/*****************************************************************************\ * cmos_lowlevel.c ***************************************************************************** * Copyright (C) 2002-2005 The Regents of the University of California. * Produced at the Lawrence Livermore National Laboratory. * Written by David S. Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>. * UCRL-CODE-2003-012 * All rights reserved. * * This file is part of nvramtool, a utility for reading/writing coreboot * parameters and displaying information from the coreboot table. * For details, see http://coreboot.org/nvramtool. * * Please also read the file DISCLAIMER which is included in this software * distribution. * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License (as published by the * Free Software Foundation) version 2, dated June 1991. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and * conditions of the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. \*****************************************************************************/ #if defined(__FreeBSD__) #include <fcntl.h> #include <unistd.h> #endif #include "common.h" #include "cmos_lowlevel.h" typedef struct { unsigned byte_index; unsigned bit_offset; } cmos_bit_op_location_t; static unsigned cmos_bit_op_strategy(unsigned bit, unsigned bits_left, cmos_bit_op_location_t * where); static unsigned char cmos_read_bits(const cmos_bit_op_location_t * where, unsigned nr_bits); static void cmos_write_bits(const cmos_bit_op_location_t * where, unsigned nr_bits, unsigned char value); static unsigned char get_bits(unsigned long long value, unsigned bit, unsigned nr_bits); static void put_bits(unsigned char value, unsigned bit, unsigned nr_bits, unsigned long long *result); /**************************************************************************** * get_bits * * Extract a value 'nr_bits' bits wide starting at bit position 'bit' from * 'value' and return the result. It is assumed that 'nr_bits' is at most 8. ****************************************************************************/ static inline unsigned char get_bits(unsigned long long value, unsigned bit, unsigned nr_bits) { return (value >> bit) & ((unsigned char)((1 << nr_bits) - 1)); } /**************************************************************************** * put_bits * * Extract the low order 'nr_bits' bits from 'value' and store them in the * value pointed to by 'result' starting at bit position 'bit'. The bit * positions in 'result' where the result is stored are assumed to be * initially zero. ****************************************************************************/ static inline void put_bits(unsigned char value, unsigned bit, unsigned nr_bits, unsigned long long *result) { *result += ((unsigned long long)(value & ((unsigned char)((1 << nr_bits) - 1)))) << bit; } /**************************************************************************** * cmos_read * * Read value from nonvolatile RAM at position given by 'bit' and 'length' * and return this value. The I/O privilege level of the currently executing * process must be set appropriately. ****************************************************************************/ unsigned long long cmos_read(const cmos_entry_t * e) { cmos_bit_op_location_t where; unsigned bit = e->bit, length = e->length; unsigned next_bit, bits_left, nr_bits; unsigned long long result = 0; unsigned char value; assert(!verify_cmos_op(bit, length, e->config)); result = 0; if (e->config == CMOS_ENTRY_STRING) { char *newstring = calloc(1, (length + 7) / 8); unsigned usize = (8 * sizeof(unsigned long long)); if (!newstring) { out_of_memory(); } for (next_bit = 0, bits_left = length; bits_left; next_bit += nr_bits, bits_left -= nr_bits) { nr_bits = cmos_bit_op_strategy(bit + next_bit, bits_left > usize ? usize : bits_left, &where); value = cmos_read_bits(&where, nr_bits); put_bits(value, next_bit % usize, nr_bits, &((unsigned long long *)newstring)[next_bit / usize]); result = (unsigned long)newstring; } } else { for (next_bit = 0, bits_left = length; bits_left; next_bit += nr_bits, bits_left -= nr_bits) { nr_bits = cmos_bit_op_strategy(bit + next_bit, bits_left, &where); value = cmos_read_bits(&where, nr_bits); put_bits(value, next_bit, nr_bits, &result); } } return result; } /**************************************************************************** * cmos_write * * Write 'data' to nonvolatile RAM at position given by 'bit' and 'length'. * The I/O privilege level of the currently executing process must be set * appropriately. ****************************************************************************/ void cmos_write(const cmos_entry_t * e, unsigned long long value) { cmos_bit_op_location_t where; unsigned bit = e->bit, length = e->length; unsigned next_bit, bits_left, nr_bits; assert(!verify_cmos_op(bit, length, e->config)); if (e->config == CMOS_ENTRY_STRING) { unsigned long long *data = (unsigned long long *)(unsigned long)value; unsigned usize = (8 * sizeof(unsigned long long)); for (next_bit = 0, bits_left = length; bits_left; next_bit += nr_bits, bits_left -= nr_bits) { nr_bits = cmos_bit_op_strategy(bit + next_bit, bits_left > usize ? usize : bits_left, &where); value = data[next_bit / usize]; cmos_write_bits(&where, nr_bits, get_bits(value, next_bit % usize, nr_bits)); } } else { for (next_bit = 0, bits_left = length; bits_left; next_bit += nr_bits, bits_left -= nr_bits) { nr_bits = cmos_bit_op_strategy(bit + next_bit, bits_left, &where); cmos_write_bits(&where, nr_bits, get_bits(value, next_bit, nr_bits)); } } } /**************************************************************************** * cmos_read_byte * * Read a byte from nonvolatile RAM at a position given by 'index' and return * the result. An 'index' value of 0 represents the first