges_fill_holes_up_to() and memranges_create_hole(). Idea of the test
 * is to fill all holes, so that we end up with contiguous address space fully covered by
 * entries. Then, holes are created on the border of two different regions
 *
 * Example memory ranges (res_mock1) for test_memrange_holes.
 * Space marked with (/) is not covered by any region at the end of the test.
 *
 *     +--------CACHEABLE_TAG--------+ <-0xE000
 *     |                             |
 *     |                             |
 *   //|/////////////////////////////| <-0xFF000
 *   //+-----------HOLE_TAG----------+ <-0x100000
 *   //|/////////////////////////////| <-0x101000
 *     |                             |
 *     |                             |
 *     |                             |
 *     |                             |
 *     +--------RESERVED_TAG---------+ <-0x100000000
 *     |                             |
 *     +-----------------------------+ <-0x100001000
 */
static void test_memrange_holes(void **state)
{
	int counter = 0;
	const unsigned long cacheable = IORESOURCE_CACHEABLE;
	const unsigned long reserved = IORESOURCE_RESERVE;
	struct range_entry *ptr;
	struct range_entry *hole_ptr = NULL;
	struct memranges test_memrange;
	struct resource *res_mock = *state;
	int holes_found = 0;
	resource_t last_range_end = 0;
	const resource_t holes_fill_end = res_mock[RESERVED_TAG].base;

	memranges_init(&test_memrange, cacheable, cacheable, CACHEABLE_TAG);
	memranges_add_resources(&test_memrange, reserved, reserved, RESERVED_TAG);

	/* Count holes in ranges */
	memranges_each_entry(ptr, &test_memrange) {
		if (!last_range_end) {
			last_range_end = range_entry_end(ptr);
			continue;
		}


		if (range_entry_base(ptr) != last_range_end) {
			holes_found++;
			last_range_end = range_entry_end(ptr);
		}

		if (range_entry_base(ptr) >= holes_fill_end)
			break;
	}

	/* Create range entries which covers continuous memory range
	   (but with different tags) */
	memranges_fill_holes_up_to(&test_memrange, holes_fill_end, HOLE_TAG);

	memranges_each_entry(ptr, &test_memrange) {
		if (range_entry_tag(ptr) == HOLE_TAG) {
			assert_int_equal(range_entry_base(ptr),
					ALIGN_UP(res_mock[CACHEABLE_TAG].base +
						res_mock[CACHEABLE_TAG].size,
						MEMRANGE_ALIGN));
			assert_int_equal(range_entry_end(ptr), holes_fill_end);
			/* Store pointer to HOLE_TAG region for future use */
			hole_ptr = ptr;
		}
		counter++;
	}
	assert_int_equal(counter, 2 + holes_found);

	/* If test data does not have any holes in it then terminate this test */
	if (holes_found == 0)
		return;

	assert_non_null(hole_ptr);
	counter = 0;

	/* Create hole crossing the border of two range entries */
	const resource_t new_cacheable_end = ALIGN_DOWN(
			res_mock[CACHEABLE_TAG].base + res_mock[CACHEABLE_TAG].size - 4 * KiB,
			MEMRANGE_ALIGN);
	const resource_t new_hole_begin = ALIGN_UP(range_entry_base(hole_ptr) + 4 * KiB,
							MEMRANGE_ALIGN);
	const resource_t ranges_diff = new_hole_begin - new_cacheable_end;

	memranges_create_hole(&test_memrange, new_cacheable_end, ranges_diff);

	memranges_each_entry(ptr, &test_memrange) {
		switch (range_entry_tag(ptr)) {
		case CACHEABLE_TAG:
			assert_int_equal(range_entry_base(ptr), res_mock[CACHEABLE_TAG].base);
			assert_int_equal(range_entry_end(ptr), new_cacheable_end);
			break;
		case RESERVED_TAG:
			assert_int_equal(range_entry_base(ptr), res_mock[RESERVED_TAG].base);
			assert_int_equal(range_entry_end(ptr), res_mock[RESERVED_TAG].base +
								res_mock[RESERVED_TAG].size);
			break;
		case HOLE_TAG:
			assert_int_equal(range_entry_base(ptr), new_hole_begin);
			assert_int_equal(range_entry_end(ptr), res_mock[RESERVED_TAG].base);
			break;
		default:
			break;
		}
		counter++;
	}
	assert_int_equal(counter, 3);

