coreboot-kgpe-d16/src/lib/timestamp.c
Julius Werner 644a512e56 symbols: Change implementation details of DECLARE_OPTIONAL_REGION()
It seems that GCC's LTO doesn't like the way we implement
DECLARE_OPTIONAL_REGION(). This patch changes it so that rather than
having a normal DECLARE_REGION() in <symbols.h> and then an extra
DECLARE_OPTIONAL_REGION() in the C file using it, you just say
DECLARE_OPTIONAL_REGION() directly in <symbols.h> (in place and instead
of the usual DECLARE_REGION()). This basically looks the same way in the
resulting object file but somehow LTO seems to like it better.

Signed-off-by: Julius Werner <jwerner@chromium.org>
Change-Id: I6096207b311d70c8e9956cd9406bec45be04a4a2
Reviewed-on: https://review.coreboot.org/c/coreboot/+/44791
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Jacob Garber <jgarber1@ualberta.ca>
Reviewed-by: Hung-Te Lin <hungte@chromium.org>
Reviewed-by: HAOUAS Elyes <ehaouas@noos.fr>
2020-08-27 22:11:17 +00:00

304 lines
7.2 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <stdint.h>
#include <console/console.h>
#include <cbmem.h>
#include <symbols.h>
#include <timer.h>
#include <timestamp.h>
#include <smp/node.h>
#define MAX_TIMESTAMPS 192
/* This points to the active timestamp_table and can change within a stage
as CBMEM comes available. */
static struct timestamp_table *glob_ts_table;
static void timestamp_cache_init(struct timestamp_table *ts_cache,
uint64_t base)
{
ts_cache->num_entries = 0;
ts_cache->base_time = base;
ts_cache->max_entries = (REGION_SIZE(timestamp) -
offsetof(struct timestamp_table, entries))
/ sizeof(struct timestamp_entry);
}
static struct timestamp_table *timestamp_cache_get(void)
{
struct timestamp_table *ts_cache = NULL;
if (!ENV_ROMSTAGE_OR_BEFORE)
return NULL;
if (REGION_SIZE(timestamp) < sizeof(*ts_cache)) {
BUG();
} else {
ts_cache = (void *)_timestamp;
}
return ts_cache;
}
static struct timestamp_table *timestamp_alloc_cbmem_table(void)
{
struct timestamp_table *tst;
tst = cbmem_add(CBMEM_ID_TIMESTAMP,
sizeof(struct timestamp_table) +
MAX_TIMESTAMPS * sizeof(struct timestamp_entry));
if (!tst)
return NULL;
tst->base_time = 0;
tst->max_entries = MAX_TIMESTAMPS;
tst->num_entries = 0;
return tst;
}
/* Determine if one should proceed into timestamp code. This is for protecting
* systems that have multiple processors running in romstage -- namely AMD
* based x86 platforms. */
static int timestamp_should_run(void)
{
/*
* Only check boot_cpu() in other stages than
* ENV_PAYLOAD_LOADER on x86.
*/
if ((!ENV_PAYLOAD_LOADER && ENV_X86) && !boot_cpu())
return 0;
return 1;
}
static struct timestamp_table *timestamp_table_get(void)
{
if (glob_ts_table)
return glob_ts_table;
glob_ts_table = timestamp_cache_get();
return glob_ts_table;
}
static void timestamp_table_set(struct timestamp_table *ts)
{
glob_ts_table = ts;
}
static const char *timestamp_name(enum timestamp_id id)
{
int i;
for (i = 0; i < ARRAY_SIZE(timestamp_ids); i++) {
if (timestamp_ids[i].id == id)
return timestamp_ids[i].name;
}
return "Unknown timestamp ID";
}
static void timestamp_add_table_entry(struct timestamp_table *ts_table,
enum timestamp_id id, uint64_t ts_time)
{
struct timestamp_entry *tse;
if (ts_table->num_entries >= ts_table->max_entries)
return;
tse = &ts_table->entries[ts_table->num_entries++];
tse->entry_id = id;
tse->entry_stamp = ts_time;
if (ts_table->num_entries == ts_table->max_entries)
printk(BIOS_ERR, "ERROR: Timestamp table full\n");
}
void timestamp_add(enum timestamp_id id, uint64_t ts_time)
{
struct timestamp_table *ts_table;
if (!timestamp_should_run())
return;
ts_table = timestamp_table_get();
if (!ts_table) {
printk(BIOS_ERR, "ERROR: No timestamp table found\n");
return;
}
ts_time -= ts_table->base_time;
timestamp_add_table_entry(ts_table, id, ts_time);
if (CONFIG(TIMESTAMPS_ON_CONSOLE))
printk(BIOS_INFO, "Timestamp - %s: %llu\n", timestamp_name(id), ts_time);
}
void timestamp_add_now(enum timestamp_id id)
{
timestamp_add(id, timestamp_get());
}
void timestamp_init(uint64_t base)
{
struct timestamp_table *ts_cache;
assert(ENV_ROMSTAGE_OR_BEFORE);
if (!timestamp_should_run())
return;
ts_cache = timestamp_cache_get();
if (!ts_cache) {
printk(BIOS_ERR, "ERROR: No timestamp cache to init\n");
return;
}
timestamp_cache_init(ts_cache, base);
timestamp_table_set(ts_cache);
}
static void timestamp_sync_cache_to_cbmem(struct timestamp_table *ts_cbmem_table)
{
uint32_t i;
struct timestamp_table *ts_cache_table;
ts_cache_table = timestamp_table_get();
if (!ts_cache_table) {
printk(BIOS_ERR, "ERROR: No timestamp cache found\n");
return;
}
/*
* There's no need to worry about the base_time fields being out of
* sync because only the following configuration is used/supported:
*
* Timestamps get initialized before ramstage, which implies
* CBMEM initialization in romstage.