byte of * nonvolatile RAM. * * Note: the first 14 bytes of nonvolatile RAM provide an interface to the * real time clock. ****************************************************************************/ unsigned char cmos_read_byte(unsigned index) { unsigned short port_0, port_1; assert(!verify_cmos_byte_index(index)); if (index < 128) { port_0 = 0x70; port_1 = 0x71; } else { port_0 = 0x72; port_1 = 0x73; } OUTB(index, port_0); return INB(port_1); } /**************************************************************************** * cmos_write_byte * * Write 'value' to nonvolatile RAM at a position given by 'index'. An * 'index' of 0 represents the first byte of nonvolatile RAM. * * Note: the first 14 bytes of nonvolatile RAM provide an interface to the * real time clock. Writing to any of these bytes will therefore * affect its functioning. ****************************************************************************/ void cmos_write_byte(unsigned index, unsigned char value) { unsigned short port_0, port_1; assert(!verify_cmos_byte_index(index)); if (index < 128) { port_0 = 0x70; port_1 = 0x71; } else { port_0 = 0x72; port_1 = 0x73; } OUTB(index, port_0); OUTB(value, port_1); } /**************************************************************************** * cmos_read_all * * Read all contents of CMOS memory into array 'data'. The first 14 bytes of * 'data' are set to zero since this corresponds to the real time clock area. ****************************************************************************/ void cmos_read_all(unsigned char data[]) { unsigned i; for (i = 0; i < CMOS_RTC_AREA_SIZE; i++) data[i] = 0; for (; i < CMOS_SIZE; i++) data[i] = cmos_read_byte(i); } /**************************************************************************** * cmos_write_all * * Update all of CMOS memory with the contents of array 'data'. The first 14 * bytes of 'data' are ignored since this corresponds to the real time clock * area. ****************************************************************************/ void cmos_write_all(unsigned char data[]) { unsigned i; for (i = CMOS_RTC_AREA_SIZE; i < CMOS_SIZE; i++) cmos_write_byte(i, data[i]); } /**************************************************************************** * set_iopl * * Set the I/O privilege level of the executing process. Root privileges are * required for performing this action. A sufficient I/O privilege level * allows the process to access x86 I/O address space and to disable/reenable * interrupts while executing in user space. Messing with the I/O privilege * level is therefore somewhat dangerous. ****************************************************************************/ void set_iopl(int level) { #if defined(__FreeBSD__) static int io_fd = -1; #endif assert((level >= 0) && (level <= 3)); #if defined(__FreeBSD__) if (level == 0) { if (io_fd != -1) { close(io_fd); io_fd = -1; } } else { if (io_fd == -1) { io_fd = open("/dev/io", O_RDWR); if (io_fd < 0) { perror("/dev/io"); exit(1); } } } #else if (iopl(level)) { fprintf(stderr, "%s: iopl() system call failed. " "You must be root to do this.\n", prog_name); exit(1); } #endif } /**************************************************************************** * verify_cmos_op * * 'bit' represents a bit position in the nonvolatile RAM. The first bit * (i.e. the lowest order bit of the first byte) of nonvolatile RAM is * labeled as bit 0. 'length' represents the width in bits of a value we * wish to read or write. Perform sanity checking on 'bit' and 'length'. If * no problems were encountered, return OK. Else return an error code. ****************************************************************************/ int verify_cmos_op(unsigned bit, unsigned length, cmos_entry_config_t config) { if ((bit >= (8 * CMOS_SIZE)) || ((bit + length) > (8 * CMOS_SIZE))) return CMOS_AREA_OUT_OF_RANGE; if (bit < (8 * CMOS_RTC_AREA_SIZE)) return CMOS_AREA_OVERLAPS_RTC; if (config == CMOS_ENTRY_STRING) return OK; if (length > (8 * sizeof(unsigned long long))) return CMOS_AREA_TOO_WIDE; return OK; } /**************************************************************************** * cmos_bit_op_strategy * * Helper function used by cmos_read() and cmos_write() to determine which * bits to read or write next. ****************************************************************************/ static unsigned cmos_bit_op_strategy(unsigned bit, unsigned bits_left, cmos_bit_op_location_t * where) { unsigned max_bits; where->byte_index = bit >> 3; where->bit_offset = bit & 0x07; max_bits = 8 - where->bit_offset; return (bits_left > max_bits) ? max_bits : bits_left; } /**************************************************************************** * cmos_read_bits * * Read a chunk of bits from a byte location within CMOS memory. Return the * value represented by the chunk of bits. ****************************************************************************/ static unsigned char cmos_read_bits(const cmos_bit_op_location_t * where, unsigned nr_bits) { return (cmos_read_byte(where->byte_index) >> where->bit_offset) & ((unsigned char)((1 << nr_bits) - 1)); } /**************************************************************************** * cmos_write_bits * * Write a chunk of bits (the low order 'nr_bits' bits of 'value') to an area * within a particular byte of CMOS memory. ****************************************************************************/ static void cmos_write_bits(const cmos_bit_op_location_t * where, unsigned nr_bits, unsigned char value) { unsigned char n, mask; if (nr_bits == 8) { cmos_write_byte(where->byte_index, value); return; } n = cmos_read_byte(where->byte_index); mask = ((unsigned char)((1 << nr_bits) - 1)) << where->bit_offset; n = (n & ~mask) + ((value << where->bit_offset) & mask); cmos_write_byte(where->byte_index, n); }