01912201a4
Tested config: Interleaved (config; status before, after): DIMM{0 + 2}: ok, ok DIMM{0 + 3}: Nok, ok DIMM{1 + 2}: ok, ok DIMM{1 + 3}: Nok, ok DIMM{1 + 2 + 3}: ok, ok DIMM{0 + 2 + 3}: ok, ok DIMM{0 + 1 + 2}: ok, ok DIMM{0 + 1 + 3}: Nok, ok Not Interleaved: DIMM{0 + 1 + 3}: Nok, Nok DIMM{0 + 1 + 2}: ok, ok (with single ranked) DIMM{0 + 1 + 2}: Nok, Nok (with only dual ranked) DIMM{0 + 2 + 3}: Nok, ok DIMM{1 + 2 + 3}: ok, ok Change-Id: Ibf130a3d4b6f8fa816f7a5f06822a9b8807be3d4 Signed-off-by: Elyes HAOUAS <ehaouas@noos.fr> Reviewed-on: https://review.coreboot.org/c/coreboot/+/31007 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Nico Huber <nico.h@gmx.de>
2825 lines
73 KiB
C
2825 lines
73 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2007-2009 coresystems GmbH
|
|
* Copyright (C) 2017 Arthur Heymans <arthur@aheymans.xyz>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <console/console.h>
|
|
#include <cpu/x86/cache.h>
|
|
#include <device/pci_def.h>
|
|
#include <device/pci_ops.h>
|
|
#include <arch/io.h>
|
|
#include <cf9_reset.h>
|
|
#include <device/mmio.h>
|
|
#include <device/device.h>
|
|
#include <lib.h>
|
|
#include <pc80/mc146818rtc.h>
|
|
#include <spd.h>
|
|
#include <string.h>
|
|
#include <halt.h>
|
|
#include "raminit.h"
|
|
#include "i945.h"
|
|
#include "chip.h"
|
|
#include <device/dram/ddr2.h>
|
|
#include <timestamp.h>
|
|
|
|
/* Debugging macros. */
|
|
#if CONFIG(DEBUG_RAM_SETUP)
|
|
#define PRINTK_DEBUG(x...) printk(BIOS_DEBUG, x)
|
|
#else
|
|
#define PRINTK_DEBUG(x...)
|
|
#endif
|
|
|
|
#define RAM_INITIALIZATION_COMPLETE (1 << 19)
|
|
|
|
#define RAM_COMMAND_SELF_REFRESH (0x0 << 16)
|
|
#define RAM_COMMAND_NOP (0x1 << 16)
|
|
#define RAM_COMMAND_PRECHARGE (0x2 << 16)
|
|
#define RAM_COMMAND_MRS (0x3 << 16)
|
|
#define RAM_COMMAND_EMRS (0x4 << 16)
|
|
#define RAM_COMMAND_CBR (0x6 << 16)
|
|
#define RAM_COMMAND_NORMAL (0x7 << 16)
|
|
|
|
#define RAM_EMRS_1 (0x0 << 21)
|
|
#define RAM_EMRS_2 (0x1 << 21)
|
|
#define RAM_EMRS_3 (0x2 << 21)
|
|
|
|
#define DEFAULT_PCI_MMIO_SIZE 768
|
|
static int get_dimm_spd_address(struct sys_info *sysinfo, int device)
|
|
{
|
|
if (sysinfo->spd_addresses)
|
|
return sysinfo->spd_addresses[device];
|
|
else
|
|
return DIMM0 + device;
|
|
|
|
}
|
|
|
|
static inline int spd_read_byte(unsigned int device, unsigned int address)
|
|
{
|
|
return smbus_read_byte(device, address);
|
|
}
|
|
|
|
static __attribute__((noinline)) void do_ram_command(u32 command)
|
|
{
|
|
u32 reg32;
|
|
|
|
reg32 = MCHBAR32(DCC);
|
|
reg32 &= ~((3<<21) | (1<<20) | (1<<19) | (7 << 16));
|
|
reg32 |= command;
|
|
|
|
/* Also set Init Complete */
|
|
if (command == RAM_COMMAND_NORMAL)
|
|
reg32 |= RAM_INITIALIZATION_COMPLETE;
|
|
|
|
PRINTK_DEBUG(" Sending RAM command 0x%08x", reg32);
|
|
|
|
MCHBAR32(DCC) = reg32; /* This is the actual magic */
|
|
|
|
PRINTK_DEBUG("...done\n");
|
|
|
|
udelay(1);
|
|
}
|
|
|
|
static void ram_read32(u32 offset)
|
|
{
|
|
PRINTK_DEBUG(" RAM read: %08x\n", offset);
|
|
|
|
read32((void *)offset);
|
|
}
|
|
|
|
void sdram_dump_mchbar_registers(void)
|
|
{
|
|
int i;
|
|
printk(BIOS_DEBUG, "Dumping MCHBAR Registers\n");
|
|
|
|
for (i = 0; i < 0xfff; i += 4) {
|
|
if (MCHBAR32(i) == 0)
|
|
continue;
|
|
printk(BIOS_DEBUG, "0x%04x: 0x%08x\n", i, MCHBAR32(i));
|
|
}
|
|
}
|
|
|
|
static int memclk(void)
|
|
{
|
|
int offset = CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GM) ? 1 : 0;
|
|
|
|
switch (((MCHBAR32(CLKCFG) >> 4) & 7) - offset) {
|
|
case 1: return 400;
|
|
case 2: return 533;
|
|
case 3: return 667;
|
|
default:
|
|
printk(BIOS_DEBUG, "memclk: unknown register value %x\n",
|
|
((MCHBAR32(CLKCFG) >> 4) & 7) - offset);
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static u16 fsbclk(void)
|
|
{
|
|
if (CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GM)) {
|
|
switch (MCHBAR32(CLKCFG) & 7) {
|
|
case 0: return 400;
|
|
case 1: return 533;
|
|
case 3: return 667;
|
|
default:
|
|
printk(BIOS_DEBUG, "fsbclk: unknown register value %x\n",
|
|
MCHBAR32(CLKCFG) & 7);
|
|
}
|
|
return 0xffff;
|
|
} else if (CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GC)) {
|
|
switch (MCHBAR32(CLKCFG) & 7) {
|
|
case 0: return 1066;
|
|
case 1: return 533;
|
|
case 2: return 800;
|
|
default:
|
|
printk(BIOS_DEBUG, "fsbclk: unknown register value %x\n",
|
|
MCHBAR32(CLKCFG) & 7);
|
|
}
|
|
return 0xffff;
|
|
}
|
|
}
|
|
|
|
static int sdram_capabilities_max_supported_memory_frequency(void)
|
|
{
|
|
u32 reg32;
|
|
|
|
#if CONFIG_MAXIMUM_SUPPORTED_FREQUENCY
|
|
return CONFIG_MAXIMUM_SUPPORTED_FREQUENCY;
|
|
#endif
|
|
|
|
reg32 = pci_read_config32(PCI_DEV(0, 0x00, 0), 0xe4); /* CAPID0 + 4 */
|
|
reg32 &= (7 << 0);
|
|
|
|
switch (reg32) {
|
|
case 4: return 400;
|
|
case 3: return 533;
|
|
case 2: return 667;
|
|
}
|
|
/* Newer revisions of this chipset rather support faster memory clocks,
|
|
* so if it's a reserved value, return the fastest memory clock that we
|
|
* know of and can handle
|
|
*/
|
|
return 667;
|
|
}
|
|
|
|
/**
|
|
* @brief determine whether chipset is capable of dual channel interleaved mode
|
|
*
|
|
* @return 1 if interleaving is supported, 0 otherwise
|
|
*/
|
|
static int sdram_capabilities_interleave(void)
|
|
{
|
|
u32 reg32;
|
|
|
|
reg32 = pci_read_config32(PCI_DEV(0, 0x00, 0), 0xe4); /* CAPID0 + 4 */
|
|
reg32 >>= 25;
|
|
reg32 &= 1;
|
|
|
|
return (!reg32);
|
|
}
|
|
|
|
/**
|
|
* @brief determine whether chipset is capable of two memory channels
|
|
*
|
|
* @return 1 if dual channel operation is supported, 0 otherwise
|
|
*/
|
|
static int sdram_capabilities_dual_channel(void)
|
|
{
|
|
u32 reg32;
|
|
|
|
reg32 = pci_read_config32(PCI_DEV(0, 0x00, 0), 0xe4); /* CAPID0 + 4 */
|
|
reg32 >>= 24;
|
|
reg32 &= 1;
|
|
|
|
return (!reg32);
|
|
}
|
|
|
|
static int sdram_capabilities_enhanced_addressing_xor(void)
|
|
{
|
|
u8 reg8;
|
|
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe5); /* CAPID0 + 5 */
|
|
reg8 &= (1 << 7);
|
|
|
|
return (!reg8);
|
|
}
|
|
|
|
// TODO check if we ever need this function
|
|
#if 0
|
|
static int sdram_capabilities_MEM4G_disable(void)
|
|
{
|
|
u8 reg8;
|
|
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe5); /* CAPID0 + 5 */
|
|
reg8 &= (1 << 0);
|
|
|
|
return (reg8 != 0);
|
|
}
|
|
#endif
|
|
|
|
#define GFX_FREQUENCY_CAP_166MHZ 0x04
|
|
#define GFX_FREQUENCY_CAP_200MHZ 0x03
|
|
#define GFX_FREQUENCY_CAP_250MHZ 0x02
|
|
#define GFX_FREQUENCY_CAP_ALL 0x00
|
|
|
|
static int sdram_capabilities_core_frequencies(void)
|
|
{
|
|
u8 reg8;
|
|
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe5); /* CAPID0 + 5 */
|
|
reg8 &= (1 << 3) | (1 << 2) | (1 << 1);
|
|
reg8 >>= 1;
|
|
|
|
return reg8;
|
|
}
|
|
|
|
static void sdram_detect_errors(struct sys_info *sysinfo)
|
|
{
|
|
u8 reg8;
|
|
u8 do_reset = 0;
|
|
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
|
|
|
|
if (reg8 & ((1<<7)|(1<<2))) {
|
|
if (reg8 & (1<<2)) {
|
|
printk(BIOS_DEBUG, "SLP S4# Assertion Width Violation.\n");
|
|
/* Write back clears bit 2 */
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
|
|
do_reset = 1;
|
|
|
|
}
|
|
|
|
if (reg8 & (1<<7)) {
|
|
printk(BIOS_DEBUG, "DRAM initialization was interrupted.\n");
|
|
reg8 &= ~(1<<7);
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
|
|
do_reset = 1;
|
|
}
|
|
|
|
/* Set SLP_S3# Assertion Stretch Enable */
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4); /* GEN_PMCON_3 */
|
|
reg8 |= (1 << 3);
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8);
|
|
|
|
if (do_reset) {
|
|
printk(BIOS_DEBUG, "Reset required.\n");
|
|
full_reset();
|
|
}
|
|
}
|
|
|
|
/* Set DRAM initialization bit in ICH7 */
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
|
|
reg8 |= (1<<7);
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
|
|
|
|
/* clear self refresh status if check is disabled or not a resume */
|
|
if (!CONFIG(CHECK_SLFRCS_ON_RESUME)
|
|
|| sysinfo->boot_path != BOOT_PATH_RESUME) {
|
|
MCHBAR8(SLFRCS) |= 3;
|
|
} else {
|
|
/* Validate self refresh config */
|
|
if (((sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED) ||
|
|
(sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED)) &&
|
|
!(MCHBAR8(SLFRCS) & (1<<0))) {
|
|
do_reset = 1;
|
|
}
|
|
if (((sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED) ||
|
|
(sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED)) &&
|
|
!(MCHBAR8(SLFRCS) & (1<<1))) {
|
|
do_reset = 1;
|
|
}
|
|
}
|
|
|
|
if (do_reset) {
|
|
printk(BIOS_DEBUG, "Reset required.\n");
|
|
full_reset();
|
|
}
|
|
}
|
|
|
|
struct timings {
|
|
u32 min_tCLK_cas[8];
|
|
u32 min_tRAS;
|
|
u32 min_tRP;
|
|
u32 min_tRCD;
|
|
u32 min_tWR;
|
|
u32 min_tRFC;
|
|
u32 max_tRR;
|
|
u8 cas_mask;
|
|
};
|
|
|
|
/**
|
|
* @brief loop over dimms and save maximal timings
|
|
*/
|
|
static void gather_common_timing(struct sys_info *sysinfo,
|
|
struct timings *saved_timings)
|
|
{
|
|
|
|
int i, j;
|
|
u8 raw_spd[SPD_SIZE_MAX_DDR2];
|
|
u8 dimm_mask = 0;
|
|
|
|
memset(saved_timings, 0, sizeof(*saved_timings));
|
|
saved_timings->max_tRR = UINT32_MAX;
|
|
saved_timings->cas_mask = SPD_CAS_LATENCY_DDR2_3
|
|
| SPD_CAS_LATENCY_DDR2_4 | SPD_CAS_LATENCY_DDR2_5;
|
|
|
|
/**
|
|
* i945 supports two DIMMs, in two configurations:
|
|
*
|
|
* - single channel with two DIMMs
|
|
* - dual channel with one DIMM per channel
|
|
*
|
|
* In practice dual channel mainboards have their SPD at 0x50/0x52
|
|
* whereas single channel configurations have their SPD at 0x50/0x51.
|
|
*
|
|
* The capability register knows a lot about the channel configuration
|
|
* but for now we stick with the information we gather via SPD.
|
|
*/
|
|
|
|
printk(BIOS_DEBUG, "This mainboard supports ");
|
|
if (sdram_capabilities_dual_channel()) {
|
|
sysinfo->dual_channel = 1;
|
|
printk(BIOS_DEBUG, "Dual Channel Operation.\n");
|
|
} else {
|
|
sysinfo->dual_channel = 0;
|
|
printk(BIOS_DEBUG, "only Single Channel Operation.\n");
|
|
}
|
|
|
|
|
|
for (i = 0; i < (2 * DIMM_SOCKETS); i++) {
|
|
int device = get_dimm_spd_address(sysinfo, i), bytes_read;
|
|
struct dimm_attr_ddr2_st dimm_info;
|
|
|
|
/* Initialize the socket information with a sane value */
|
|
sysinfo->dimm[i] = SYSINFO_DIMM_NOT_POPULATED;
|
|
|
|
/* Dual Channel not supported, but Channel 1? Bail out */
|
|
if (!sdram_capabilities_dual_channel() && (i >> 1))
|
|
continue;
|
|
|
|
if (spd_read_byte(device, SPD_MEMORY_TYPE) !=
|
|
SPD_MEMORY_TYPE_SDRAM_DDR2) {
|
|
printk(BIOS_DEBUG, "DDR II Channel %d Socket %d: N/A\n",
|
|
(i >> 1), (i & 1));
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* spd_decode_ddr2() needs a 128-byte sized array but
|
|
* only the first 64 bytes contain data needed for raminit.
