coreboot-kgpe-d16/src/lib/spd_cache.c

225 lines
6.2 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <console/console.h>
#include <crc_byte.h>
#include <fmap.h>
#include <spd_cache.h>
#include <spd_bin.h>
#include <string.h>
/*
* SPD_CACHE layout
* +==========+ offset 0x00
* |DIMM 1 SPD| SPD data length is CONFIG_DIMM_SPD_SIZE.
* +----------+ offset CONFIG_DIMM_SPD_SIZE * 1
* |DIMM 2 SPD|
* +----------+ offset CONFIG_DIMM_SPD_SIZE * 2
* ...
* +----------+ offset CONFIG_DIMM_SPD_SIZE * (N -1)
* |DIMM N SPD| N = CONFIG_DIMM_MAX
* +----------+ offset CONFIG_DIMM_SPD_SIZE * CONFIG_DIMM_MAX
* | CRC 16 | Use to verify the data correctness.
* +==========+
*
* The size of the RW_SPD_CACHE needs to be aligned with 4KiB.
*/
/*
* Use to update SPD cache.
* *blk : the new SPD data will be stash into the cache.
*
* return CB_SUCCESS , update SPD cache successfully.
* return CB_ERR , update SPD cache unsuccessfully and the cache is invalid
*/
enum cb_err update_spd_cache(struct spd_block *blk)
{
struct region_device rdev;
uint16_t data_crc = 0;
int i, j;
assert(blk->len <= SC_SPD_LEN);
if (fmap_locate_area_as_rdev_rw(SPD_CACHE_FMAP_NAME, &rdev)) {
printk(BIOS_ERR, "SPD_CACHE: Cannot access %s region\n", SPD_CACHE_FMAP_NAME);
return CB_ERR;
}
/* Erase whole area, it's for align with 4KiB which is the size of SPI rom sector. */
if (rdev_eraseat(&rdev, 0, region_device_sz(&rdev)) < 0) {
printk(BIOS_ERR, "SPD_CACHE: Cannot erase %s region\n", SPD_CACHE_FMAP_NAME);
return CB_ERR;
}
/* Write SPD data */
for (i = 0; i < SC_SPD_NUMS; i++) {
if (blk->spd_array[i] == NULL) {
/* If DIMM is not present, we calculate the CRC with 0xff. */
for (j = 0; j < SC_SPD_LEN; j++)
data_crc = crc16_byte(data_crc, 0xff);
} else {
if (rdev_writeat(&rdev, blk->spd_array[i], SC_SPD_OFFSET(i), blk->len)
< 0) {
printk(BIOS_ERR, "SPD_CACHE: Cannot write SPD data at %d\n",
SC_SPD_OFFSET(i));
return CB_ERR;
}
for (j = 0; j < blk->len; j++)
data_crc = crc16_byte(data_crc, blk->spd_array[i][j]);
/* If the blk->len < SC_SPD_LEN, we calculate the CRC with 0xff. */
if (blk->len < SC_SPD_LEN)
for (j = 0; j < (SC_SPD_LEN - (blk->len)); j++)
data_crc = crc16_byte(data_crc, 0xff);
}
}
/* Write the crc16 */
/* It must be the last step to ensure that the data is written correctly */
if (rdev_writeat(&rdev, &data_crc, SC_CRC_OFFSET, SC_CRC_LEN) < 0) {
printk(BIOS_ERR, "SPD_CACHE: Cannot write crc at 0x%04x\n", SC_CRC_OFFSET);
return CB_ERR;
}
return CB_SUCCESS;
}
/*
* Locate the RW_SPD_CACHE area in the fmap and read SPD_CACHE data.
* return CB_SUCCESS ,if the SPD_CACHE data is ready and the pointer return at *spd_cache.
* return CB_ERR ,if it cannot locate RW_SPD_CACHE area in the fmap or data cannot be read.