* This requires the board to define a TIMESTAMP() region in its
* memlayout.ld (default on x86). The base_time from timestamp_init()
* (usually called from bootblock.c on most non-x86 boards) persists
* in that region until it gets synced to CBMEM in romstage.
* In ramstage, the BSS cache's base_time will be 0 until the second
* sync, which will adjust the timestamps in there to the correct
* base_time (from CBMEM) with the timestamp_add_table_entry() below.
*
* If you try to initialize timestamps before ramstage but don't define
* a TIMESTAMP region, all operations will fail (safely), and coreboot
* will behave as if timestamps collection was disabled.
*/
/* Inherit cache base_time. */
ts_cbmem_table->base_time = ts_cache_table->base_time;
for (i = 0; i < ts_cache_table->num_entries; i++) {
struct timestamp_entry *tse = &ts_cache_table->entries[i];
timestamp_add_table_entry(ts_cbmem_table, tse->entry_id,
tse->entry_stamp);
}
/* Cache no longer required. */
ts_cache_table->num_entries = 0;
}
static void timestamp_reinit(int is_recovery)
{
struct timestamp_table *ts_cbmem_table;
if (!timestamp_should_run())
return;
/* First time into romstage we make a clean new table. For platforms that travel
through this path on resume, ARCH_X86 S3, timestamps are also reset. */
if (ENV_ROMSTAGE) {
ts_cbmem_table = timestamp_alloc_cbmem_table();
} else {
/* Find existing table in cbmem. */
ts_cbmem_table = cbmem_find(CBMEM_ID_TIMESTAMP);
}
if (ts_cbmem_table == NULL) {
printk(BIOS_ERR, "ERROR: No timestamp table allocated\n");
timestamp_table_set(NULL);
return;
}
if (ENV_ROMSTAGE)
timestamp_sync_cache_to_cbmem(ts_cbmem_table);
/* Seed the timestamp tick frequency in ENV_PAYLOAD_LOADER. */
if (ENV_PAYLOAD_LOADER)
ts_cbmem_table->tick_freq_mhz = timestamp_tick_freq_mhz();
timestamp_table_set(ts_cbmem_table);
}
void timestamp_rescale_table(uint16_t N, uint16_t M)
{
uint32_t i;
struct timestamp_table *ts_table;
if (!timestamp_should_run())
return;
if (N == 0 || M == 0)
return;
ts_table = timestamp_table_get();
/* No timestamp table found */
if (ts_table == NULL) {
printk(BIOS_ERR, "ERROR: No timestamp table found\n");
return;
}
ts_table->base_time /= M;
ts_table->base_time *= N;
for (i = 0; i < ts_table->num_entries; i++) {
struct timestamp_entry *tse = &ts_table->entries[i];
tse->entry_stamp /= M;
tse->entry_stamp *= N;
}
}
/*
* Get the time in microseconds since boot (or more precise: since timestamp
* table was initialized).
*/
uint32_t get_us_since_boot(void)
{
struct timestamp_table *ts = timestamp_table_get();
if (ts == NULL || ts->tick_freq_mhz == 0)
return 0;
return (timestamp_get() - ts->base_time) / ts->tick_freq_mhz;
}
ROMSTAGE_CBMEM_INIT_HOOK(timestamp_reinit)
POSTCAR_CBMEM_INIT_HOOK(timestamp_reinit)
RAMSTAGE_CBMEM_INIT_HOOK(timestamp_reinit)
/* Provide default timestamp implementation using monotonic timer. */
uint64_t __weak timestamp_get(void)
{
struct mono_time t1, t2;
if (!CONFIG(HAVE_MONOTONIC_TIMER))
return 0;
mono_time_set_usecs(&t1, 0);
timer_monotonic_get(&t2);
return mono_time_diff_microseconds(&t1, &t2);
}
/* Like timestamp_get() above this matches up with microsecond granularity. */
int __weak timestamp_tick_freq_mhz(void)
{
return 1;
}