|
|
*/
|
|
|
|
bytes_read = i2c_eeprom_read(device, 0, 64, raw_spd);
|
|
printk(BIOS_DEBUG, "Reading SPD using i2c block operation.\n");
|
|
if (CONFIG(DEBUG_RAM_SETUP) && bytes_read > 0)
|
|
hexdump(raw_spd, bytes_read);
|
|
if (bytes_read != 64) {
|
|
/* Try again with SMBUS byte read */
|
|
printk(BIOS_DEBUG, "i2c block operation failed,"
|
|
" trying smbus byte operation.\n");
|
|
for (j = 0; j < 64; j++)
|
|
raw_spd[j] = spd_read_byte(device, j);
|
|
if (CONFIG(DEBUG_RAM_SETUP))
|
|
hexdump(raw_spd, 64);
|
|
}
|
|
|
|
if (spd_decode_ddr2(&dimm_info, raw_spd) != SPD_STATUS_OK) {
|
|
printk(BIOS_WARNING, "Encountered problems with SPD, "
|
|
"skipping this DIMM.\n");
|
|
continue;
|
|
}
|
|
|
|
if (CONFIG(DEBUG_RAM_SETUP))
|
|
dram_print_spd_ddr2(&dimm_info);
|
|
|
|
if (dimm_info.flags.is_ecc)
|
|
die("\nError: ECC memory not supported by this chipset\n");
|
|
|
|
if (spd_dimm_is_registered_ddr2(dimm_info.dimm_type))
|
|
die("\nError: Registered memory not supported by this chipset\n");
|
|
|
|
printk(BIOS_DEBUG, "DDR II Channel %d Socket %d: ", (i >> 1),
|
|
(i & 1));
|
|
/**
|
|
* There are 5 different possible populations for a DIMM socket:
|
|
* 0. x16 double ranked (X16DS)
|
|
* 1. x8 double ranked (X8DS)
|
|
* 2. x16 single ranked (X16SS)
|
|
* 3. x8 double stacked (X8DDS)
|
|
* 4. Unpopulated
|
|
*/
|
|
switch (dimm_info.width) {
|
|
case 8:
|
|
switch (dimm_info.ranks) {
|
|
case 2:
|
|
printk(BIOS_DEBUG, "x8DDS\n");
|
|
sysinfo->dimm[i] = SYSINFO_DIMM_X8DDS;
|
|
break;
|
|
case 1:
|
|
printk(BIOS_DEBUG, "x8DS\n");
|
|
sysinfo->dimm[i] = SYSINFO_DIMM_X8DS;
|
|
break;
|
|
default:
|
|
printk(BIOS_DEBUG, "Unsupported.\n");
|
|
}
|
|
break;
|
|
case 16:
|
|
switch (dimm_info.ranks) {
|
|
case 2:
|
|
printk(BIOS_DEBUG, "x16DS\n");
|
|
sysinfo->dimm[i] = SYSINFO_DIMM_X16DS;
|
|
break;
|
|
case 1:
|
|
printk(BIOS_DEBUG, "x16SS\n");
|
|
sysinfo->dimm[i] = SYSINFO_DIMM_X16SS;
|
|
break;
|
|
default:
|
|
printk(BIOS_DEBUG, "Unsupported.\n");
|
|
}
|
|
break;
|
|
default:
|
|
die("Unsupported DDR-II memory width.\n");
|
|
}
|
|
|
|
/* Is the current DIMM a stacked DIMM? */
|
|
if (dimm_info.flags.stacked)
|
|
sysinfo->package = SYSINFO_PACKAGE_STACKED;
|
|
|
|
if (!dimm_info.flags.bl8)
|
|
die("Only DDR-II RAM with burst length 8 is supported by this chipset.\n");
|
|
|
|
if (dimm_info.ranksize_mb < 128)
|
|
die("DDR-II rank size smaller than 128MB is not supported.\n");
|
|
|
|
sysinfo->banksize[i * 2] = dimm_info.ranksize_mb / 32;
|
|
printk(BIOS_DEBUG, "DIMM %d side 0 = %d MB\n", i,
|
|
sysinfo->banksize[i * 2] * 32);
|
|
if (dimm_info.ranks == 2) {
|
|
sysinfo->banksize[(i * 2) + 1] =
|
|
dimm_info.ranksize_mb / 32;
|
|
printk(BIOS_DEBUG, "DIMM %d side 1 = %d MB\n",
|
|
i, sysinfo->banksize[(i * 2) + 1] * 32);
|
|
}
|
|
|
|
|
|
sysinfo->rows[i] = dimm_info.row_bits;
|
|
sysinfo->cols[i] = dimm_info.col_bits;
|
|
sysinfo->banks[i] = dimm_info.banks;
|
|
|
|
/* int min_tRAS, min_tRP, min_tRCD, min_tWR, min_tRFC; */
|
|
saved_timings->min_tRAS = MAX(saved_timings->min_tRAS,
|
|
dimm_info.tRAS);
|
|
saved_timings->min_tRP = MAX(saved_timings->min_tRP,
|
|
dimm_info.tRP);
|
|
saved_timings->min_tRCD = MAX(saved_timings->min_tRCD,
|
|
dimm_info.tRCD);
|
|
saved_timings->min_tWR = MAX(saved_timings->min_tWR,
|
|
dimm_info.tWR);
|
|
saved_timings->min_tRFC = MAX(saved_timings->min_tRFC,
|
|
dimm_info.tRFC);
|
|
saved_timings->max_tRR = MIN(saved_timings->max_tRR,
|
|
dimm_info.tRR);
|
|
saved_timings->cas_mask &= dimm_info.cas_supported;
|
|
for (j = 0; j < 8; j++) {
|
|
if (!(saved_timings->cas_mask & (1 << j)))
|
|
saved_timings->min_tCLK_cas[j] = 0;
|
|
else
|
|
saved_timings->min_tCLK_cas[j] =
|
|
MAX(dimm_info.cycle_time[j],
|
|
saved_timings->min_tCLK_cas[j]);
|
|
}
|
|
dimm_mask |= (1 << i);
|
|
}
|
|
if (!dimm_mask)
|
|
die("No memory installed.\n");
|
|
|
|
if (!(dimm_mask & ((1 << DIMM_SOCKETS) - 1)))
|
|
/* Possibly does not boot in this case */
|
|
printk(BIOS_INFO, "Channel 0 has no memory populated.\n");
|
|
}
|
|
|
|
static void choose_tclk(struct sys_info *sysinfo,
|
|
struct timings *saved_timings)
|
|
{
|
|
u32 ctrl_min_tclk;
|
|
int try_cas;
|
|
|
|
ctrl_min_tclk = 2 * 256 * 1000
|
|
/ sdram_capabilities_max_supported_memory_frequency();
|
|
normalize_tck(&ctrl_min_tclk);
|
|
|
|
try_cas = spd_get_msbs(saved_timings->cas_mask);
|
|
|
|
while (saved_timings->cas_mask & (1 << try_cas) && try_cas > 0) {
|
|
sysinfo->cas = try_cas;
|
|
sysinfo->tclk = saved_timings->min_tCLK_cas[try_cas];
|
|
if (sysinfo->tclk >= ctrl_min_tclk &&
|
|
saved_timings->min_tCLK_cas[try_cas] !=
|
|
saved_timings->min_tCLK_cas[try_cas - 1])
|
|
break;
|
|
try_cas--;
|
|
}
|
|
|
|
normalize_tck(&sysinfo->tclk);
|
|
|
|
if ((sysinfo->cas < 3) || (sysinfo->tclk == 0))
|
|
die("Could not find common memory frequency and CAS\n");
|
|
|
|
/*
|
|
* The loop can still results in a timing too fast for the
|
|
* memory controller.
|
|
*/
|
|
if (sysinfo->tclk < ctrl_min_tclk)
|
|
sysinfo->tclk = ctrl_min_tclk;
|
|
|
|
switch (sysinfo->tclk) {
|
|
case TCK_200MHZ:
|
|
sysinfo->memory_frequency = 400;
|
|
break;
|
|
case TCK_266MHZ:
|
|
sysinfo->memory_frequency = 533;
|
|
break;
|
|
case TCK_333MHZ:
|
|
sysinfo->memory_frequency = 667;
|
|
break;
|
|
}
|
|
|
|
printk(BIOS_DEBUG,
|
|
"Memory will be driven at %dMT with CAS=%d clocks\n",
|
|
sysinfo->memory_frequency, sysinfo->cas);
|
|
}
|
|
|
|
static void derive_timings(struct sys_info *sysinfo,
|
|
struct timings *saved_timings)
|
|
{
|
|
sysinfo->tras = DIV_ROUND_UP(saved_timings->min_tRAS, sysinfo->tclk);
|
|
if (sysinfo->tras > 0x18)
|
|
die("DDR-II Module does not support this frequency (tRAS error)\n");
|
|
|
|
sysinfo->trp = DIV_ROUND_UP(saved_timings->min_tRP, sysinfo->tclk);
|
|
if (sysinfo->trp > 6)
|
|
die("DDR-II Module does not support this frequency (tRP error)\n");
|
|
|
|
sysinfo->trcd = DIV_ROUND_UP(saved_timings->min_tRCD, sysinfo->tclk);
|
|
if (sysinfo->trcd > 6)
|
|
die("DDR-II Module does not support this frequency (tRCD error)\n");
|
|
|
|
sysinfo->twr = DIV_ROUND_UP(saved_timings->min_tWR, sysinfo->tclk);
|
|
if (sysinfo->twr > 5)
|
|
die("DDR-II Module does not support this frequency (tWR error)\n");
|
|
|
|
sysinfo->trfc = DIV_ROUND_UP(saved_timings->min_tRFC, sysinfo->tclk);
|
|
|
|
printk(BIOS_DEBUG, "tRAS = %d cycles\n", sysinfo->tras);
|
|
printk(BIOS_DEBUG, "tRP = %d cycles\n", sysinfo->trp);
|
|
printk(BIOS_DEBUG, "tRCD = %d cycles\n", sysinfo->trcd);
|
|
printk(BIOS_DEBUG, "tWR = %d cycles\n", sysinfo->twr);
|
|
printk(BIOS_DEBUG, "tRFC = %d cycles\n", sysinfo->trfc);
|
|
|
|
/* Refresh is slower than 15.6us, use 15.6us */
|
|
/* tRR is decoded in units of 1/256us */
|
|
|
|
#define T_RR_7_8US 2000000
|
|
#define T_RR_15_6US 4000000
|
|
#define REFRESH_7_8US 1
|
|
#define REFRESH_15_6US 0
|
|
|
|
if (saved_timings->max_tRR < T_RR_7_8US)
|
|
die("DDR-II module has unsupported refresh value\n");
|
|
else if (saved_timings->max_tRR < T_RR_15_6US)
|
|
sysinfo->refresh = REFRESH_7_8US;
|
|
else
|
|
sysinfo->refresh = REFRESH_15_6US;
|
|
printk(BIOS_DEBUG, "Refresh: %s\n", sysinfo->refresh?"7.8us":"15.6us");
|
|
}
|
|
|
|
/**
|
|
* @brief Get generic DIMM parameters.
|
|
* @param sysinfo Central memory controller information structure
|
|
*
|
|
* This function gathers several pieces of information for each system DIMM:
|
|
* o DIMM width (x8 / x16)
|
|
* o DIMM rank (single ranked / dual ranked)
|
|
*
|
|
* Also, some non-supported scenarios are detected.
