coreboot-kgpe-d16/src/soc/intel/apollolake/pmutil.c
Furquan Shaikh 9d07910d24 soc/intel/apollolake: Clear RTC failure bit after reading it
This change ensures that the RTC failure bit is cleared in PMCON1
after cmos_init checks for it. Before this change, RPS was cleared
in dev init phase. If any reboot occurred before dev init stage
(e.g. FSP reset) then RPS won't be cleared and cmos_init will
re-initialize CMOS data. This resulted in any information like VBNV
flags stored in CMOS after first cmos_init to be lost.

BUG=b:72879807
BRANCH=coral
TEST=Verified that recovery request is preserved when recovery is
requested without battery on coral.

Change-Id: Ib23b1fcd5c3624bad6ab83dce17a469b2f5b5ba8
Signed-off-by: Furquan Shaikh <furquan@chromium.org>
Reviewed-on: https://review.coreboot.org/23578
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Aaron Durbin <adurbin@chromium.org>
2018-02-05 00:49:12 +00:00

252 lines
6.4 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2013 Google Inc.
* Copyright (C) 2015-2016 Intel Corp.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#define __SIMPLE_DEVICE__
#include <arch/acpi.h>
#include <arch/io.h>
#include <cbmem.h>
#include <console/console.h>
#include <cpu/x86/msr.h>
#include <device/device.h>
#include <device/pci.h>
#include <device/pci_def.h>
#include <intelblocks/msr.h>
#include <intelblocks/pmclib.h>
#include <intelblocks/rtc.h>
#include <rules.h>
#include <soc/iomap.h>
#include <soc/cpu.h>
#include <soc/pci_devs.h>
#include <soc/pm.h>
#include <timer.h>
#include <security/vboot/vbnv.h>
#include "chip.h"
static uintptr_t read_pmc_mmio_bar(void)
{
return PMC_BAR0;
}
uintptr_t soc_read_pmc_base(void)
{
return read_pmc_mmio_bar();
}
const char *const *soc_smi_sts_array(size_t *a)
{
static const char *const smi_sts_bits[] = {
[BIOS_SMI_STS] = "BIOS",
[LEGACY_USB_SMI_STS] = "LEGACY USB",
[SLP_SMI_STS] = "SLP_SMI",
[APM_SMI_STS] = "APM",
[SWSMI_TMR_SMI_STS] = "SWSMI_TMR",
[FAKE_PM1_SMI_STS] = "PM1",
[GPIO_SMI_STS] = "GPIO_SMI",
[GPIO_UNLOCK_SMI_STS] = "GPIO_UNLOCK_SSMI",
[MC_SMI_STS] = "MCSMI",
[TCO_SMI_STS] = "TCO",
[PERIODIC_SMI_STS] = "PERIODIC",
[SERIRQ_SMI_STS] = "SERIRQ",
[SMBUS_SMI_STS] = "SMBUS_SMI",
[XHCI_SMI_STS] = "XHCI",
[HSMBUS_SMI_STS] = "HOST_SMBUS",
[SCS_SMI_STS] = "SCS",
[PCIE_SMI_STS] = "PCI_EXP_SMI",
[SCC2_SMI_STS] = "SCC2",
[SPI_SSMI_STS] = "SPI_SSMI",
[SPI_SMI_STS] = "SPI",
[PMC_OCP_SMI_STS] = "OCP_CSE",
};
*a = ARRAY_SIZE(smi_sts_bits);
return smi_sts_bits;
}
/*
* For APL/GLK this check for power button status if nothing else
* is indicating an SMI and SMIs aren't turned into SCIs.
* Apparently, there is no PM1 status bit in the SMI status
* register. That makes things difficult for
* determining if the power button caused an SMI.
*/
uint32_t soc_get_smi_status(uint32_t generic_sts)
{
if (generic_sts == 0 && !(pmc_read_pm1_control() & SCI_EN)) {
uint16_t pm1_sts = inw(ACPI_BASE_ADDRESS + PM1_STS);
/* Fake PM1 status bit if power button pressed. */
if (pm1_sts & PWRBTN_STS)
generic_sts |= (1 << FAKE_PM1_SMI_STS);
}
return generic_sts;
}
const char *const *soc_tco_sts_array(size_t *a)
{
static const char *const tco_sts_bits[] = {
[3] = "TIMEOUT",
[17] = "SECOND_TO",
};
*a = ARRAY_SIZE(tco_sts_bits);
return tco_sts_bits;
}
const char *const *soc_std_gpe_sts_array(size_t *a)
{
static const char *const gpe_sts_bits[] = {
[0] = "PCIE_SCI",
[2] = "SWGPE",
