/* * This file is part of the coreboot project. * * Copyright (C) 2008-2009 coresystems GmbH * Copyright (C) 2014 Google Inc. * Copyright (C) 2015 Intel Corporation. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* IO Trap PCRs */ /* Trap status Register */ #define PCR_PSTH_TRPST 0x1E00 /* Trapped cycle */ #define PCR_PSTH_TRPC 0x1E10 /* Trapped write data */ #define PCR_PSTH_TRPD 0x1E18 static u8 smm_initialized = 0; /* * GNVS needs to be updated by an 0xEA PM Trap (B2) after it has been located * by coreboot. */ static global_nvs_t *gnvs; global_nvs_t *smm_get_gnvs(void) { return gnvs; } int southbridge_io_trap_handler(int smif) { switch (smif) { case 0x32: printk(BIOS_DEBUG, "OS Init\n"); /* * gnvs->smif: * - On success, the IO Trap Handler returns 0 * - On failure, the IO Trap Handler returns a value != 0 */ gnvs->smif = 0; return 1; /* IO trap handled */ } /* Not handled */ return 0; } /* Set the EOS bit */ void southbridge_smi_set_eos(void) { pmc_enable_smi(EOS); } static void busmaster_disable_on_bus(int bus) { int slot, func; unsigned int val; unsigned char hdr; for (slot = 0; slot < 0x20; slot++) { for (func = 0; func < 8; func++) { u32 reg32; device_t dev = PCI_DEV(bus, slot, func); val = pci_read_config32(dev, PCI_VENDOR_ID); if (val == 0xffffffff || val == 0x00000000 || val == 0x0000ffff || val == 0xffff0000) continue; /* Disable Bus Mastering for this one device */ reg32 = pci_read_config32(dev, PCI_COMMAND); reg32 &= ~PCI_COMMAND_MASTER; pci_write_config32(dev, PCI_COMMAND, reg32); /* If this is a bridge, then follow it. */ hdr = pci_read_config8(dev, PCI_HEADER_TYPE); hdr &= 0x7f; if (hdr == PCI_HEADER_TYPE_BRIDGE || hdr == PCI_HEADER_TYPE_CARDBUS) { unsigned int buses; buses = pci_read_config32(dev, PCI_PRIMARY_BUS); busmaster_disable_on_bus((buses >> 8) & 0xff); } } } } static void southbridge_smi_sleep(void) { u8 reg8; u32 reg32; u8 slp_typ; u8 s5pwr = CONFIG_MAINBOARD_POWER_ON_AFTER_POWER_FAIL; /* save and recover RTC port values */ u8 tmp70, tmp72; tmp70 = inb(0x70); tmp72 = inb(0x72); get_option(&s5pwr, "power_on_after_fail"); outb(tmp70, 0x70); outb(tmp72, 0x72); /* First, disable further SMIs */ pmc_disable_smi(SLP_SMI_EN); /* Figure out SLP_TYP */ reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT); printk(BIOS_SPEW, "SMI#: SLP = 0x%08x\n", reg32); slp_typ = acpi_sleep_from_pm1(reg32); /* Do any mainboard sleep handling */ mainboard_smi_sleep(slp_typ); if (IS_ENABLED(CONFIG_ELOG_GSMI)) /* Log S3, S4, and S5 entry */ if (slp_typ >= ACPI_S3) elog_add_event_byte(ELOG_TYPE_ACPI_ENTER, slp_typ); /* Clear pending GPE events */ pmc_clear_gpe_status(); /* Next, do the deed. */ switch (slp_typ) { case ACPI_S0: printk(BIOS_DEBUG, "SMI#: Entering S0 (On)\n"); break; case ACPI_S1: printk(BIOS_DEBUG, "SMI#: Entering S1 (Assert STPCLK#)\n"); break; case ACPI_S3: printk(BIOS_DEBUG, "SMI#: Entering S3 (Suspend-To-RAM)\n"); gnvs->uior = uart_debug_controller_is_initialized(); /* Invalidate the cache before going to S3 */ wbinvd(); break; case ACPI_S5: printk(BIOS_DEBUG, "SMI#: Entering S5 (Soft Power off)\n"); /*TODO: cmos_layout.bin need to verify; cause wrong CMOS setup*/ s5pwr = MAINBOARD_POWER_ON; /* Disable all GPE */ pmc_disable_all_gpe(); /* * Always set the flag in case CMOS was changed on runtime. For * "KEEP", switch to "OFF" - KEEP is software emulated */ reg8 = pci_read_config8(PCH_DEV_PMC, GEN_PMCON_B); if (s5pwr == MAINBOARD_POWER_ON) reg8 &= ~1; else reg8 |= 1; pci_write_config8(PCH_DEV_PMC, GEN_PMCON_B, reg8); /* also iterates over all bridges on bus 0 */ busmaster_disable_on_bus(0); break; default: printk(BIOS_DEBUG, "SMI#: ERROR: SLP_TYP reserved\n"); break; } /* * Write back to the SLP register to cause the originally intended * event again. We need to set BIT13 (SLP_EN) though to make the * sleep happen. */ pmc_enable_pm1_control(SLP_EN); /* Make sure to stop executing code here for S3/S4/S5 */ if (slp_typ >= ACPI_S3) hlt(); /* * In most sleep states, the code flow of this function ends at * the line above. However, if we entered sleep state S1 and wake * up again, we will continue to execute code in this function. */ reg32 = inl(ACPI_BASE_ADDRESS + PM1_CNT); if (reg32 & SCI_EN) { /* The OS is not an ACPI OS, so we set the state to S0 */ pmc_disable_pm1_control(SLP_EN | SLP_TYP); } } /* * Look for Synchronous IO SMI and use save state from that * core in case we are not running on the same core that * initiated the IO transaction. */ static em64t101_smm_state_save_area_t *smi_apmc_find_state_save(u8 cmd) { em64t101_smm_state_save_area_t *state; int node; /* Check all nodes looking for the one that issued the IO */ for (node = 0; node < CONFIG_MAX_CPUS; node++) { state = smm_get_save_state(node); /* Check for Synchronous IO (bit0==1) */ if (!(state->io_misc_info & (1 << 0))) continue; /* Make sure it was a write (bit4==0) */ if (state->io_misc_info & (1 << 4)) continue; /* Check for APMC IO port */ if (((state->io_misc_info >> 16) & 0xff) != APM_CNT) continue; /* Check AX against the requested command */ if ((state->rax & 0xff) != cmd) continue; return state; } return NULL; } static void southbridge_smi_gsmi(void) { #if IS_ENABLED(CONFIG_ELOG_GSMI) u32 *ret, *param; u8 sub_command; em64t101_smm_state_save_area_t *io_smi = smi_apmc_find_state_save(ELOG_GSMI_APM_CNT); if (!io_smi) return; /* Command and return value in EAX */ ret = (u32 *)&io_smi->rax; sub_command = (u8)(*ret >> 8); /* Parameter buffer in EBX */ param = (u32 *)&io_smi->rbx; /* drivers/elog/gsmi.c */ *ret = gsmi_exec(sub_command, param); #endif } static void finalize(void) { static int finalize_done; if (finalize_done) { printk(BIOS_DEBUG, "SMM already finalized.\n"); return; } finalize_done = 1; if (IS_ENABLED(CONFIG_SPI_FLASH_SMM)) /* Re-init SPI driver to handle locked BAR */ fast_spi_init(); } static void southbridge_smi_apmc(void) { u8 reg8; em64t101_smm_state_save_area_t *state; /* Emulate B2 register as the FADT / Linux expects it */ reg8 = inb(APM_CNT); switch (reg8) { case APM_CNT_PST_CONTROL: printk(BIOS_DEBUG, "P-state control\n"); break; case APM_CNT_ACPI_DISABLE: pmc_disable_pm1_control(SCI_EN); printk(BIOS_DEBUG, "SMI#: ACPI disabled.\n"); break; case APM_CNT_ACPI_ENABLE: pmc_enable_pm1_control(SCI_EN); printk(BIOS_DEBUG, "SMI#: ACPI enabled.\n"); break; case APM_CNT_FINALIZE: finalize(); break; case APM_CNT_GNVS_UPDATE: if (smm_initialized) { printk(BIOS_DEBUG, "SMI#: SMM structures already initialized!\n"); return; } state = smi_apmc_find_state_save(reg8); if (state) { /* EBX in the state save contains the GNVS pointer */ gnvs = (global_nvs_t *)((u32)state->rbx); smm_initialized = 1; printk(BIOS_DEBUG, "SMI#: Setting GNVS to %p\n", gnvs); } break; case ELOG_GSMI_APM_CNT: if (IS_ENABLED(CONFIG_ELOG_GSMI)) southbridge_smi_gsmi(); break; } mainboard_smi_apmc(reg8); } static void southbridge_smi_pm1(void) { u16 pm1_sts = pmc_clear_pm1_status(); u16 pm1_en = pmc_read_pm1_enable(); /* * While OSPM is not active, poweroff immediately on a power button * event. */ if ((pm1_sts & PWRBTN_STS) && (pm1_en & PWRBTN_EN)) { /* power button pressed */ if (IS_ENABLED(CONFIG_ELOG_GSMI)) elog_add_event(ELOG_TYPE_POWER_BUTTON); pmc_disable_pm1_control(-1UL); pmc_enable_pm1_control(SLP_EN | (SLP_TYP_S5 << 10)); } } static void southbridge_smi_gpe0(void) { pmc_clear_gpe_status(); } void __attribute__((weak)) mainboard_smi_gpi_handler(const struct gpi_status *sts) { } static void southbridge_smi_gpi(void) { struct gpi_status smi_sts; gpi_clear_get_smi_status(&smi_sts); mainboard_smi_gpi_handler(&smi_sts); /* Clear again after mainboard handler */ gpi_clear_get_smi_status(&smi_sts); } void __attribute__((weak)) mainboard_smi_espi_handler(void) { } static void southbridge_smi_espi(void) { mainboard_smi_espi_handler(); } static void southbridge_smi_mc(void) { u32 reg32 = inl(ACPI_BASE_ADDRESS + SMI_EN); /* Are microcontroller SMIs enabled? */ if ((reg32 & MCSMI_EN) == 0) return; printk(BIOS_DEBUG, "Microcontroller SMI.