	memranges_teardown(&test_memrange);
}

/*
 * This test verifies memranges_steal() function. Simple check is done by attempt so steal some
 * memory from region with READONLY_TAG.
 *
 * Example memory ranges (res_mock1) for test_memrange_steal.
 * Space marked with (/) is not covered by any region at the end of the test.
 *
 *     +--------CACHEABLE_TAG--------+ <-0xE000
 *     |                             |
 *     |                             |
 *     |                             |
 *     +-----------------------------+ <-0x100000
 *
 *
 *
 *     +--------READONLY_TAG---------+ <-0xFF0000
 *     |                             |
 *     |/////////////////////////////| <-stolen_base
 *     |/////////////////////////////| <-stolen_base + 0x4000
 *     +-----------------------------+ <-0x1000000
 *
 *
 *     +--------RESERVED_TAG---------+ <-0x100000000
 *     |                             |
 *     +-----------------------------+ <-0x100001000
 */
static void test_memrange_steal(void **state)
{
	bool status = false;
	resource_t stolen;
	const unsigned long cacheable = IORESOURCE_CACHEABLE;
	const unsigned long reserved = IORESOURCE_RESERVE;
	const unsigned long readonly = IORESOURCE_READONLY;
	const resource_t stolen_range_size = 0x4000;
	struct memranges test_memrange;
	struct resource *res_mock = *state;
	struct range_entry *ptr;
	size_t count = 0;

	memranges_init(&test_memrange, cacheable, cacheable, CACHEABLE_TAG);
	memranges_add_resources(&test_memrange, reserved, reserved, RESERVED_TAG);
	memranges_add_resources(&test_memrange, readonly, readonly, READONLY_TAG);

	status = memranges_steal(&test_memrange, res_mock[RESERVED_TAG].base +
				 res_mock[RESERVED_TAG].size,
				 stolen_range_size, 12, READONLY_TAG, &stolen);
	assert_true(status);
	assert_in_range(stolen, res_mock[READONLY_TAG].base, res_mock[READONLY_TAG].base +
			res_mock[READONLY_TAG].size);

	memranges_each_entry(ptr, &test_memrange) {
		if (range_entry_tag(ptr) == READONLY_TAG) {
			assert_int_equal(range_entry_base(ptr),
					ALIGN_DOWN(res_mock[READONLY_TAG].base, MEMRANGE_ALIGN)
						+ stolen_range_size);
		}
		count++;
	}
	assert_int_equal(count, 3);
	count = 0;

	/* Check if inserting range in previously stolen area will merge it. */
	memranges_insert(&test_memrange, res_mock[READONLY_TAG].base + 0xCC, stolen_range_size,
			READONLY_TAG);
	memranges_each_entry(ptr, &test_memrange) {
		if (range_entry_tag(ptr) == READONLY_TAG) {
			assert_int_equal(range_entry_base(ptr),
					ALIGN_DOWN(res_mock[READONLY_TAG].base,
						MEMRANGE_ALIGN));
			assert_int_equal(range_entry_end(ptr),
					ALIGN_UP(range_entry_base(ptr) +
						res_mock[READONLY_TAG].size,
						MEMRANGE_ALIGN));
		}
		count++;
	}
	assert_int_equal(count, 3);
	count = 0;

	memranges_teardown(&test_memrange);
}

/* Utility function checking number of entries and alignment of their base and end pointers */
static void check_range_entries_count_and_alignment(struct memranges *ranges,
						size_t ranges_count, resource_t alignment)
{
	size_t count = 0;
	struct range_entry *ptr;

	memranges_each_entry(ptr, ranges) {
		assert_true(IS_ALIGNED(range_entry_base(ptr), alignment));
		assert_true(IS_ALIGNED(range_entry_end(ptr), alignment));

		count++;
	}
	assert_int_equal(ranges_count, count);
}

/* This test verifies memranges_init*() and memranges_teardown() functions.
   Added ranges are checked correct count and alignment. */
static void test_memrange_init_and_teardown(void **state)
{
	const unsigned long cacheable = IORESOURCE_CACHEABLE;
	const unsigned long reserved = IORESOURCE_RESERVE;
	const unsigned long readonly = IORESOURCE_READONLY;
	struct memranges test_memrange;
	struct range_entry range_entries[4] = { 0 };

	/* Test memranges_init() correctness */
	memranges_init(&test_memrange, cacheable, cacheable, CACHEABLE_TAG);
	memranges_add_resources(&test_memrange, reserved, reserved, RESERVED_TAG);
	memranges_add_resources(&test_memrange, readonly, readonly, READONLY_TAG);

	/* Expect all entries to be aligned to 4KiB (2^12) */
	check_range_entries_count_and_alignment(&test_memrange, 3, MEMRANGE_ALIGN);

	/* Expect ranges list to be empty after teardown */
	memranges_teardown(&test_memrange);
	assert_true(memranges_is_empty(&test_memrange));