|
|
*/
|
|
|
|
static void sdram_get_dram_configuration(struct sys_info *sysinfo)
|
|
{
|
|
struct timings saved_timings;
|
|
|
|
gather_common_timing(sysinfo, &saved_timings);
|
|
choose_tclk(sysinfo, &saved_timings);
|
|
derive_timings(sysinfo, &saved_timings);
|
|
}
|
|
|
|
static void sdram_program_dram_width(struct sys_info *sysinfo)
|
|
{
|
|
u16 c0dramw = 0, c1dramw = 0;
|
|
int i, idx;
|
|
|
|
if (sysinfo->dual_channel)
|
|
idx = 2;
|
|
else
|
|
idx = 1;
|
|
|
|
for (i = 0; i < DIMM_SOCKETS; i++) { /* Channel 0 */
|
|
switch (sysinfo->dimm[i]) {
|
|
case SYSINFO_DIMM_X16DS:
|
|
c0dramw |= (0x0000) << 4*(i % 2);
|
|
break;
|
|
case SYSINFO_DIMM_X8DS:
|
|
c0dramw |= (0x0001) << 4*(i % 2);
|
|
break;
|
|
case SYSINFO_DIMM_X16SS:
|
|
c0dramw |= (0x0000) << 4*(i % 2);
|
|
break;
|
|
case SYSINFO_DIMM_X8DDS:
|
|
c0dramw |= (0x0005) << 4*(i % 2);
|
|
break;
|
|
case SYSINFO_DIMM_NOT_POPULATED:
|
|
c0dramw |= (0x0000) << 4*(i % 2);
|
|
break;
|
|
}
|
|
}
|
|
for (i = DIMM_SOCKETS; i < idx * DIMM_SOCKETS; i++) { /* Channel 1 */
|
|
switch (sysinfo->dimm[i]) {
|
|
case SYSINFO_DIMM_X16DS:
|
|
c1dramw |= (0x0000) << 4*(i % 2);
|
|
break;
|
|
case SYSINFO_DIMM_X8DS:
|
|
c1dramw |= (0x0010) << 4*(i % 2);
|
|
break;
|
|
case SYSINFO_DIMM_X16SS:
|
|
c1dramw |= (0x0000) << 4*(i % 2);
|
|
break;
|
|
case SYSINFO_DIMM_X8DDS:
|
|
c1dramw |= (0x0050) << 4*(i % 2);
|
|
break;
|
|
case SYSINFO_DIMM_NOT_POPULATED:
|
|
c1dramw |= (0x0000) << 4*(i % 2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
MCHBAR16(C0DRAMW) = c0dramw;
|
|
MCHBAR16(C1DRAMW) = c1dramw;
|
|
}
|
|
|
|
static void sdram_write_slew_rates(u32 offset, const u32 *slew_rate_table)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 16; i++)
|
|
MCHBAR32(offset+(i*4)) = slew_rate_table[i];
|
|
}
|
|
|
|
static const u32 dq2030[] = {
|
|
0x08070706, 0x0a090908, 0x0d0c0b0a, 0x12100f0e,
|
|
0x1a181614, 0x22201e1c, 0x2a282624, 0x3934302d,
|
|
0x0a090908, 0x0c0b0b0a, 0x0e0d0d0c, 0x1211100f,
|
|
0x19171513, 0x211f1d1b, 0x2d292623, 0x3f393531
|
|
};
|
|
|
|
static const u32 dq2330[] = {
|
|
0x08070706, 0x0a090908, 0x0d0c0b0a, 0x12100f0e,
|
|
0x1a181614, 0x22201e1c, 0x2a282624, 0x3934302d,
|
|
0x0a090908, 0x0c0b0b0a, 0x0e0d0d0c, 0x1211100f,
|
|
0x19171513, 0x211f1d1b, 0x2d292623, 0x3f393531
|
|
};
|
|
|
|
static const u32 cmd2710[] = {
|
|
0x07060605, 0x0f0d0b09, 0x19171411, 0x1f1f1d1b,
|
|
0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f,
|
|
0x1110100f, 0x0f0d0b09, 0x19171411, 0x1f1f1d1b,
|
|
0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f
|
|
};
|
|
|
|
static const u32 cmd3210[] = {
|
|
0x0f0d0b0a, 0x17151311, 0x1f1d1b19, 0x1f1f1f1f,
|
|
0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f,
|
|
0x18171615, 0x1f1f1c1a, 0x1f1f1f1f, 0x1f1f1f1f,
|
|
0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f, 0x1f1f1f1f
|
|
};
|
|
|
|
static const u32 clk2030[] = {
|
|
0x0e0d0d0c, 0x100f0f0e, 0x100f0e0d, 0x15131211,
|
|
0x1d1b1917, 0x2523211f, 0x2a282927, 0x32302e2c,
|
|
0x17161514, 0x1b1a1918, 0x1f1e1d1c, 0x23222120,
|
|
0x27262524, 0x2d2b2928, 0x3533312f, 0x3d3b3937
|
|
};
|
|
|
|
static const u32 ctl3215[] = {
|
|
0x01010000, 0x03020101, 0x07060504, 0x0b0a0908,
|
|
0x100f0e0d, 0x14131211, 0x18171615, 0x1c1b1a19,
|
|
0x05040403, 0x07060605, 0x0a090807, 0x0f0d0c0b,
|
|
0x14131211, 0x18171615, 0x1c1b1a19, 0x201f1e1d
|
|
};
|
|
|
|
static const u32 ctl3220[] = {
|
|
0x05040403, 0x07060505, 0x0e0c0a08, 0x1a171411,
|
|
0x2825221f, 0x35322f2b, 0x3e3e3b38, 0x3e3e3e3e,
|
|
0x09080807, 0x0b0a0a09, 0x0f0d0c0b, 0x1b171311,
|
|
0x2825221f, 0x35322f2b, 0x3e3e3b38, 0x3e3e3e3e
|
|
};
|
|
|
|
static const u32 nc[] = {
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000,
|
|
0x00000000, 0x00000000, 0x00000000, 0x00000000
|
|
};
|
|
|
|
enum {
|
|
DQ2030,
|
|
DQ2330,
|
|
CMD2710,
|
|
CMD3210,
|
|
CLK2030,
|
|
CTL3215,
|
|
CTL3220,
|
|
NC,
|
|
};
|
|
|
|
static const u8 dual_channel_slew_group_lookup[] = {
|
|
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD2710,
|
|
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC,
|
|
|
|
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD3210, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210,
|
|
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD3210, CTL3215, NC, CLK2030, NC, DQ2030, CMD2710,
|
|
DQ2030, CMD3210, CTL3215, NC, CLK2030, NC, NC, NC,
|
|
|
|
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD2710,
|
|
DQ2030, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC,
|
|
|
|
DQ2030, CMD2710, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD2710, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210,
|
|
DQ2030, CMD2710, CTL3215, CTL3215, CLK2030, CLK2030, DQ2030, CMD3210,
|
|
DQ2030, CMD2710, CTL3215, NC, CLK2030, NC, DQ2030, CMD2710,
|
|
DQ2030, CMD2710, CTL3215, NC, CLK2030, NC, NC, NC,
|
|
|
|
NC, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
|
|
NC, NC, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210,
|
|
NC, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
|
|
NC, NC, CTL3215, NC, CLK2030, CLK2030, DQ2030, CMD2710
|
|
};
|
|
|
|
static const u8 single_channel_slew_group_lookup[] = {
|
|
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC,
|
|
|
|
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, NC, NC,
|
|
|
|
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, NC, CTL3215, NC, CLK2030, NC, NC,
|
|
|
|
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, CTL3215, CLK2030, CLK2030, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, DQ2330, CMD3210,
|
|
DQ2330, CMD3210, CTL3215, NC, CLK2030, NC, NC, NC,
|
|
|
|
DQ2330, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
|
|
DQ2330, NC, CTL3215, NC, CLK2030, NC, DQ2030, CMD3210,
|
|
DQ2330, NC, NC, CTL3215, NC, CLK2030, DQ2030, CMD3210,
|
|
DQ2330, NC, CTL3215, NC, CLK2030, CLK2030, DQ2030, CMD3210
|
|
};
|
|
|
|
static const u32 *slew_group_lookup(int dual_channel, int index)
|
|
{
|
|
const u8 *slew_group;
|
|
/* Dual Channel needs different tables. */
|
|
if (dual_channel)
|
|
slew_group = dual_channel_slew_group_lookup;
|
|
else
|
|
slew_group = single_channel_slew_group_lookup;
|
|
|
|
switch (slew_group[index]) {
|
|
case DQ2030: return dq2030;
|
|
case DQ2330: return dq2330;
|
|
case CMD2710: return cmd2710;
|
|
case CMD3210: return cmd3210;
|
|
case CLK2030: return clk2030;
|
|
case CTL3215: return ctl3215;
|
|
case CTL3220: return ctl3220;
|
|
case NC: return nc;
|
|
}
|
|
|
|
return nc;
|
|
}
|
|
|
|
#if CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GM)
|
|
/* Strength multiplier tables */
|
|
static const u8 dual_channel_strength_multiplier[] = {
|
|
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
|
|
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
|
|
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
|
|
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00,
|
|
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
|
|
0x44, 0x11, 0x11, 0x00, 0x44, 0x00, 0x44, 0x11,
|
|
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
|
|
0x44, 0x11, 0x11, 0x00, 0x44, 0x00, 0x44, 0x22,
|
|
0x44, 0x11, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00,
|
|
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
|
|
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
|
|
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
|
|
0x44, 0x11, 0x11, 0x11, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00,
|
|
0x44, 0x22, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
|
|
0x44, 0x22, 0x11, 0x00, 0x44, 0x00, 0x44, 0x11,
|
|
0x44, 0x22, 0x11, 0x11, 0x44, 0x44, 0x44, 0x11,
|
|
0x44, 0x22, 0x11, 0x00, 0x44, 0x00, 0x44, 0x22,
|
|
0x44, 0x22, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00,
|
|
0x00, 0x00, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
|
|
0x00, 0x00, 0x11, 0x00, 0x44, 0x00, 0x44, 0x11,
|
|
0x00, 0x00, 0x00, 0x11, 0x00, 0x44, 0x44, 0x11,
|
|
0x00, 0x00, 0x11, 0x00, 0x44, 0x44, 0x44, 0x22
|
|
};
|
|
|
|
static const u8 single_channel_strength_multiplier[] = {
|
|
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00,
|
|
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00,
|
|
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x00, 0x11, 0x00, 0x44, 0x00, 0x00,
|
|
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x11, 0x44, 0x44, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
|
|
0x33, 0x11, 0x11, 0x00, 0x44, 0x00, 0x00, 0x00,
|
|
0x33, 0x00, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
|
|
0x33, 0x00, 0x11, 0x00, 0x44, 0x00, 0x33, 0x11,
|
|
0x33, 0x00, 0x00, 0x11, 0x00, 0x44, 0x33, 0x11,
|
|
0x33, 0x00, 0x11, 0x00, 0x44, 0x44, 0x33, 0x11
|
|
};
|
|
#elif CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GC)
|
|
static const u8 dual_channel_strength_multiplier[] = {
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x22,
|
|
0x44, 0x00, 0x00, 0x00, 0x44, 0x44, 0x44, 0x33
|
|
};
|
|
|
|
static const u8 single_channel_strength_multiplier[] = {
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x88, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x44, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x88, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x55, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x88, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x22, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00,
|
|
0x44, 0x33, 0x00, 0x00, 0x44, 0x44, 0x44, 0x00
|
|
};
|
|
#endif
|
|
|
|
static void sdram_rcomp_buffer_strength_and_slew(struct sys_info *sysinfo)
|
|
{
|
|
const u8 *strength_multiplier;
|
|
int idx, dual_channel;
|
|
|
|
/* Set Strength Multipliers */
|
|
|
|
/* Dual Channel needs different tables. */
|
|
if (sdram_capabilities_dual_channel()) {
|
|
printk(BIOS_DEBUG, "Programming Dual Channel RCOMP\n");
|
|
strength_multiplier = dual_channel_strength_multiplier;
|
|
dual_channel = 1;
|
|
idx = 5 * sysinfo->dimm[0] + sysinfo->dimm[2];
|
|
} else {
|
|
printk(BIOS_DEBUG, "Programming Single Channel RCOMP\n");
|
|
strength_multiplier = single_channel_strength_multiplier;
|
|
dual_channel = 0;
|
|
idx = 5 * sysinfo->dimm[0] + sysinfo->dimm[1];
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "Table Index: %d\n", idx);
|
|
|
|
MCHBAR8(G1SC) = strength_multiplier[idx * 8 + 0];
|
|
MCHBAR8(G2SC) = strength_multiplier[idx * 8 + 1];
|
|
MCHBAR8(G3SC) = strength_multiplier[idx * 8 + 2];
|
|
MCHBAR8(G4SC) = strength_multiplier[idx * 8 + 3];
|
|
MCHBAR8(G5SC) = strength_multiplier[idx * 8 + 4];
|
|
MCHBAR8(G6SC) = strength_multiplier[idx * 8 + 5];
|
|
MCHBAR8(G7SC) = strength_multiplier[idx * 8 + 6];
|
|
MCHBAR8(G8SC) = strength_multiplier[idx * 8 + 7];
|
|
|
|
/* Channel 0 */
|
|
sdram_write_slew_rates(G1SRPUT, slew_group_lookup(dual_channel, idx * 8 + 0));
|
|
sdram_write_slew_rates(G2SRPUT, slew_group_lookup(dual_channel, idx * 8 + 1));
|
|
if ((slew_group_lookup(dual_channel, idx * 8 + 2) != nc) && (sysinfo->package == SYSINFO_PACKAGE_STACKED))
|
|
|
|
sdram_write_slew_rates(G3SRPUT, ctl3220);
|
|
else
|
|
sdram_write_slew_rates(G3SRPUT, slew_group_lookup(dual_channel, idx * 8 + 2));
|
|
|
|
sdram_write_slew_rates(G4SRPUT, slew_group_lookup(dual_channel, idx * 8 + 3));
|
|
sdram_write_slew_rates(G5SRPUT, slew_group_lookup(dual_channel, idx * 8 + 4));
|
|
sdram_write_slew_rates(G6SRPUT, slew_group_lookup(dual_channel, idx * 8 + 5));
|
|
|
|
/* Channel 1 */
|
|
if (sysinfo->dual_channel) {
|
|
sdram_write_slew_rates(G7SRPUT, slew_group_lookup(dual_channel, idx * 8 + 6));
|
|
sdram_write_slew_rates(G8SRPUT, slew_group_lookup(dual_channel, idx * 8 + 7));
|
|
} else {
|
|
sdram_write_slew_rates(G7SRPUT, nc);
|
|
sdram_write_slew_rates(G8SRPUT, nc);
|
|
}
|
|
}
|
|