\n"); } static void southbridge_smi_tco(void) { u32 tco_sts = pmc_clear_tco_status(); /* Any TCO event? */ if (!tco_sts) return; if (tco_sts & (1 << 8)) { /* BIOSWR */ if (IS_ENABLED(CONFIG_SPI_FLASH_SMM)) { if (fast_spi_wpd_status()) { /* * BWE is RW, so the SMI was caused by a * write to BWE, not by a write to the BIOS * * This is the place where we notice someone * is trying to tinker with the BIOS. We are * trying to be nice and just ignore it. A more * resolute answer would be to power down the * box. */ printk(BIOS_DEBUG, "Switching back to RO\n"); fast_spi_enable_wp(); } /* No else for now? */ } } else if (tco_sts & (1 << 3)) { /* TIMEOUT */ /* Handle TCO timeout */ printk(BIOS_DEBUG, "TCO Timeout.\n"); } } static void southbridge_smi_periodic(void) { u32 reg32 = inl(ACPI_BASE_ADDRESS + SMI_EN); /* Are periodic SMIs enabled? */ if ((reg32 & PERIODIC_EN) == 0) return; printk(BIOS_DEBUG, "Periodic SMI.\n"); } static void southbridge_smi_monitor(void) { #define IOTRAP(x) (trap_sts & (1 << x)) u32 trap_cycle; u32 data, mask = 0; u8 trap_sts; int i; /* TRSR - Trap Status Register */ trap_sts = pcr_read8(PID_PSTH, PCR_PSTH_TRPST); /* Clear trap(s) in TRSR */ pcr_write8(PID_PSTH, PCR_PSTH_TRPST, trap_sts); /* TRPC - Trapped cycle */ trap_cycle = pcr_read32(PID_PSTH, PCR_PSTH_TRPC); for (i = 16; i < 20; i++) { if (trap_cycle & (1 << i)) mask |= (0xff << ((i - 16) << 2)); } /* IOTRAP(3) SMI function call */ if (IOTRAP(3)) { if (gnvs && gnvs->smif) io_trap_handler(gnvs->smif); /* call function smif */ return; } /* * IOTRAP(2) currently unused * IOTRAP(1) currently unused */ /* IOTRAP(0) SMIC */ if (IOTRAP(0)) { if (!(trap_cycle & (1 << 24))) { /* It's a write */ printk(BIOS_DEBUG, "SMI1 command\n"); /* Trapped write data */ data = pcr_read32(PID_PSTH, PCR_PSTH_TRPD); data &= mask; } } printk(BIOS_DEBUG, " trapped io address = 0x%x\n", trap_cycle & 0xfffc); for (i = 0; i < 4; i++) if (IOTRAP(i)) printk(BIOS_DEBUG, " TRAP = %d\n", i); printk(BIOS_DEBUG, " AHBE = %x\n", (trap_cycle >> 16) & 0xf); printk(BIOS_DEBUG, " MASK = 0x%08x\n", mask); printk(BIOS_DEBUG, " read/write: %s\n", (trap_cycle & (1 << 24)) ? "read" : "write"); if (!(trap_cycle & (1 << 24))) { /* Write Cycle */ data = pcr_read32(PID_PSTH, PCR_PSTH_TRPD); printk(BIOS_DEBUG, " iotrap written data = 0x%08x\n", data); } #undef IOTRAP } typedef void (*smi_handler_t)(void); static smi_handler_t southbridge_smi[SMI_STS_BITS] = { [SMI_ON_SLP_EN_STS_BIT] = southbridge_smi_sleep, [APM_STS_BIT] = southbridge_smi_apmc, [PM1_STS_BIT] = southbridge_smi_pm1, [GPE0_STS_BIT] = southbridge_smi_gpe0, [GPIO_STS_BIT] = southbridge_smi_gpi, [ESPI_SMI_STS_BIT] = southbridge_smi_espi, [MCSMI_STS_BIT] = southbridge_smi_mc, [TCO_STS_BIT] = southbridge_smi_tco, [PERIODIC_STS_BIT] = southbridge_smi_periodic, [MONITOR_STS_BIT] = southbridge_smi_monitor, }; /* * Interrupt handler for SMI# */ void southbridge_smi_handler(void) { int i; u32 smi_sts; /* * We need to clear the SMI status registers, or we won't see what's * happening in the following calls. */ smi_sts = pmc_clear_smi_status(); /* Call SMI sub handler for each of the status bits */ for (i = 0; i < ARRAY_SIZE(southbridge_smi); i++) { if (smi_sts & (1 << i)) { if (southbridge_smi[i]) { southbridge_smi[i](); } else { printk(BIOS_DEBUG, "SMI_STS[%d] occurred, but no handler available.\n", i); } } } }