	/* Test memranges_init_with_alignment() correctness with alignment of 1KiB (2^10) */
	memranges_init_with_alignment(&test_memrange, cacheable, cacheable,
					CACHEABLE_TAG, 10);
	memranges_add_resources(&test_memrange, reserved, reserved, RESERVED_TAG);
	memranges_add_resources(&test_memrange, readonly, readonly, READONLY_TAG);

	check_range_entries_count_and_alignment(&test_memrange, 3, POWER_OF_2(10));

	memranges_teardown(&test_memrange);
	assert_true(memranges_is_empty(&test_memrange));


	/* Test memranges_init_empty() correctness */
	memranges_init_empty(&test_memrange, &range_entries[0], ARRAY_SIZE(range_entries));
	assert_true(memranges_is_empty(&test_memrange));

	memranges_add_resources(&test_memrange, cacheable, cacheable, CACHEABLE_TAG);
	memranges_add_resources(&test_memrange, reserved, reserved, RESERVED_TAG);
	memranges_add_resources(&test_memrange, readonly, readonly, READONLY_TAG);

	check_range_entries_count_and_alignment(&test_memrange, 3, MEMRANGE_ALIGN);

	memranges_teardown(&test_memrange);
	assert_true(memranges_is_empty(&test_memrange));


	/* Test memranges_init_with_alignment() correctness with alignment of 8KiB (2^13) */
	memranges_init_empty_with_alignment(&test_memrange, &range_entries[0],
						ARRAY_SIZE(range_entries), 13);
	assert_true(memranges_is_empty(&test_memrange));

	memranges_add_resources(&test_memrange, cacheable, cacheable, CACHEABLE_TAG);
	memranges_add_resources(&test_memrange, reserved, reserved, RESERVED_TAG);
	memranges_add_resources(&test_memrange, readonly, readonly, READONLY_TAG);

	check_range_entries_count_and_alignment(&test_memrange, 3, POWER_OF_2(13));

	memranges_teardown(&test_memrange);
	assert_true(memranges_is_empty(&test_memrange));
}

/* Filter function accepting ranges having memory resource flag */
static int memrange_filter_mem_only(struct device *dev, struct resource *res)
{
	/* Accept only memory resources */
	return res->flags & IORESOURCE_MEM;
}

/* Filter function rejecting ranges having memory resource flag */
static int memrange_filter_non_mem(struct device *dev, struct resource *res)
{
	/* Accept only memory resources */
	return !(res->flags & IORESOURCE_MEM);
}

/* This test verifies memranges_add_resources_filter() function by providing filter functions
   which accept or reject ranges. */
static void test_memrange_add_resources_filter(void **state)
{
	const unsigned long cacheable = IORESOURCE_CACHEABLE;
	const unsigned long reserved = IORESOURCE_RESERVE;
	struct memranges test_memrange;
	struct range_entry *ptr;
	size_t count = 0;
	size_t accepted_tags[] = {CACHEABLE_TAG, RESERVED_TAG};

	/* Check if filter accepts range correctly */
	memranges_init(&test_memrange, reserved, reserved, RESERVED_TAG);
	memranges_add_resources_filter(&test_memrange, cacheable, cacheable, CACHEABLE_TAG,
					memrange_filter_mem_only);

	/* Check if filter accepted desired range. */
	memranges_each_entry(ptr, &test_memrange) {
		assert_in_set(range_entry_tag(ptr), accepted_tags, ARRAY_SIZE(accepted_tags));
		assert_true(IS_ALIGNED(range_entry_base(ptr), MEMRANGE_ALIGN));
		assert_true(IS_ALIGNED(range_entry_end(ptr), MEMRANGE_ALIGN));
		count++;
	}
	assert_int_equal(2, count);
	count = 0;
	memranges_teardown(&test_memrange);

	/* Check if filter rejects range correctly */
	memranges_init(&test_memrange, reserved, reserved, RESERVED_TAG);
	memranges_add_resources_filter(&test_memrange, cacheable, cacheable, CACHEABLE_TAG,
			memrange_filter_non_mem);

	check_range_entries_count_and_alignment(&test_memrange, 1, MEMRANGE_ALIGN);

	memranges_teardown(&test_memrange);
}

int main(void)
{
	const struct CMUnitTest tests[] = {
		cmocka_unit_test(test_memrange_basic),
		cmocka_unit_test(test_memrange_clone_insert),
		cmocka_unit_test(test_memrange_holes),
		cmocka_unit_test(test_memrange_steal),
		cmocka_unit_test(test_memrange_init_and_teardown),
		cmocka_unit_test(test_memrange_add_resources_filter),
	};

	return cmocka_run_group_tests_name("Boundary on 4GiB",
						tests, setup_test_1, NULL) +
		cmocka_run_group_tests_name("Boundaries 1 byte from 4GiB",
						tests, setup_test_2, NULL) +
		cmocka_run_group_tests_name("Range over 4GiB boundary",
						tests, setup_test_3, NULL);
}