|
|
static void sdram_enable_rcomp(void)
|
|
{
|
|
u32 reg32;
|
|
/* Enable Global Periodic RCOMP */
|
|
udelay(300);
|
|
reg32 = MCHBAR32(GBRCOMPCTL);
|
|
reg32 &= ~(1 << 23);
|
|
MCHBAR32(GBRCOMPCTL) = reg32;
|
|
}
|
|
|
|
static void sdram_program_dll_timings(struct sys_info *sysinfo)
|
|
{
|
|
u32 channeldll = 0;
|
|
int i;
|
|
|
|
printk(BIOS_DEBUG, "Programming DLL Timings...\n");
|
|
|
|
MCHBAR16(DQSMT) &= ~((3 << 12) | (1 << 10) | (0xf << 0));
|
|
MCHBAR16(DQSMT) |= (1 << 13) | (0xc << 0);
|
|
|
|
/* We drive both channels with the same speed */
|
|
if (CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GM)) {
|
|
switch (sysinfo->memory_frequency) {
|
|
case 400:
|
|
channeldll = 0x26262626; break;
|
|
case 533:
|
|
channeldll = 0x22222222; break;
|
|
case 667:
|
|
channeldll = 0x11111111; break;
|
|
}
|
|
} else if (CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GC)) {
|
|
switch (sysinfo->memory_frequency) {
|
|
case 400:
|
|
channeldll = 0x33333333; break;
|
|
case 533:
|
|
channeldll = 0x24242424; break;
|
|
case 667:
|
|
channeldll = 0x25252525; break;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
MCHBAR32(C0R0B00DQST + (i * 0x10) + 0) = channeldll;
|
|
MCHBAR32(C0R0B00DQST + (i * 0x10) + 4) = channeldll;
|
|
MCHBAR32(C1R0B00DQST + (i * 0x10) + 0) = channeldll;
|
|
MCHBAR32(C1R0B00DQST + (i * 0x10) + 4) = channeldll;
|
|
if (CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GC)) {
|
|
MCHBAR8(C0R0B00DQST + (i * 0x10) + 8) = channeldll & 0xff;
|
|
MCHBAR8(C1R0B00DQST + (i * 0x10) + 8) = channeldll & 0xff;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void sdram_force_rcomp(void)
|
|
{
|
|
u32 reg32;
|
|
u8 reg8;
|
|
|
|
reg32 = MCHBAR32(ODTC);
|
|
reg32 |= (1 << 28);
|
|
MCHBAR32(ODTC) = reg32;
|
|
|
|
reg32 = MCHBAR32(SMSRCTL);
|
|
reg32 |= (1 << 0);
|
|
MCHBAR32(SMSRCTL) = reg32;
|
|
|
|
/* Start initial RCOMP */
|
|
reg32 = MCHBAR32(GBRCOMPCTL);
|
|
reg32 |= (1 << 8);
|
|
MCHBAR32(GBRCOMPCTL) = reg32;
|
|
|
|
reg8 = i945_silicon_revision();
|
|
if ((reg8 == 0 && (MCHBAR32(DCC) & (3 << 0)) == 0) || (reg8 == 1)) {
|
|
|
|
reg32 = MCHBAR32(GBRCOMPCTL);
|
|
reg32 |= (3 << 5);
|
|
MCHBAR32(GBRCOMPCTL) = reg32;
|
|
}
|
|
}
|
|
|
|
static void sdram_initialize_system_memory_io(struct sys_info *sysinfo)
|
|
{
|
|
u8 reg8;
|
|
u32 reg32;
|
|
|
|
printk(BIOS_DEBUG, "Initializing System Memory IO...\n");
|
|
/* Enable Data Half Clock Pushout */
|
|
reg8 = MCHBAR8(C0HCTC);
|
|
reg8 &= ~0x1f;
|
|
reg8 |= (1 << 0);
|
|
MCHBAR8(C0HCTC) = reg8;
|
|
|
|
reg8 = MCHBAR8(C1HCTC);
|
|
reg8 &= ~0x1f;
|
|
reg8 |= (1 << 0);
|
|
MCHBAR8(C1HCTC) = reg8;
|
|
|
|
MCHBAR16(WDLLBYPMODE) &= ~((1 << 9) | (1 << 6) | (1 << 4) | (1 << 3) | (1 << 1));
|
|
MCHBAR16(WDLLBYPMODE) |= (1 << 8) | (1 << 7) | (1 << 5) | (1 << 2) | (1 << 0);
|
|
|
|
MCHBAR8(C0WDLLCMC) = 0;
|
|
MCHBAR8(C1WDLLCMC) = 0;
|
|
|
|
/* Program RCOMP Settings */
|
|
sdram_program_dram_width(sysinfo);
|
|
|
|
sdram_rcomp_buffer_strength_and_slew(sysinfo);
|
|
|
|
/* Indicate that RCOMP programming is done */
|
|
reg32 = MCHBAR32(GBRCOMPCTL);
|
|
reg32 &= ~((1 << 29) | (1 << 26) | (3 << 21) | (3 << 2));
|
|
reg32 |= (3 << 27) | (3 << 0);
|
|
MCHBAR32(GBRCOMPCTL) = reg32;
|
|
|
|
MCHBAR32(GBRCOMPCTL) |= (1 << 10);
|
|
|
|
/* Program DLL Timings */
|
|
sdram_program_dll_timings(sysinfo);
|
|
|
|
/* Force RCOMP cycle */
|
|
sdram_force_rcomp();
|
|
}
|
|
|
|
static void sdram_enable_system_memory_io(struct sys_info *sysinfo)
|
|
{
|
|
u32 reg32;
|
|
|
|
printk(BIOS_DEBUG, "Enabling System Memory IO...\n");
|
|
|
|
reg32 = MCHBAR32(RCVENMT);
|
|
reg32 &= ~(0x3f << 6);
|
|
MCHBAR32(RCVENMT) = reg32; /* [11:6] = 0 */
|
|
|
|
reg32 |= (1 << 11) | (1 << 9);
|
|
MCHBAR32(RCVENMT) = reg32;
|
|
|
|
reg32 = MCHBAR32(DRTST);
|
|
reg32 |= (1 << 3) | (1 << 2);
|
|
MCHBAR32(DRTST) = reg32;
|
|
|
|
reg32 = MCHBAR32(DRTST);
|
|
reg32 |= (1 << 6) | (1 << 4);
|
|
MCHBAR32(DRTST) = reg32;
|
|
|
|
asm volatile ("nop; nop;" ::: "memory");
|
|
|
|
reg32 = MCHBAR32(DRTST);
|
|
|
|
/* Is channel 0 populated? */
|
|
if (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED ||
|
|
sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED)
|
|
reg32 |= (1 << 7) | (1 << 5);
|
|
else
|
|
reg32 |= (1 << 31);
|
|
|
|
/* Is channel 1 populated? */
|
|
if (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED ||
|
|
sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED)
|
|
reg32 |= (1 << 9) | (1 << 8);
|
|
else
|
|
reg32 |= (1 << 30);
|
|
|
|
MCHBAR32(DRTST) = reg32;
|
|
|
|
/* Activate DRAM Channel IO Buffers */
|
|
if (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED ||
|
|
sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED) {
|
|
reg32 = MCHBAR32(C0DRC1);
|
|
reg32 |= (1 << 8);
|
|
MCHBAR32(C0DRC1) = reg32;
|
|
}
|
|
if (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED ||
|
|
sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED) {
|
|
reg32 = MCHBAR32(C1DRC1);
|
|
reg32 |= (1 << 8);
|
|
MCHBAR32(C1DRC1) = reg32;
|
|
}
|
|
}
|
|
|
|
static int sdram_program_row_boundaries(struct sys_info *sysinfo)
|
|
{
|
|
int i;
|
|
int cum0, cum1, tolud, tom, pci_mmio_size;
|
|
const struct device *dev;
|
|
const struct northbridge_intel_i945_config *cfg = NULL;
|
|
|
|
printk(BIOS_DEBUG, "Setting RAM size...\n");
|
|
|
|
cum0 = 0;
|
|
for (i = 0; i < 2 * DIMM_SOCKETS; i++) {
|
|
cum0 += sysinfo->banksize[i];
|
|
MCHBAR8(C0DRB0+i) = cum0;
|
|
}
|
|
|
|
/* Assume we continue in Channel 1 where we stopped in Channel 0 */
|
|
cum1 = cum0;
|
|
|
|
/* Exception: Interleaved starts from the beginning */
|
|
if (sysinfo->interleaved)
|
|
cum1 = 0;
|
|
|
|
for (i = 0; i < 2 * DIMM_SOCKETS; i++) {
|
|
cum1 += sysinfo->banksize[i + 4];
|
|
MCHBAR8(C1DRB0+i) = cum1;
|
|
}
|
|
|
|
/* Set TOLUD Top Of Low Usable DRAM */
|
|
if (sysinfo->interleaved)
|
|
tolud = (cum0 + cum1) << 1;
|
|
else
|
|
tolud = (cum1 ? cum1 : cum0) << 1;
|
|
|
|
/* The TOM register has a different format */
|
|
tom = tolud >> 3;
|
|
|
|
/* Limit the value of TOLUD to leave some space for PCI memory. */
|
|
dev = pcidev_on_root(0, 0);
|
|
if (dev)
|
|
cfg = dev->chip_info;
|
|
|
|
/* Don't use pci mmio sizes smaller than 768M */
|
|
if (!cfg || cfg->pci_mmio_size <= DEFAULT_PCI_MMIO_SIZE)
|
|
pci_mmio_size = DEFAULT_PCI_MMIO_SIZE;
|
|
else
|
|
pci_mmio_size = cfg->pci_mmio_size;
|
|
|
|
tolud = MIN(((4096 - pci_mmio_size) / 128) << 3, tolud);
|
|
|
|
pci_write_config8(PCI_DEV(0, 0, 0), TOLUD, tolud);
|
|
|
|
printk(BIOS_DEBUG, "C0DRB = 0x%08x\n", MCHBAR32(C0DRB0));
|
|
printk(BIOS_DEBUG, "C1DRB = 0x%08x\n", MCHBAR32(C1DRB0));
|
|
printk(BIOS_DEBUG, "TOLUD = 0x%04x\n", pci_read_config8(PCI_DEV(0, 0, 0), TOLUD));
|
|
|
|
pci_write_config16(PCI_DEV(0, 0, 0), TOM, tom);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sdram_set_row_attributes(struct sys_info *sysinfo)
|
|
{
|
|
int i;
|
|
u16 dra0 = 0, dra1 = 0, dra = 0;
|
|
|
|
printk(BIOS_DEBUG, "Setting row attributes...\n");
|
|
for (i = 0; i < 2 * DIMM_SOCKETS; i++) {
|
|
u8 columnsrows;
|
|
|
|
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
|
|
continue;
|
|
|
|
columnsrows = (sysinfo->rows[i] & 0x0f)
|
|
| (sysinfo->cols[i] & 0xf) << 4;
|
|
|
|
switch (columnsrows) {
|
|
case 0x9d:
|
|
dra = 2; break;
|
|
case 0xad:
|
|
dra = 3; break;
|
|
case 0xbd:
|
|
dra = 4; break;
|
|
case 0xae:
|
|
dra = 3; break;
|
|
case 0xbe:
|
|
dra = 4; break;
|
|
default:
|
|
die("Unsupported Rows/Columns. (DRA)");
|
|
}
|
|
|
|
/* Double Sided DIMMs? */
|
|
if (sysinfo->banksize[(2 * i) + 1] != 0)
|
|
dra = (dra << 4) | dra;
|
|
|
|
if (i < DIMM_SOCKETS)
|
|
dra0 |= (dra << (i*8));
|
|
else
|
|
dra1 |= (dra << ((i - DIMM_SOCKETS)*8));
|
|
}
|
|
|
|
MCHBAR16(C0DRA0) = dra0;
|
|
MCHBAR16(C1DRA0) = dra1;
|
|
|
|
printk(BIOS_DEBUG, "C0DRA = 0x%04x\n", dra0);
|
|
printk(BIOS_DEBUG, "C1DRA = 0x%04x\n", dra1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sdram_set_bank_architecture(struct sys_info *sysinfo)
|
|
{
|
|
u32 off32;
|
|
int i;
|
|
|
|
MCHBAR16(C1BNKARC) &= 0xff00;
|
|
MCHBAR16(C0BNKARC) &= 0xff00;
|
|
|
|
off32 = C0BNKARC;
|
|
for (i = 0; i < 2 * DIMM_SOCKETS; i++) {
|
|
/* Switch to second channel */
|
|
if (i == DIMM_SOCKETS)
|
|
off32 = C1BNKARC;
|
|
|
|
if (sysinfo->dimm[i] == SYSINFO_DIMM_NOT_POPULATED)
|
|
continue;
|
|
|
|
if (sysinfo->banks[i] != 8)
|
|
continue;
|
|
|
|
printk(BIOS_SPEW, "DIMM%d has 8 banks.\n", i);
|
|
|
|
if (i & 1)
|
|
MCHBAR16(off32) |= 0x50;
|
|
else
|
|
MCHBAR16(off32) |= 0x05;
|
|
}
|
|
}
|
|
|
|
static void sdram_program_refresh_rate(struct sys_info *sysinfo)
|
|
{
|
|
u32 reg32;
|
|
|
|
if (sysinfo->refresh == REFRESH_7_8US)
|
|
reg32 = (2 << 8); /* Refresh enabled at 7.8us */
|
|
else
|
|
reg32 = (1 << 8); /* Refresh enabled at 15.6us */
|
|
|
|
MCHBAR32(C0DRC0) &= ~(7 << 8);
|
|
MCHBAR32(C0DRC0) |= reg32;
|
|
|
|
MCHBAR32(C1DRC0) &= ~(7 << 8);
|
|
MCHBAR32(C1DRC0) |= reg32;
|
|
}
|
|
|
|
static void sdram_program_cke_tristate(struct sys_info *sysinfo)
|
|
{
|
|
u32 reg32;
|
|
int i;
|
|
|
|
reg32 = MCHBAR32(C0DRC1);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (sysinfo->banksize[i] == 0)
|
|
reg32 |= (1 << (16 + i));
|
|
}
|
|
|
|
reg32 |= (1 << 12);
|
|
|
|
reg32 |= (1 << 11);
|
|
MCHBAR32(C0DRC1) = reg32;
|
|
|
|
/* Do we have to do this if we're in Single Channel Mode? */
|
|
reg32 = MCHBAR32(C1DRC1);
|
|
|
|
for (i = 4; i < 8; i++) {
|
|
if (sysinfo->banksize[i] == 0)
|
|
reg32 |= (1 << (12 + i));
|
|
}
|
|
|
|
reg32 |= (1 << 12);
|
|
|
|
reg32 |= (1 << 11);
|
|
MCHBAR32(C1DRC1) = reg32;
|
|
}
|
|
|
|
static void sdram_program_odt_tristate(struct sys_info *sysinfo)
|
|
{
|
|
u32 reg32;
|
|
int i;
|
|
|
|
reg32 = MCHBAR32(C0DRC2);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
if (sysinfo->banksize[i] == 0)
|
|
reg32 |= (1 << (24 + i));
|
|
}
|
|
MCHBAR32(C0DRC2) = reg32;
|
|
|
|
reg32 = MCHBAR32(C1DRC2);
|
|
|
|
for (i = 4; i < 8; i++) {
|
|
if (sysinfo->banksize[i] == 0)
|
|
reg32 |= (1 << (20 + i));
|
|
}
|
|
MCHBAR32(C1DRC2) = reg32;
|
|
}
|
|
|
|
static void sdram_set_timing_and_control(struct sys_info *sysinfo)
|
|
{
|
|
u32 reg32, tRD_min;
|
|
u32 tWTR;
|
|
u32 temp_drt;
|
|
int i, page_size;
|
|
|
|
static const u8 cas_table[] = {
|
|
2, 1, 0, 3
|
|
};
|
|
|
|
reg32 = MCHBAR32(C0DRC0);
|
|
reg32 |= (1 << 2); /* Burst Length 8 */
|
|
reg32 &= ~((1 << 13) | (1 << 12));
|
|
MCHBAR32(C0DRC0) = reg32;
|
|
|
|
reg32 = MCHBAR32(C1DRC0);
|
|
reg32 |= (1 << 2); /* Burst Length 8 */
|
|
reg32 &= ~((1 << 13) | (1 << 12));
|
|
MCHBAR32(C1DRC0) = reg32;
|
|
|
|
if (!sysinfo->dual_channel && sysinfo->dimm[1] !=
|
|
SYSINFO_DIMM_NOT_POPULATED) {
|
|
reg32 = MCHBAR32(C0DRC0);
|
|
reg32 |= (1 << 15);
|
|
MCHBAR32(C0DRC0) = reg32;
|
|
}
|
|
|
|
sdram_program_refresh_rate(sysinfo);
|
|
|
|
sdram_program_cke_tristate(sysinfo);
|
|
|
|
sdram_program_odt_tristate(sysinfo);
|
|
|
|
/* Calculate DRT0 */
|
|
|
|
temp_drt = 0;
|
|
|
|
/* B2B Write Precharge (same bank) = CL-1 + BL/2 + tWR */
|
|
reg32 = (sysinfo->cas - 1) + (BURSTLENGTH / 2) + sysinfo->twr;
|
|
temp_drt |= (reg32 << 28);
|
|
|
|
/* Write Auto Precharge (same bank) = CL-1 + BL/2 + tWR + tRP */
|
|
reg32 += sysinfo->trp;
|
|
temp_drt |= (reg32 << 4);
|
|
|
|
if (sysinfo->memory_frequency == 667)
|
|
tWTR = 3; /* 667MHz */
|
|
else
|
|
tWTR = 2; /* 400 and 533 */
|
|
|
|
/* B2B Write to Read Command Spacing */
|
|
reg32 = (sysinfo->cas - 1) + (BURSTLENGTH / 2) + tWTR;
|
|
temp_drt |= (reg32 << 24);
|
|
|
|
/* CxDRT0 [23:22], [21:20], [19:18] [16] have fixed values */
|
|
temp_drt |= ((1 << 22) | (3 << 20) | (1 << 18) | (0 << 16));
|
|
|
|
/*
|
|
* tRD is the delay the memory controller is waiting on the FSB,
|
|
* in mclk domain.