*/
enum cb_err load_spd_cache(uint8_t **spd_cache, size_t *spd_cache_sz)
{
struct region_device rdev;
if (fmap_locate_area_as_rdev(SPD_CACHE_FMAP_NAME, &rdev) < 0) {
printk(BIOS_ERR, "SPD_CACHE: Cannot find %s region\n", SPD_CACHE_FMAP_NAME);
return CB_ERR;
}
/* Assume boot device is memory mapped. */
assert(CONFIG(BOOT_DEVICE_MEMORY_MAPPED));
*spd_cache = rdev_mmap_full(&rdev);
if (*spd_cache == NULL)
return CB_ERR;
*spd_cache_sz = region_device_sz(&rdev);
/* SPD cache found */
printk(BIOS_INFO, "SPD_CACHE: cache found, size 0x%zx\n", *spd_cache_sz);
return CB_SUCCESS;
}
/* Use to verify the cache data is valid. */
bool spd_cache_is_valid(uint8_t *spd_cache, size_t spd_cache_sz)
{
uint16_t data_crc = 0;
int i;
if (spd_cache_sz < SC_SPD_TOTAL_LEN + SC_CRC_LEN)
return false;
/* Check the spd_cache crc */
for (i = 0; i < SC_SPD_TOTAL_LEN; i++)
data_crc = crc16_byte(data_crc, *(spd_cache + i));
return *(uint16_t *)(spd_cache + SC_CRC_OFFSET) == data_crc;
}
/*
* Check if the DIMM is preset in cache.
* return true , DIMM is present.
* return false, DIMM is not present.
*/
static bool get_cached_dimm_present(uint8_t *spd_cache, uint8_t idx)
{
if (*(uint16_t *)(spd_cache + SC_SPD_OFFSET(idx)) == 0xffff)
return false;
else
return true;
}
/*
* Use to check if the SODIMM is changed.
* spd_cache : it's a valid SPD cache.
* blk : it must include the smbus addresses of SODIMM.
*/
bool check_if_dimm_changed(u8 *spd_cache, struct spd_block *blk)
{
int i;
u32 sn;
bool dimm_present_in_cache;
bool dimm_changed = false;
/* Check if the dimm is the same with last system boot. */
for (i = 0; i < SC_SPD_NUMS && !dimm_changed; i++) {
if (blk->addr_map[i] == 0) {
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d does not exist\n", i);
continue;
}
/* Return true if any error happened here. */
if (get_spd_sn(blk->addr_map[i], &sn) == CB_ERR)
return true;
dimm_present_in_cache = get_cached_dimm_present(spd_cache, i);
/* Dimm is not present now. */
if (sn == 0xffffffff) {
if (!dimm_present_in_cache)
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is not present\n", i);
else {
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d lost\n", i);
dimm_changed = true;
}
} else { /* Dimm is present now. */
if (dimm_present_in_cache) {
if (memcmp(&sn, spd_cache + SC_SPD_OFFSET(i) + DDR4_SPD_SN_OFF,
SPD_SN_LEN) == 0)
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is the same\n",
i);
else {
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is new one\n",
i);
dimm_changed = true;
}
} else {
printk(BIOS_NOTICE, "SPD_CACHE: DIMM%d is new one\n", i);
dimm_changed = true;
}
}
}
return dimm_changed;
}
/* Use to fill the struct spd_block with cache data.*/
enum cb_err spd_fill_from_cache(uint8_t *spd_cache, struct spd_block *blk)
{
int i;
u8 dram_type;
/* Find the first present SPD */
for (i = 0; i < SC_SPD_NUMS; i++)
if (get_cached_dimm_present(spd_cache, i))
break;
if (i == SC_SPD_NUMS) {
printk(BIOS_ERR, "SPD_CACHE: No DIMM is present.\n");
return CB_ERR;
}
dram_type = *(spd_cache + SC_SPD_OFFSET(i) + SPD_DRAM_TYPE);
if (dram_type == SPD_DRAM_DDR4)
blk->len = SPD_PAGE_LEN_DDR4;
else
blk->len = SPD_PAGE_LEN;
for (i = 0; i < SC_SPD_NUMS; i++)
if (get_cached_dimm_present(spd_cache, i))
blk->spd_array[i] = spd_cache + SC_SPD_OFFSET(i);
else
blk->spd_array[i] = NULL;
return CB_SUCCESS;
}