[3] = "PCIE_WAKE0",
[4] = "PUNIT",
[6] = "PCIE_WAKE1",
[7] = "PCIE_WAKE2",
[8] = "PCIE_WAKE3",
[9] = "PCI_EXP",
[10] = "BATLOW",
[11] = "CSE_PME",
[12] = "XDCI_PME",
[13] = "XHCI_PME",
[14] = "AVS_PME",
[15] = "GPIO_TIER1_SCI",
[16] = "SMB_WAK",
[17] = "SATA_PME",
};
*a = ARRAY_SIZE(gpe_sts_bits);
return gpe_sts_bits;
}
uint32_t soc_reset_tco_status(void)
{
uint32_t tco_sts = inl(ACPI_BASE_ADDRESS + TCO_STS);
uint32_t tco_en = inl(ACPI_BASE_ADDRESS + TCO1_CNT);
outl(tco_sts, ACPI_BASE_ADDRESS + TCO_STS);
return tco_sts & tco_en;
}
void soc_clear_pm_registers(uintptr_t pmc_bar)
{
uint32_t gen_pmcon1;
gen_pmcon1 = read32((void *)(pmc_bar + GEN_PMCON1));
/* Clear the status bits. The RPS field is cleared on a 0 write. */
write32((void *)(pmc_bar + GEN_PMCON1), gen_pmcon1 & ~RPS);
}
void soc_get_gpi_gpe_configs(uint8_t *dw0, uint8_t *dw1, uint8_t *dw2)
{
DEVTREE_CONST struct soc_intel_apollolake_config *config;
/* Look up the device in devicetree */
DEVTREE_CONST struct device *dev = dev_find_slot(0, SA_DEVFN_ROOT);
if (!dev || !dev->chip_info) {
printk(BIOS_ERR, "BUG! Could not find SOC devicetree config\n");
return;
}
config = dev->chip_info;
/* Assign to out variable */
*dw0 = config->gpe0_dw1;
*dw1 = config->gpe0_dw2;
*dw2 = config->gpe0_dw3;
}
void soc_fill_power_state(struct chipset_power_state *ps)
{
uintptr_t pmc_bar0 = read_pmc_mmio_bar();
ps->tco_sts = inl(ACPI_BASE_ADDRESS + TCO_STS);
ps->prsts = read32((void *)(pmc_bar0 + PRSTS));
ps->gen_pmcon1 = read32((void *)(pmc_bar0 + GEN_PMCON1));
ps->gen_pmcon2 = read32((void *)(pmc_bar0 + GEN_PMCON2));
ps->gen_pmcon3 = read32((void *)(pmc_bar0 + GEN_PMCON3));
printk(BIOS_DEBUG, "prsts: %08x tco_sts: %08x\n",
ps->prsts, ps->tco_sts);
printk(BIOS_DEBUG,
"gen_pmcon1: %08x gen_pmcon2: %08x gen_pmcon3: %08x\n",
ps->gen_pmcon1, ps->gen_pmcon2, ps->gen_pmcon3);
}
/* Return 0, 3, or 5 to indicate the previous sleep state. */
int soc_prev_sleep_state(const struct chipset_power_state *ps,
int prev_sleep_state)
{
/* WAK_STS bit will not be set when waking from G3 state */
if (!(ps->pm1_sts & WAK_STS) && (ps->gen_pmcon1 & COLD_BOOT_STS))
prev_sleep_state = ACPI_S5;
return prev_sleep_state;
}
void enable_pm_timer_emulation(void)
{
/* ACPI PM timer emulation */
msr_t msr;
/*
* The derived frequency is calculated as follows:
* (CTC_FREQ * msr[63:32]) >> 32 = target frequency.
* Back solve the multiplier so the 3.579545MHz ACPI timer
* frequency is used.
*/
msr.hi = (3579545ULL << 32) / CTC_FREQ;
/* Set PM1 timer IO port and enable */
msr.lo = EMULATE_PM_TMR_EN | (ACPI_BASE_ADDRESS + R_ACPI_PM1_TMR);
wrmsr(MSR_EMULATE_PM_TMR, msr);
}
static int rtc_failed(uint32_t gen_pmcon1)
{
return !!(gen_pmcon1 & RPS);
}
int soc_get_rtc_failed(void)
{
const struct chipset_power_state *ps = cbmem_find(CBMEM_ID_POWER_STATE);
if (!ps) {
printk(BIOS_ERR, "Could not find power state in cbmem, RTC init aborted\n");
return 1;
}
return rtc_failed(ps->gen_pmcon1);
}
int vbnv_cmos_failed(void)
{
uintptr_t pmc_bar = read_pmc_mmio_bar();
uint32_t gen_pmcon1 = read32((void *)(pmc_bar + GEN_PMCON1));
int rtc_failure = rtc_failed(gen_pmcon1);
if (rtc_failure) {
printk(BIOS_INFO, "RTC failed!\n");
/* We do not want to write 1 to clear-1 bits. Set them to 0. */
gen_pmcon1 &= ~GEN_PMCON1_CLR1_BITS;
/* RPS is write 0 to clear. */
gen_pmcon1 &= ~RPS;
write32((void *)(pmc_bar + GEN_PMCON1), gen_pmcon1);
}
return rtc_failure;
}