|
|
* This parameter is important for stability and performance.
|
|
* Those values might not be optimal but seem stable.
|
|
*/
|
|
tRD_min = sysinfo->cas;
|
|
switch (sysinfo->fsb_frequency) {
|
|
case 533: break;
|
|
case 667: tRD_min += 1;
|
|
break;
|
|
case 800: tRD_min += 2;
|
|
break;
|
|
case 1066: tRD_min += 3;
|
|
break;
|
|
}
|
|
|
|
temp_drt |= (tRD_min << 11);
|
|
|
|
/* Read Auto Precharge to Activate */
|
|
|
|
temp_drt |= (8 << 0);
|
|
|
|
MCHBAR32(C0DRT0) = temp_drt;
|
|
MCHBAR32(C1DRT0) = temp_drt;
|
|
|
|
/* Calculate DRT1 */
|
|
|
|
temp_drt = MCHBAR32(C0DRT1) & 0x00020088;
|
|
|
|
/* DRAM RASB Precharge */
|
|
temp_drt |= (sysinfo->trp - 2) << 0;
|
|
|
|
/* DRAM RASB to CASB Delay */
|
|
temp_drt |= (sysinfo->trcd - 2) << 4;
|
|
|
|
/* CASB Latency */
|
|
temp_drt |= (cas_table[sysinfo->cas - 3]) << 8;
|
|
|
|
/* Refresh Cycle Time */
|
|
temp_drt |= (sysinfo->trfc) << 10;
|
|
|
|
/* Pre-All to Activate Delay */
|
|
temp_drt |= (0 << 16);
|
|
|
|
/* Precharge to Precharge Delay stays at 1 clock */
|
|
temp_drt |= (0 << 18);
|
|
|
|
/* Activate to Precharge Delay */
|
|
temp_drt |= (sysinfo->tras << 19);
|
|
|
|
/* Read to Precharge (tRTP) */
|
|
if (sysinfo->memory_frequency == 667)
|
|
temp_drt |= (1 << 28);
|
|
else
|
|
temp_drt |= (0 << 28);
|
|
|
|
/* Determine page size */
|
|
reg32 = 0;
|
|
page_size = 1; /* Default: 1k pagesize */
|
|
for (i = 0; i < 2*DIMM_SOCKETS; i++) {
|
|
if (sysinfo->dimm[i] == SYSINFO_DIMM_X16DS ||
|
|
sysinfo->dimm[i] == SYSINFO_DIMM_X16SS)
|
|
page_size = 2; /* 2k pagesize */
|
|
}
|
|
|
|
if (sysinfo->memory_frequency == 533 && page_size == 2)
|
|
reg32 = 1;
|
|
if (sysinfo->memory_frequency == 667)
|
|
reg32 = page_size;
|
|
|
|
temp_drt |= (reg32 << 30);
|
|
|
|
MCHBAR32(C0DRT1) = temp_drt;
|
|
MCHBAR32(C1DRT1) = temp_drt;
|
|
|
|
/* Program DRT2 */
|
|
reg32 = MCHBAR32(C0DRT2);
|
|
reg32 &= ~(1 << 8);
|
|
MCHBAR32(C0DRT2) = reg32;
|
|
|
|
reg32 = MCHBAR32(C1DRT2);
|
|
reg32 &= ~(1 << 8);
|
|
MCHBAR32(C1DRT2) = reg32;
|
|
|
|
/* Calculate DRT3 */
|
|
temp_drt = MCHBAR32(C0DRT3) & ~0x07ffffff;
|
|
|
|
/* Get old tRFC value */
|
|
reg32 = MCHBAR32(C0DRT1) >> 10;
|
|
reg32 &= 0x3f;
|
|
|
|
/* 788nS - tRFC */
|
|
switch (sysinfo->memory_frequency) {
|
|
case 400: /* 5nS */
|
|
reg32 = ((78800 / 500) - reg32) & 0x1ff;
|
|
reg32 |= (0x8c << 16) | (0x0c << 10); /* 1 us */
|
|
break;
|
|
case 533: /* 3.75nS */
|
|
reg32 = ((78800 / 375) - reg32) & 0x1ff;
|
|
reg32 |= (0xba << 16) | (0x10 << 10); /* 1 us */
|
|
break;
|
|
case 667: /* 3nS */
|
|
reg32 = ((78800 / 300) - reg32) & 0x1ff;
|
|
reg32 |= (0xe9 << 16) | (0x14 << 10); /* 1 us */
|
|
break;
|
|
}
|
|
|
|
temp_drt |= reg32;
|
|
|
|
MCHBAR32(C0DRT3) = temp_drt;
|
|
MCHBAR32(C1DRT3) = temp_drt;
|
|
}
|
|
|
|
static void sdram_set_channel_mode(struct sys_info *sysinfo)
|
|
{
|
|
u32 reg32;
|
|
|
|
printk(BIOS_DEBUG, "Setting mode of operation for memory channels...");
|
|
|
|
if (sdram_capabilities_interleave() &&
|
|
((sysinfo->banksize[0] + sysinfo->banksize[1] +
|
|
sysinfo->banksize[2] + sysinfo->banksize[3]) ==
|
|
(sysinfo->banksize[4] + sysinfo->banksize[5] +
|
|
sysinfo->banksize[6] + sysinfo->banksize[7]))) {
|
|
/* Both channels equipped with DIMMs of the same size */
|
|
sysinfo->interleaved = 1;
|
|
} else {
|
|
sysinfo->interleaved = 0;
|
|
}
|
|
|
|
reg32 = MCHBAR32(DCC);
|
|
reg32 &= ~(7 << 0);
|
|
|
|
if (sysinfo->interleaved) {
|
|
/* Dual Channel Interleaved */
|
|
printk(BIOS_DEBUG, "Dual Channel Interleaved.\n");
|
|
reg32 |= (1 << 1);
|
|
} else if (sysinfo->dimm[0] == SYSINFO_DIMM_NOT_POPULATED &&
|
|
sysinfo->dimm[1] == SYSINFO_DIMM_NOT_POPULATED) {
|
|
/* Channel 1 only */
|
|
printk(BIOS_DEBUG, "Single Channel 1 only.\n");
|
|
reg32 |= (1 << 2);
|
|
} else if (sdram_capabilities_dual_channel() &&
|
|
(sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED ||
|
|
sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED)) {
|
|
/* Dual Channel Asymmetric */
|
|
printk(BIOS_DEBUG, "Dual Channel Asymmetric.\n");
|
|
reg32 |= (1 << 0);
|
|
} else {
|
|
/* All bits 0 means Single Channel 0 operation */
|
|
printk(BIOS_DEBUG, "Single Channel 0 only.\n");
|
|
}
|
|
|
|
/* Now disable channel XORing */
|
|
reg32 |= (1 << 10);
|
|
|
|
MCHBAR32(DCC) = reg32;
|
|
|
|
PRINTK_DEBUG("DCC = 0x%08x\n", MCHBAR32(DCC));
|
|
}
|
|
|
|
static void sdram_program_pll_settings(struct sys_info *sysinfo)
|
|
{
|
|
MCHBAR32(PLLMON) = 0x80800000;
|
|
|
|
sysinfo->fsb_frequency = fsbclk();
|
|
if (sysinfo->fsb_frequency == 0xffff)
|
|
die("Unsupported FSB speed");
|
|
|
|
/* Program CPCTL according to FSB speed */
|
|
/* Only write the lower byte */
|
|
switch (sysinfo->fsb_frequency) {
|
|
case 400:
|
|
MCHBAR8(CPCTL) = 0x90; break; /* FSB400 */
|
|
case 533:
|
|
MCHBAR8(CPCTL) = 0x95; break; /* FSB533 */
|
|
case 667:
|
|
MCHBAR8(CPCTL) = 0x8d; break; /* FSB667 */
|
|
}
|
|
|
|
MCHBAR16(CPCTL) &= ~(1 << 11);
|
|
|
|
MCHBAR16(CPCTL); /* Read back register to activate settings */
|
|
}
|
|
|
|
static void sdram_program_graphics_frequency(struct sys_info *sysinfo)
|
|
{
|
|
u8 reg8;
|
|
u16 reg16;
|
|
u8 freq, second_vco, voltage;
|
|
|
|
#define CRCLK_166MHz 0x00
|
|
#define CRCLK_200MHz 0x01
|
|
#define CRCLK_250MHz 0x03
|
|
#define CRCLK_400MHz 0x05
|
|
|
|
#define CDCLK_200MHz 0x00
|
|
#define CDCLK_320MHz 0x40
|
|
|
|
#define VOLTAGE_1_05 0x00
|
|
#define VOLTAGE_1_50 0x01
|
|
|
|
printk(BIOS_DEBUG, "Setting Graphics Frequency...\n");
|
|
|
|
printk(BIOS_DEBUG, "FSB: %d MHz ", sysinfo->fsb_frequency);
|
|
|
|
voltage = VOLTAGE_1_05;
|
|
if (MCHBAR32(DFT_STRAP1) & (1 << 20))
|
|
voltage = VOLTAGE_1_50;
|
|
printk(BIOS_DEBUG, "Voltage: %s ", (voltage == VOLTAGE_1_05)?"1.05V":"1.5V");
|
|
|
|
/* Gate graphics hardware for frequency change */
|
|
reg8 = pci_read_config16(PCI_DEV(0, 2, 0), GCFC + 1);
|
|
reg8 = (1<<3) | (1<<1); /* disable crclk, gate cdclk */
|
|
pci_write_config8(PCI_DEV(0, 2, 0), GCFC + 1, reg8);
|
|
|
|
/* Get graphics frequency capabilities */
|
|
reg8 = sdram_capabilities_core_frequencies();
|
|
|
|
freq = CRCLK_250MHz;
|
|
switch (reg8) {
|
|
case GFX_FREQUENCY_CAP_ALL:
|
|
if (voltage == VOLTAGE_1_05)
|
|
freq = CRCLK_250MHz;
|
|
else
|
|
freq = CRCLK_400MHz; /* 1.5V requires 400MHz */
|
|
break;
|
|
case GFX_FREQUENCY_CAP_250MHZ:
|
|
freq = CRCLK_250MHz; break;
|
|
case GFX_FREQUENCY_CAP_200MHZ:
|
|
freq = CRCLK_200MHz; break;
|
|
case GFX_FREQUENCY_CAP_166MHZ:
|
|
freq = CRCLK_166MHz; break;
|
|
}
|
|
|
|
if (freq != CRCLK_400MHz) {
|
|
/* What chipset are we? Force 166MHz for GMS */
|
|
reg8 = (pci_read_config8(PCI_DEV(0, 0x00, 0), 0xe7) & 0x70) >> 4;
|
|
if (reg8 == 2)
|
|
freq = CRCLK_166MHz;
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "Render: ");
|
|
switch (freq) {
|
|
case CRCLK_166MHz:
|
|
printk(BIOS_DEBUG, "166MHz"); break;
|
|
case CRCLK_200MHz:
|
|
printk(BIOS_DEBUG, "200MHz"); break;
|
|
case CRCLK_250MHz:
|
|
printk(BIOS_DEBUG, "250MHz"); break;
|
|
case CRCLK_400MHz:
|
|
printk(BIOS_DEBUG, "400MHz"); break;
|
|
}
|
|
|
|
if (i945_silicon_revision() == 0)
|
|
sysinfo->mvco4x = 1;
|
|
else
|
|
sysinfo->mvco4x = 0;
|
|
|
|
second_vco = 0;
|
|
|
|
if (voltage == VOLTAGE_1_50) {
|
|
second_vco = 1;
|
|
} else if ((i945_silicon_revision() > 0) && (freq == CRCLK_250MHz)) {
|
|
u16 mem = sysinfo->memory_frequency;
|
|
u16 fsb = sysinfo->fsb_frequency;
|
|
|
|
if ((fsb == 667 && mem == 533) ||
|
|
(fsb == 533 && mem == 533) ||
|
|
(fsb == 533 && mem == 400)) {
|
|
second_vco = 1;
|
|
}
|
|
|
|
if (fsb == 667 && mem == 533)
|
|
sysinfo->mvco4x = 1;
|
|
}
|
|
|
|
if (second_vco)
|
|
sysinfo->clkcfg_bit7 = 1;
|
|
else
|
|
sysinfo->clkcfg_bit7 = 0;
|
|
|
|
/* Graphics Core Render Clock */
|
|
reg16 = pci_read_config16(PCI_DEV(0, 2, 0), GCFC);
|
|
reg16 &= ~((7 << 0) | (1 << 13));
|
|
reg16 |= freq;
|
|
pci_write_config16(PCI_DEV(0, 2, 0), GCFC, reg16);
|
|
|
|
/* Graphics Core Display Clock */
|
|
reg8 = pci_read_config8(PCI_DEV(0, 2, 0), GCFC);
|
|
reg8 &= ~((1<<7) | (7<<4));
|
|
|
|
if (voltage == VOLTAGE_1_05) {
|
|
reg8 |= CDCLK_200MHz;
|
|
printk(BIOS_DEBUG, " Display: 200MHz\n");
|
|
} else {
|
|
reg8 |= CDCLK_320MHz;
|
|
printk(BIOS_DEBUG, " Display: 320MHz\n");
|
|
}
|
|
pci_write_config8(PCI_DEV(0, 2, 0), GCFC, reg8);
|
|
|
|
reg8 = pci_read_config8(PCI_DEV(0, 2, 0), GCFC + 1);
|
|
|
|
reg8 |= (1<<3) | (1<<1);
|
|
pci_write_config8(PCI_DEV(0, 2, 0), GCFC + 1, reg8);
|
|
|
|
reg8 |= 0x0f;
|
|
pci_write_config8(PCI_DEV(0, 2, 0), GCFC + 1, reg8);
|
|
|
|
/* Ungate core render and display clocks */
|
|
reg8 &= 0xf0;
|
|
pci_write_config8(PCI_DEV(0, 2, 0), GCFC + 1, reg8);
|
|
}
|
|
|
|
static void sdram_program_memory_frequency(struct sys_info *sysinfo)
|
|
{
|
|
u32 clkcfg;
|
|
u8 reg8;
|
|
u8 offset = CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GM) ? 1 : 0;
|
|
|
|
printk(BIOS_DEBUG, "Setting Memory Frequency... ");
|
|
|
|
clkcfg = MCHBAR32(CLKCFG);
|
|
|
|
printk(BIOS_DEBUG, "CLKCFG = 0x%08x, ", clkcfg);
|
|
|
|
clkcfg &= ~((1 << 12) | (1 << 7) | (7 << 4));
|
|
|
|
if (sysinfo->mvco4x) {
|
|
printk(BIOS_DEBUG, "MVCO 4x, ");
|
|
clkcfg &= ~(1 << 12);
|
|
}
|
|
|
|
if (sysinfo->clkcfg_bit7) {
|
|
printk(BIOS_DEBUG, "second VCO, ");
|
|
|
|
clkcfg |= (1 << 7);
|
|
}
|
|
|
|
switch (sysinfo->memory_frequency) {
|
|
case 400:
|
|
clkcfg |= ((1 + offset) << 4); break;
|
|
case 533:
|
|
clkcfg |= ((2 + offset) << 4); break;
|
|
case 667:
|
|
clkcfg |= ((3 + offset) << 4); break;
|
|
default:
|
|
die("Target Memory Frequency Error");
|
|
}
|
|
|
|
if (MCHBAR32(CLKCFG) == clkcfg) {
|
|
printk(BIOS_DEBUG, "ok (unchanged)\n");
|
|
return;
|
|
}
|
|
|
|
MCHBAR32(CLKCFG) = clkcfg;
|
|
|
|
/* Make sure the following code is in the
|
|
* cache before we execute it.
|
|
*/
|
|
goto cache_code;
|
|
vco_update:
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
|
|
reg8 &= ~(1 << 7);
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
|
|
|
|
clkcfg &= ~(1 << 10);
|
|
MCHBAR32(CLKCFG) = clkcfg;
|
|
clkcfg |= (1 << 10);
|
|
MCHBAR32(CLKCFG) = clkcfg;
|
|
|
|
asm volatile (
|
|
" movl $0x100, %%ecx\n"
|
|
"delay_update:\n"
|
|
" nop\n"
|
|
" nop\n"
|
|
" nop\n"
|
|
" nop\n"
|
|
" loop delay_update\n"
|
|
: /* No outputs */
|
|
: /* No inputs */
|
|
: "%ecx", "memory"
|
|
);
|
|
|
|
clkcfg &= ~(1 << 10);
|
|
MCHBAR32(CLKCFG) = clkcfg;
|
|
|
|
goto out;
|
|
cache_code:
|
|
goto vco_update;
|
|
out:
|
|
|
|
printk(BIOS_DEBUG, "CLKCFG = 0x%08x, ", MCHBAR32(CLKCFG));
|
|
printk(BIOS_DEBUG, "ok\n");
|
|
}
|
|
|
|
static void sdram_program_clock_crossing(void)
|
|
{
|
|
int idx = 0;
|
|
|
|
/**
|
|
* We add the indices according to our clocks from CLKCFG.
|
|
*/
|
|
#if CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GM)
|
|
static const u32 data_clock_crossing[] = {
|
|
0x00100401, 0x00000000, /* DDR400 FSB400 */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
|
|
0x08040120, 0x00000000, /* DDR400 FSB533 */
|
|
0x00100401, 0x00000000, /* DDR533 FSB533 */
|
|
0x00010402, 0x00000000, /* DDR667 FSB533 - fake values */
|
|
|
|
0x04020120, 0x00000010, /* DDR400 FSB667 */
|
|
0x10040280, 0x00000040, /* DDR533 FSB667 */
|
|
0x00100401, 0x00000000, /* DDR667 FSB667 */
|
|
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
};
|
|
|
|
static const u32 command_clock_crossing[] = {
|
|
0x04020208, 0x00000000, /* DDR400 FSB400 */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
|
|
0x00060108, 0x00000000, /* DDR400 FSB533 */
|
|
0x04020108, 0x00000000, /* DDR533 FSB533 */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
|
|
0x00040318, 0x00000000, /* DDR400 FSB667 */
|
|
0x04020118, 0x00000000, /* DDR533 FSB667 */
|
|
0x02010804, 0x00000000, /* DDR667 FSB667 */
|
|
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
};
|
|
|
|
#elif CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GC)
|
|
/* i945 G/P */
|
|
static const u32 data_clock_crossing[] = {
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
|
|
0x10080201, 0x00000000, /* DDR400 FSB533 */
|
|
0x00100401, 0x00000000, /* DDR533 FSB533 */
|
|
0x00010402, 0x00000000, /* DDR667 FSB533 - fake values */
|
|
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
|
|
0x04020108, 0x00000000, /* DDR400 FSB800 */
|
|
0x00020108, 0x00000000, /* DDR533 FSB800 */
|
|
0x00080201, 0x00000000, /* DDR667 FSB800 */
|
|
|
|
0x00010402, 0x00000000, /* DDR400 FSB1066 */
|
|
0x04020108, 0x00000000, /* DDR533 FSB1066 */
|
|
0x08040110, 0x00000000, /* DDR667 FSB1066 */
|
|
};
|
|
|
|
static const u32 command_clock_crossing[] = {
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
|
|
0x00010800, 0x00000402, /* DDR400 FSB533 */
|
|
0x01000400, 0x00000200, /* DDR533 FSB533 */
|
|
0x00020904, 0x00000000, /* DDR667 FSB533 - fake values */
|
|
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
0xffffffff, 0xffffffff, /* nonexistent */
|
|
|
|
0x02010804, 0x00000000, /* DDR400 FSB800 */
|
|
0x00010402, 0x00000000, /* DDR533 FSB800 */
|
|
0x04020130, 0x00000008, /* DDR667 FSB800 */
|
|
|
|
0x00020904, 0x00000000, /* DDR400 FSB1066 */
|
|
0x02010804, 0x00000000, /* DDR533 FSB1066 */
|
|
0x180601c0, 0x00000020, /* DDR667 FSB1066 */
|
|
};
|
|
#endif
|
|
|
|
printk(BIOS_DEBUG, "Programming Clock Crossing...");
|
|
|
|
printk(BIOS_DEBUG, "MEM=");
|
|
switch (memclk()) {
|
|
case 400:
|
|
printk(BIOS_DEBUG, "400"); idx += 0; break;
|
|
case 533:
|
|
printk(BIOS_DEBUG, "533"); idx += 2; break;
|
|
case 667:
|
|
printk(BIOS_DEBUG, "667"); idx += 4; break;
|
|
default:
|
|
printk(BIOS_DEBUG, "RSVD %x", memclk()); return;
|
|
}
|
|
|
|
printk(BIOS_DEBUG, " FSB=");
|
|
switch (fsbclk()) {
|
|
case 400:
|
|
printk(BIOS_DEBUG, "400"); idx += 0; break;
|
|
case 533:
|
|
printk(BIOS_DEBUG, "533"); idx += 6; break;
|
|
case 667:
|
|
printk(BIOS_DEBUG, "667"); idx += 12; break;
|
|
case 800:
|
|
printk(BIOS_DEBUG, "800"); idx += 18; break;
|
|
case 1066:
|
|
printk(BIOS_DEBUG, "1066"); idx += 24; break;
|
|
default:
|
|
printk(BIOS_DEBUG, "RSVD %x\n", fsbclk()); return;
|
|
}
|
|
|
|
if (command_clock_crossing[idx] == 0xffffffff)
|
|
printk(BIOS_DEBUG, "Invalid MEM/FSB combination!\n");
|
|
|
|
MCHBAR32(CCCFT + 0) = command_clock_crossing[idx];
|
|
MCHBAR32(CCCFT + 4) = command_clock_crossing[idx + 1];
|
|
|
|
MCHBAR32(C0DCCFT + 0) = data_clock_crossing[idx];
|
|
MCHBAR32(C0DCCFT + 4) = data_clock_crossing[idx + 1];
|
|
MCHBAR32(C1DCCFT + 0) = data_clock_crossing[idx];
|
|
MCHBAR32(C1DCCFT + 4) = data_clock_crossing[idx + 1];
|
|
|
|
printk(BIOS_DEBUG, "... ok\n");
|
|
}
|
|
|
|
static void sdram_disable_fast_dispatch(void)
|
|
{
|
|
u32 reg32;
|
|
|
|
reg32 = MCHBAR32(FSBPMC3);
|
|
reg32 |= (1 << 1);
|
|
MCHBAR32(FSBPMC3) = reg32;
|
|
|
|
reg32 = MCHBAR32(SBTEST);
|
|
reg32 |= (3 << 1);
|
|
MCHBAR32(SBTEST) = reg32;
|
|
}
|
|
|
|
static void sdram_pre_jedec_initialization(void)
|
|
{
|
|
u32 reg32;
|
|
|
|
reg32 = MCHBAR32(WCC);
|
|
reg32 &= 0x113ff3ff;
|
|
reg32 |= (4 << 29) | (3 << 25) | (1 << 10);
|
|
MCHBAR32(WCC) = reg32;
|
|
|
|
MCHBAR32(SMVREFC) |= (1 << 6);
|
|
|
|
MCHBAR32(MMARB0) &= ~(3 << 17);
|
|
MCHBAR32(MMARB0) |= (1 << 21) | (1 << 16);
|
|
|
|
MCHBAR32(MMARB1) &= ~(7 << 8);
|
|
MCHBAR32(MMARB1) |= (3 << 8);
|
|
|
|
/* Adaptive Idle Timer Control */
|
|
MCHBAR32(C0AIT) = 0x000006c4;
|
|
MCHBAR32(C0AIT+4) = 0x871a066d;
|
|
|
|
MCHBAR32(C1AIT) = 0x000006c4;
|
|
MCHBAR32(C1AIT+4) = 0x871a066d;
|
|
}
|
|
|
|
#define EA_DUALCHANNEL_XOR_BANK_RANK_MODE (0xd4 << 24)
|
|
#define EA_DUALCHANNEL_XOR_BANK_MODE (0xf4 << 24)
|
|
#define EA_DUALCHANNEL_BANK_RANK_MODE (0xc2 << 24)
|
|
#define EA_DUALCHANNEL_BANK_MODE (0xe2 << 24)
|
|
#define EA_SINGLECHANNEL_XOR_BANK_RANK_MODE (0x91 << 24)
|
|
#define EA_SINGLECHANNEL_XOR_BANK_MODE (0xb1 << 24)
|
|
#define EA_SINGLECHANNEL_BANK_RANK_MODE (0x80 << 24)
|
|
#define EA_SINGLECHANNEL_BANK_MODE (0xa0 << 24)
|
|
|
|
static void sdram_enhanced_addressing_mode(struct sys_info *sysinfo)
|
|
{
|
|
u32 chan0 = 0, chan1 = 0;
|
|
int chan0_dualsided, chan1_dualsided, chan0_populated, chan1_populated;
|
|
|
|
chan0_populated = (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED ||
|
|
sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED);
|
|
chan1_populated = (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED ||
|
|
sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED);
|
|
chan0_dualsided = (sysinfo->banksize[1] || sysinfo->banksize[3]);
|
|
chan1_dualsided = (sysinfo->banksize[5] || sysinfo->banksize[7]);
|
|
|
|
if (sdram_capabilities_enhanced_addressing_xor()) {
|
|
if (!sysinfo->interleaved) {
|
|
/* Single Channel & Dual Channel Asymmetric */
|
|
if (chan0_populated) {
|
|
if (chan0_dualsided)
|
|
chan0 = EA_SINGLECHANNEL_XOR_BANK_RANK_MODE;
|
|
else
|
|
chan0 = EA_SINGLECHANNEL_XOR_BANK_MODE;
|
|
}
|
|
if (chan1_populated) {
|
|
if (chan1_dualsided)
|
|
chan1 = EA_SINGLECHANNEL_XOR_BANK_RANK_MODE;
|
|
else
|
|
chan1 = EA_SINGLECHANNEL_XOR_BANK_MODE;
|
|
}
|
|
} else {
|
|
/* Interleaved has always both channels populated */
|
|
if (chan0_dualsided)
|
|
chan0 = EA_DUALCHANNEL_XOR_BANK_RANK_MODE;
|
|
else
|
|
chan0 = EA_DUALCHANNEL_XOR_BANK_MODE;
|
|
|
|
if (chan1_dualsided)
|
|
chan1 = EA_DUALCHANNEL_XOR_BANK_RANK_MODE;
|
|
else
|
|
chan1 = EA_DUALCHANNEL_XOR_BANK_MODE;
|
|
}
|
|
} else {
|
|
if (!sysinfo->interleaved) {
|
|
/* Single Channel & Dual Channel Asymmetric */
|
|
if (chan0_populated) {
|
|
if (chan0_dualsided)
|
|
chan0 = EA_SINGLECHANNEL_BANK_RANK_MODE;
|
|
else
|
|
chan0 = EA_SINGLECHANNEL_BANK_MODE;
|
|
}
|
|
if (chan1_populated) {
|
|
if (chan1_dualsided)
|
|
chan1 = EA_SINGLECHANNEL_BANK_RANK_MODE;
|
|
else
|
|
chan1 = EA_SINGLECHANNEL_BANK_MODE;
|
|
}
|
|
} else {
|
|
/* Interleaved has always both channels populated */
|
|
if (chan0_dualsided)
|
|
chan0 = EA_DUALCHANNEL_BANK_RANK_MODE;
|
|
else
|
|
chan0 = EA_DUALCHANNEL_BANK_MODE;
|
|
|
|
if (chan1_dualsided)
|
|
chan1 = EA_DUALCHANNEL_BANK_RANK_MODE;
|
|
else
|
|
chan1 = EA_DUALCHANNEL_BANK_MODE;
|
|
}
|
|
}
|
|
|
|
MCHBAR32(C0DRC1) &= 0x00ffffff;
|
|
MCHBAR32(C0DRC1) |= chan0;
|
|
MCHBAR32(C1DRC1) &= 0x00ffffff;
|
|
MCHBAR32(C1DRC1) |= chan1;
|
|
}
|
|
|
|
static void sdram_post_jedec_initialization(struct sys_info *sysinfo)
|
|
{
|
|
u32 reg32;
|
|
|
|
/* Enable Channel XORing for Dual Channel Interleave */
|
|
if (sysinfo->interleaved) {
|
|
|
|
reg32 = MCHBAR32(DCC);
|
|
#if CONFIG(CHANNEL_XOR_RANDOMIZATION)
|
|
reg32 &= ~(1 << 10);
|
|
reg32 |= (1 << 9);
|
|
#else
|
|
reg32 &= ~(1 << 9);
|
|
#endif
|
|
MCHBAR32(DCC) = reg32;
|
|
}
|
|
|
|
/* DRAM mode optimizations */
|
|
sdram_enhanced_addressing_mode(sysinfo);
|
|
|
|
reg32 = MCHBAR32(FSBPMC3);
|
|
reg32 &= ~(1 << 1);
|
|
MCHBAR32(FSBPMC3) = reg32;
|
|
|
|
reg32 = MCHBAR32(SBTEST);
|
|
reg32 &= ~(1 << 2);
|
|
MCHBAR32(SBTEST) = reg32;
|
|
|
|
reg32 = MCHBAR32(SBOCC);
|
|
reg32 &= 0xffbdb6ff;
|
|
reg32 |= (0xbdb6 << 8) | (1 << 0);
|
|
MCHBAR32(SBOCC) = reg32;
|
|
}
|
|
|
|
static void sdram_power_management(struct sys_info *sysinfo)
|
|
{
|
|
u8 reg8;
|
|
u16 reg16;
|
|
u32 reg32;
|
|
int integrated_graphics = 1;
|
|
int i;
|
|
|
|
reg32 = MCHBAR32(C0DRT2);
|
|
reg32 &= 0xffffff00;
|
|
/* Idle timer = 8 clocks, CKE idle timer = 16 clocks */
|
|
reg32 |= (1 << 5) | (1 << 4);
|
|
MCHBAR32(C0DRT2) = reg32;
|
|
|
|
reg32 = MCHBAR32(C1DRT2);
|
|
reg32 &= 0xffffff00;
|
|
/* Idle timer = 8 clocks, CKE idle timer = 16 clocks */
|
|
reg32 |= (1 << 5) | (1 << 4);
|
|
MCHBAR32(C1DRT2) = reg32;
|
|
|
|
reg32 = MCHBAR32(C0DRC1);
|
|
|
|
reg32 |= (1 << 12) | (1 << 11);
|
|
MCHBAR32(C0DRC1) = reg32;
|
|
|
|
reg32 = MCHBAR32(C1DRC1);
|
|
|
|
reg32 |= (1 << 12) | (1 << 11);
|
|
MCHBAR32(C1DRC1) = reg32;
|
|
|
|
if (CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GM)) {
|
|
if (i945_silicon_revision() > 1) {
|
|
/* FIXME bits 5 and 0 only if PCIe graphics is disabled */
|
|
u16 peg_bits = (1 << 5) | (1 << 0);
|
|
|
|
MCHBAR16(UPMC1) = 0x1010 | peg_bits;
|
|
} else {
|
|
/* FIXME bits 5 and 0 only if PCIe graphics is disabled */
|
|
u16 peg_bits = (1 << 5) | (1 << 0);
|
|
|
|
/* Rev 0 and 1 */
|
|
MCHBAR16(UPMC1) = 0x0010 | peg_bits;
|
|
}
|
|
}
|
|
|
|
reg16 = MCHBAR16(UPMC2);
|
|
reg16 &= 0xfc00;
|
|
reg16 |= 0x0100;
|
|
MCHBAR16(UPMC2) = reg16;
|
|
|
|
MCHBAR32(UPMC3) = 0x000f06ff;
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
MCHBAR32(UPMC3) &= ~(1 << 16);
|
|
MCHBAR32(UPMC3) |= (1 << 16);
|
|
}
|
|
|
|
MCHBAR32(GIPMC1) = 0x8000000c;
|
|
|
|
reg16 = MCHBAR16(CPCTL);
|
|
reg16 &= ~(7 << 11);
|
|
if (i945_silicon_revision() > 2)
|
|
reg16 |= (6 << 11);
|
|
else
|
|
reg16 |= (4 << 11);
|
|
MCHBAR16(CPCTL) = reg16;
|
|
|
|
#if 0
|
|
if ((MCHBAR32(ECO) & (1 << 16)) != 0) {
|
|
#else
|
|
if (i945_silicon_revision() != 0) {
|
|
#endif
|
|
switch (sysinfo->fsb_frequency) {
|
|
case 667:
|
|
MCHBAR32(HGIPMC2) = 0x0d590d59; break;
|
|
case 533:
|
|
MCHBAR32(HGIPMC2) = 0x155b155b; break;
|
|
}
|
|
} else {
|
|
switch (sysinfo->fsb_frequency) {
|
|
case 667:
|
|
MCHBAR32(HGIPMC2) = 0x09c409c4; break;
|
|
case 533:
|
|
MCHBAR32(HGIPMC2) = 0x0fa00fa0; break;
|
|
}
|
|
}
|
|
|
|
MCHBAR32(FSBPMC1) = 0x8000000c;
|
|
|
|
reg32 = MCHBAR32(C2C3TT);
|
|
reg32 &= 0xffff0000;
|
|
switch (sysinfo->fsb_frequency) {
|
|
case 667:
|
|
reg32 |= 0x0600; break;
|
|
case 533:
|
|
reg32 |= 0x0480; break;
|
|
}
|
|
MCHBAR32(C2C3TT) = reg32;
|
|
|
|
reg32 = MCHBAR32(C3C4TT);
|
|
reg32 &= 0xffff0000;
|
|
switch (sysinfo->fsb_frequency) {
|
|
case 667:
|
|
reg32 |= 0x0b80; break;
|
|
case 533:
|
|
reg32 |= 0x0980; break;
|
|
}
|
|
MCHBAR32(C3C4TT) = reg32;
|
|
|
|
if (i945_silicon_revision() == 0)
|
|
MCHBAR32(ECO) &= ~(1 << 16);
|
|
else
|
|
MCHBAR32(ECO) |= (1 << 16);
|
|
|
|
#if 0
|
|
|
|
if (i945_silicon_revision() == 0)
|
|
MCHBAR32(FSBPMC3) &= ~(1 << 29);
|
|
else
|
|
MCHBAR32(FSBPMC3) |= (1 << 29);
|
|
#endif
|
|
MCHBAR32(FSBPMC3) &= ~(1 << 29);
|
|
|
|
MCHBAR32(FSBPMC3) |= (1 << 21);
|
|
|
|
MCHBAR32(FSBPMC3) &= ~(1 << 19);
|
|
|
|
MCHBAR32(FSBPMC3) &= ~(1 << 13);
|
|
|
|
reg32 = MCHBAR32(FSBPMC4);
|
|
reg32 &= ~(3 << 24);
|
|
reg32 |= (2 << 24);
|
|
MCHBAR32(FSBPMC4) = reg32;
|
|
|
|
MCHBAR32(FSBPMC4) |= (1 << 21);
|
|
|
|
MCHBAR32(FSBPMC4) |= (1 << 5);
|
|
|
|
if ((i945_silicon_revision() < 2)) { /* || cpuid() = 0x6e8 */
|
|
/* stepping 0 and 1 or CPUID 6e8 */
|
|
MCHBAR32(FSBPMC4) &= ~(1 << 4);
|
|
} else {
|
|
MCHBAR32(FSBPMC4) |= (1 << 4);
|
|
}
|
|
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x0, 0), 0xfc);
|
|
reg8 |= (1 << 4);
|
|
pci_write_config8(PCI_DEV(0, 0x0, 0), 0xfc, reg8);
|
|
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x2, 0), 0xc1);
|
|
reg8 |= (1 << 2);
|
|
pci_write_config8(PCI_DEV(0, 0x2, 0), 0xc1, reg8);
|
|
|
|
#ifdef C2_SELF_REFRESH_DISABLE
|
|
|
|
if (integrated_graphics) {
|
|
printk(BIOS_DEBUG, "C2 self-refresh with IGD\n");
|
|
MCHBAR16(MIPMC4) = 0x0468;
|
|
MCHBAR16(MIPMC5) = 0x046c;
|
|
MCHBAR16(MIPMC6) = 0x046c;
|
|
} else {
|
|
MCHBAR16(MIPMC4) = 0x6468;
|
|
MCHBAR16(MIPMC5) = 0x646c;
|
|
MCHBAR16(MIPMC6) = 0x646c;
|
|
}
|
|
#else
|
|
if (integrated_graphics) {
|
|
MCHBAR16(MIPMC4) = 0x04f8;
|
|
MCHBAR16(MIPMC5) = 0x04fc;
|
|
MCHBAR16(MIPMC6) = 0x04fc;
|
|
} else {
|
|
MCHBAR16(MIPMC4) = 0x64f8;
|
|
MCHBAR16(MIPMC5) = 0x64fc;
|
|
MCHBAR16(MIPMC6) = 0x64fc;
|
|
}
|
|
|
|
#endif
|
|
|
|
reg32 = MCHBAR32(PMCFG);
|
|
reg32 &= ~(3 << 17);
|
|
reg32 |= (2 << 17);
|
|
MCHBAR32(PMCFG) = reg32;
|
|
|
|
MCHBAR32(PMCFG) |= (1 << 4);
|
|
|
|
reg32 = MCHBAR32(0xc30);
|
|
reg32 &= 0xffffff00;
|
|
reg32 |= 0x01;
|
|
MCHBAR32(0xc30) = reg32;
|
|
|
|
MCHBAR32(0xb18) &= ~(1 << 21);
|
|
}
|
|
|
|
static void sdram_thermal_management(void)
|
|
{
|
|
|
|
MCHBAR8(TCO1) = 0x00;
|
|
MCHBAR8(TCO0) = 0x00;
|
|
|
|
/* The Thermal Sensors for DIMMs at 0x50, 0x52 are at I2C addr
|
|
* 0x30/0x32.
|
|
*/
|
|
|
|
/* TODO This is not implemented yet. Volunteers? */
|
|
}
|
|
|
|
static void sdram_save_receive_enable(void)
|
|
{
|
|
int i;
|
|
u32 reg32;
|
|
u8 values[4];
|
|
|
|
/* The following values are stored to an unused CMOS
|
|
* area and restored instead of recalculated in case
|
|
* of an S3 resume.
|
|
*
|
|
* C0WL0REOST [7:0] -> 8 bit
|
|
* C1WL0REOST [7:0] -> 8 bit
|
|
* RCVENMT [11:8] [3:0] -> 8 bit
|
|
* C0DRT1 [27:24] -> 4 bit
|
|
* C1DRT1 [27:24] -> 4 bit
|
|
*/
|
|
|
|
values[0] = MCHBAR8(C0WL0REOST);
|
|
values[1] = MCHBAR8(C1WL0REOST);
|
|
|
|
reg32 = MCHBAR32(RCVENMT);
|
|
values[2] = (u8)((reg32 >> (8 - 4)) & 0xf0) | (reg32 & 0x0f);
|
|
|
|
reg32 = MCHBAR32(C0DRT1);
|
|
values[3] = (reg32 >> 24) & 0x0f;
|
|
reg32 = MCHBAR32(C1DRT1);
|
|
values[3] |= (reg32 >> (24 - 4)) & 0xf0;
|
|
|
|
/* coreboot only uses bytes 0 - 127 for its CMOS values so far
|
|
* so we grab bytes 128 - 131 to save the receive enable values
|
|
*/
|
|
|
|
for (i = 0; i < 4; i++)
|
|
cmos_write(values[i], 128 + i);
|
|
}
|
|
|
|
static void sdram_recover_receive_enable(void)
|
|
{
|
|
int i;
|
|
u32 reg32;
|
|
u8 values[4];
|
|
|
|
for (i = 0; i < 4; i++)
|
|
values[i] = cmos_read(128 + i);
|
|
|
|
MCHBAR8(C0WL0REOST) = values[0];
|
|
MCHBAR8(C1WL0REOST) = values[1];
|
|
|
|
reg32 = MCHBAR32(RCVENMT);
|
|
reg32 &= ~((0x0f << 8) | (0x0f << 0));
|
|
reg32 |= ((u32)(values[2] & 0xf0) << (8 - 4)) | (values[2] & 0x0f);
|
|
MCHBAR32(RCVENMT) = reg32;
|
|
|
|
reg32 = MCHBAR32(C0DRT1) & ~(0x0f << 24);
|
|
reg32 |= (u32)(values[3] & 0x0f) << 24;
|
|
MCHBAR32(C0DRT1) = reg32;
|
|
|
|
reg32 = MCHBAR32(C1DRT1) & ~(0x0f << 24);
|
|
reg32 |= (u32)(values[3] & 0xf0) << (24 - 4);
|
|
MCHBAR32(C1DRT1) = reg32;
|
|
}
|
|
|
|
static void sdram_program_receive_enable(struct sys_info *sysinfo)
|
|
{
|
|
MCHBAR32(REPC) |= (1 << 0);
|
|
|
|
/* Program Receive Enable Timings */
|
|
if (sysinfo->boot_path == BOOT_PATH_RESUME) {
|
|
sdram_recover_receive_enable();
|
|
} else {
|
|
receive_enable_adjust(sysinfo);
|
|
sdram_save_receive_enable();
|
|
}
|
|
|
|
MCHBAR32(C0DRC1) |= (1 << 6);
|
|
MCHBAR32(C1DRC1) |= (1 << 6);
|
|
MCHBAR32(C0DRC1) &= ~(1 << 6);
|
|
MCHBAR32(C1DRC1) &= ~(1 << 6);
|
|
|
|
MCHBAR32(MIPMC3) |= (0x0f << 0);
|
|
}
|
|
|
|
/**
|
|
* @brief Enable On-Die Termination for DDR2.
|
|
*
|
|
*/
|
|
|
|
static void sdram_on_die_termination(struct sys_info *sysinfo)
|
|
{
|
|
static const u32 odt[] = {
|
|
0x00024911, 0xe0010000,
|
|
0x00049211, 0xe0020000,
|
|
0x0006db11, 0xe0030000,
|
|
};
|
|
|
|
u32 reg32;
|
|
int cas;
|
|
|
|
reg32 = MCHBAR32(ODTC);
|
|
reg32 &= ~(3 << 16);
|
|
reg32 |= (1 << 14) | (1 << 6) | (2 << 16);
|
|
MCHBAR32(ODTC) = reg32;
|
|
|
|
if (!(sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED &&
|
|
sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED)) {
|
|
printk(BIOS_DEBUG, "one dimm per channel config..\n");
|
|
|
|
reg32 = MCHBAR32(C0ODT);
|
|
reg32 &= ~(7 << 28);
|
|
MCHBAR32(C0ODT) = reg32;
|
|
reg32 = MCHBAR32(C1ODT);
|
|
reg32 &= ~(7 << 28);
|
|
MCHBAR32(C1ODT) = reg32;
|
|
}
|
|
|
|
cas = sysinfo->cas;
|
|
|
|
reg32 = MCHBAR32(C0ODT) & 0xfff00000;
|
|
reg32 |= odt[(cas-3) * 2];
|
|
MCHBAR32(C0ODT) = reg32;
|
|
|
|
reg32 = MCHBAR32(C1ODT) & 0xfff00000;
|
|
reg32 |= odt[(cas-3) * 2];
|
|
MCHBAR32(C1ODT) = reg32;
|
|
|
|
reg32 = MCHBAR32(C0ODT + 4) & 0x1fc8ffff;
|
|
reg32 |= odt[((cas-3) * 2) + 1];
|
|
MCHBAR32(C0ODT + 4) = reg32;
|
|
|
|
reg32 = MCHBAR32(C1ODT + 4) & 0x1fc8ffff;
|
|
reg32 |= odt[((cas-3) * 2) + 1];
|
|
MCHBAR32(C1ODT + 4) = reg32;
|
|
}
|
|
|
|
/**
|
|
* @brief Enable clocks to populated sockets
|
|
*/
|
|
|
|
static void sdram_enable_memory_clocks(struct sys_info *sysinfo)
|
|
{
|
|
u8 clocks[2] = { 0, 0 };
|
|
|
|
#if CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GM)
|
|
#define CLOCKS_WIDTH 2
|
|
#elif CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GC)
|
|
#define CLOCKS_WIDTH 3
|
|
#endif
|
|
if (sysinfo->dimm[0] != SYSINFO_DIMM_NOT_POPULATED)
|
|
clocks[0] |= (1 << CLOCKS_WIDTH)-1;
|
|
|
|
if (sysinfo->dimm[1] != SYSINFO_DIMM_NOT_POPULATED)
|
|
clocks[0] |= ((1 << CLOCKS_WIDTH)-1) << CLOCKS_WIDTH;
|
|
|
|
if (sysinfo->dimm[2] != SYSINFO_DIMM_NOT_POPULATED)
|
|
clocks[1] |= (1 << CLOCKS_WIDTH)-1;
|
|
|
|
if (sysinfo->dimm[3] != SYSINFO_DIMM_NOT_POPULATED)
|
|
clocks[1] |= ((1 << CLOCKS_WIDTH)-1) << CLOCKS_WIDTH;
|
|
|
|
#if CONFIG(OVERRIDE_CLOCK_DISABLE)
|
|
/* Usually system firmware turns off system memory clock signals
|
|
* to unused SO-DIMM slots to reduce EMI and power consumption.
|
|
* However, the Kontron 986LCD-M does not like unused clock
|
|
* signals to be disabled.
|
|
*/
|
|
|
|
clocks[0] = 0xf; /* force all clock gate pairs to enable */
|
|
clocks[1] = 0xf; /* force all clock gate pairs to enable */
|
|
#endif
|
|
|
|
MCHBAR8(C0DCLKDIS) = clocks[0];
|
|
MCHBAR8(C1DCLKDIS) = clocks[1];
|
|
}
|
|
|
|
#define RTT_ODT_NONE 0
|
|
#define RTT_ODT_50_OHM ((1 << 9) | (1 << 5))
|
|
#define RTT_ODT_75_OHM (1 << 5)
|
|
#define RTT_ODT_150_OHM (1 << 9)
|
|
|
|
#define EMRS_OCD_DEFAULT ((1 << 12) | (1 << 11) | (1 << 10))
|
|
|
|
#define MRS_CAS_3 (3 << 7)
|
|
#define MRS_CAS_4 (4 << 7)
|
|
#define MRS_CAS_5 (5 << 7)
|
|
|
|
#define MRS_TWR_3 (2 << 12)
|
|
#define MRS_TWR_4 (3 << 12)
|
|
#define MRS_TWR_5 (4 << 12)
|
|
|
|
#define MRS_BT (1 << 6)
|
|
|
|
#define MRS_BL4 (2 << 3)
|
|
#define MRS_BL8 (3 << 3)
|
|
|
|
static void sdram_jedec_enable(struct sys_info *sysinfo)
|
|
{
|
|
int i, nonzero;
|
|
u32 bankaddr = 0, tmpaddr, mrsaddr = 0;
|
|
|
|
for (i = 0, nonzero = -1; i < 8; i++) {
|
|
if (sysinfo->banksize[i] == 0)
|
|
continue;
|
|
|
|
printk(BIOS_DEBUG, "jedec enable sequence: bank %d\n", i);
|
|
|
|
if (nonzero != -1) {
|
|
if (sysinfo->interleaved && nonzero < 4 && i >= 4) {
|
|
bankaddr = 0x40;
|
|
} else {
|
|
printk(BIOS_DEBUG, "bankaddr from bank size of rank %d\n", nonzero);
|
|
bankaddr += sysinfo->banksize[nonzero] <<
|
|
(sysinfo->interleaved ? 26 : 25);
|
|
}
|
|
}
|
|
|
|
/* We have a bank with a non-zero size.. Remember it
|
|
* for the next offset we have to calculate
|
|
*/
|
|
nonzero = i;
|
|
|
|
/* Get CAS latency set up */
|
|
switch (sysinfo->cas) {
|
|
case 5:
|
|
mrsaddr = MRS_CAS_5; break;
|
|
case 4:
|
|
mrsaddr = MRS_CAS_4; break;
|
|
case 3:
|
|
mrsaddr = MRS_CAS_3; break;
|
|
default:
|
|
die("Jedec Error (CAS).\n");
|
|
}
|
|
|
|
/* Get tWR set */
|
|
switch (sysinfo->twr) {
|
|
case 5:
|
|
mrsaddr |= MRS_TWR_5; break;
|
|
case 4:
|
|
mrsaddr |= MRS_TWR_4; break;
|
|
case 3:
|
|
mrsaddr |= MRS_TWR_3; break;
|
|
default:
|
|
die("Jedec Error (tWR).\n");
|
|
}
|
|
|
|
/* Set "Burst Type" */
|
|
mrsaddr |= MRS_BT;
|
|
|
|
/* Interleaved */
|
|
if (sysinfo->interleaved)
|
|
mrsaddr = mrsaddr << 1;
|
|
|
|
/* Only burst length 8 supported */
|
|
mrsaddr |= MRS_BL8;
|
|
|
|
/* Apply NOP */
|
|
PRINTK_DEBUG("Apply NOP\n");
|
|
do_ram_command(RAM_COMMAND_NOP);
|
|
ram_read32(bankaddr);
|
|
|
|
/* Precharge all banks */
|
|
PRINTK_DEBUG("All Banks Precharge\n");
|
|
do_ram_command(RAM_COMMAND_PRECHARGE);
|
|
ram_read32(bankaddr);
|
|
|
|
/* Extended Mode Register Set (2) */
|
|
PRINTK_DEBUG("Extended Mode Register Set(2)\n");
|
|
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_2);
|
|
ram_read32(bankaddr);
|
|
|
|
/* Extended Mode Register Set (3) */
|
|
PRINTK_DEBUG("Extended Mode Register Set(3)\n");
|
|
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_3);
|
|
ram_read32(bankaddr);
|
|
|
|
/* Extended Mode Register Set */
|
|
PRINTK_DEBUG("Extended Mode Register Set\n");
|
|
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_1);
|
|
tmpaddr = bankaddr;
|
|
if (!sdram_capabilities_dual_channel())
|
|
tmpaddr |= RTT_ODT_75_OHM;
|
|
else if (sysinfo->interleaved)
|
|
tmpaddr |= (RTT_ODT_150_OHM << 1);
|
|
else
|
|
tmpaddr |= RTT_ODT_150_OHM;
|
|
ram_read32(tmpaddr);
|
|
|
|
/* Mode Register Set: Reset DLLs */
|
|
PRINTK_DEBUG("MRS: Reset DLLs\n");
|
|
do_ram_command(RAM_COMMAND_MRS);
|
|
tmpaddr = bankaddr;
|
|
tmpaddr |= mrsaddr;
|
|
/* Set DLL reset bit */
|
|
if (sysinfo->interleaved)
|
|
tmpaddr |= (1 << 12);
|
|
else
|
|
tmpaddr |= (1 << 11);
|
|
ram_read32(tmpaddr);
|
|
|
|
/* Precharge all banks */
|
|
PRINTK_DEBUG("All Banks Precharge\n");
|
|
do_ram_command(RAM_COMMAND_PRECHARGE);
|
|
ram_read32(bankaddr);
|
|
|
|
/* CAS before RAS Refresh */
|
|
PRINTK_DEBUG("CAS before RAS\n");
|
|
do_ram_command(RAM_COMMAND_CBR);
|
|
|
|
/* CBR wants two READs */
|
|
ram_read32(bankaddr);
|
|
ram_read32(bankaddr);
|
|
|
|
/* Mode Register Set: Enable DLLs */
|
|
PRINTK_DEBUG("MRS: Enable DLLs\n");
|
|
do_ram_command(RAM_COMMAND_MRS);
|
|
|
|
tmpaddr = bankaddr;
|
|
tmpaddr |= mrsaddr;
|
|
ram_read32(tmpaddr);
|
|
|
|
/* Extended Mode Register Set */
|
|
PRINTK_DEBUG("Extended Mode Register Set: ODT/OCD\n");
|
|
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_1);
|
|
|
|
tmpaddr = bankaddr;
|
|
if (!sdram_capabilities_dual_channel())
|
|
tmpaddr |= RTT_ODT_75_OHM | EMRS_OCD_DEFAULT;
|
|
else if (sysinfo->interleaved)
|
|
tmpaddr |= ((RTT_ODT_150_OHM | EMRS_OCD_DEFAULT) << 1);
|
|
else
|
|
tmpaddr |= RTT_ODT_150_OHM | EMRS_OCD_DEFAULT;
|
|
ram_read32(tmpaddr);
|
|
|
|
/* Extended Mode Register Set */
|
|
PRINTK_DEBUG("Extended Mode Register Set: OCD Exit\n");
|
|
do_ram_command(RAM_COMMAND_EMRS | RAM_EMRS_1);
|
|
|
|
tmpaddr = bankaddr;
|
|
if (!sdram_capabilities_dual_channel())
|
|
tmpaddr |= RTT_ODT_75_OHM;
|
|
else if (sysinfo->interleaved)
|
|
tmpaddr |= (RTT_ODT_150_OHM << 1);
|
|
else
|
|
tmpaddr |= RTT_ODT_150_OHM;
|
|
ram_read32(tmpaddr);
|
|
}
|
|
}
|
|
|
|
static void sdram_init_complete(void)
|
|
{
|
|
PRINTK_DEBUG("Normal Operation\n");
|
|
do_ram_command(RAM_COMMAND_NORMAL);
|
|
}
|
|
|
|
static void sdram_setup_processor_side(void)
|
|
{
|
|
if (i945_silicon_revision() == 0)
|
|
MCHBAR32(FSBPMC3) |= (1 << 2);
|
|
|
|
MCHBAR8(0xb00) |= 1;
|
|
|
|
if (i945_silicon_revision() == 0)
|
|
MCHBAR32(SLPCTL) |= (1 << 8);
|
|
}
|
|
|
|
/**
|
|
* @param boot_path: 0 = normal, 1 = reset, 2 = resume from s3
|
|
* @param spd_addresses pointer to a list of SPD addresses
|
|
*/
|
|
void sdram_initialize(int boot_path, const u8 *spd_addresses)
|
|
{
|
|
struct sys_info sysinfo;
|
|
u8 reg8;
|
|
|
|
timestamp_add_now(TS_BEFORE_INITRAM);
|
|
printk(BIOS_DEBUG, "Setting up RAM controller.\n");
|
|
|
|
memset(&sysinfo, 0, sizeof(sysinfo));
|
|
|
|
sysinfo.boot_path = boot_path;
|
|
sysinfo.spd_addresses = spd_addresses;
|
|
|
|
/* Look at the type of DIMMs and verify all DIMMs are x8 or x16 width */
|
|
sdram_get_dram_configuration(&sysinfo);
|
|
|
|
/* If error, do cold boot */
|
|
sdram_detect_errors(&sysinfo);
|
|
|
|
/* Program PLL settings */
|
|
sdram_program_pll_settings(&sysinfo);
|
|
|
|
/*
|
|
* Program Graphics Frequency
|
|
* Set core display and render clock on 945GC to the max
|
|
*/
|
|
if (CONFIG(NORTHBRIDGE_INTEL_SUBTYPE_I945GM))
|
|
sdram_program_graphics_frequency(&sysinfo);
|
|
else
|
|
pci_write_config16(PCI_DEV(0, 2, 0), GCFC, 0x0534);
|
|
|
|
/* Program System Memory Frequency */
|
|
sdram_program_memory_frequency(&sysinfo);
|
|
|
|
/* Determine Mode of Operation (Interleaved etc) */
|
|
sdram_set_channel_mode(&sysinfo);
|
|
|
|
/* Program Clock Crossing values */
|
|
sdram_program_clock_crossing();
|
|
|
|
/* Disable fast dispatch */
|
|
sdram_disable_fast_dispatch();
|
|
|
|
/* Enable WIODLL Power Down in ACPI states */
|
|
MCHBAR32(C0DMC) |= (1 << 24);
|
|
MCHBAR32(C1DMC) |= (1 << 24);
|
|
|
|
/* Program DRAM Row Boundary/Attribute Registers */
|
|
|
|
/* program row size DRB and set TOLUD */
|
|
sdram_program_row_boundaries(&sysinfo);
|
|
|
|
/* program page size DRA */
|
|
sdram_set_row_attributes(&sysinfo);
|
|
|
|
/* Program CxBNKARC */
|
|
sdram_set_bank_architecture(&sysinfo);
|
|
|
|
/* Program DRAM Timing and Control registers based on SPD */
|
|
sdram_set_timing_and_control(&sysinfo);
|
|
|
|
/* On-Die Termination Adjustment */
|
|
sdram_on_die_termination(&sysinfo);
|
|
|
|
/* Pre Jedec Initialization */
|
|
sdram_pre_jedec_initialization();
|
|
|
|
/* Perform System Memory IO Initialization */
|
|
sdram_initialize_system_memory_io(&sysinfo);
|
|
|
|
/* Perform System Memory IO Buffer Enable */
|
|
sdram_enable_system_memory_io(&sysinfo);
|
|
|
|
/* Enable System Memory Clocks */
|
|
sdram_enable_memory_clocks(&sysinfo);
|
|
|
|
if (boot_path == BOOT_PATH_NORMAL) {
|
|
/* Jedec Initialization sequence */
|
|
sdram_jedec_enable(&sysinfo);
|
|
}
|
|
|
|
/* Program Power Management Registers */
|
|
sdram_power_management(&sysinfo);
|
|
|
|
/* Post Jedec Init */
|
|
sdram_post_jedec_initialization(&sysinfo);
|
|
|
|
/* Program DRAM Throttling */
|
|
sdram_thermal_management();
|
|
|
|
/* Normal Operations */
|
|
sdram_init_complete();
|
|
|
|
/* Program Receive Enable Timings */
|
|
sdram_program_receive_enable(&sysinfo);
|
|
|
|
/* Enable Periodic RCOMP */
|
|
sdram_enable_rcomp();
|
|
|
|
/* Tell ICH7 that we're done */
|
|
reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
|
|
reg8 &= ~(1 << 7);
|
|
pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8);
|
|
|
|
printk(BIOS_DEBUG, "RAM initialization finished.\n");
|
|
|
|
sdram_setup_processor_side();
|
|
timestamp_add_now(TS_AFTER_INITRAM);
|
|
}
|