coreboot-kgpe-d16/util/cbfstool/partitioned_file.c
Julius Werner 1153b2ef5c cbfstool: Use flock() when accessing CBFS files
Trying to do multiple operations on the same CBFS image at the same time
likely leads to data corruption. For this reason, add BSD advisory file
locking (flock()) to cbfstool (and ifittool which is using the same file
I/O library), so that only one process will operate on the same file at
the same time and the others will wait in line. This should help resolve
parallel build issues with the INTERMEDIATE target on certain platforms.

Unfortunately, some platforms use the INTERMEDIATE target to do a direct
dd into the CBFS image. This should generally be discouraged and future
platforms should aim to clearly deliminate regions that need to be
written directly by platform scripts with custom FMAP sections, so that
they can be written with `cbfstool write`. For the time being, update
the legacy platforms that do this with explicit calls to the `flock`
utility.

Signed-off-by: Julius Werner <jwerner@chromium.org>
Change-Id: I022468f6957415ae68a7a7e70428ae6f82d23b06
Reviewed-on: https://review.coreboot.org/c/coreboot/+/49190
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Arthur Heymans <arthur@aheymans.xyz>
Reviewed-by: Furquan Shaikh <furquan@google.com>
2021-01-08 08:04:04 +00:00

358 lines
8.9 KiB
C

/* read and write binary file "partitions" described by FMAP */
/* SPDX-License-Identifier: GPL-2.0-only */
#include "partitioned_file.h"
#include "cbfs_sections.h"
#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <sys/file.h>
struct partitioned_file {
struct fmap *fmap;
struct buffer buffer;
FILE *stream;
};
static bool fill_ones_through(struct partitioned_file *file)
{
assert(file);
memset(file->buffer.data, 0xff, file->buffer.size);
return partitioned_file_write_region(file, &file->buffer);
}
static unsigned count_selected_fmap_entries(const struct fmap *fmap,
partitioned_file_fmap_selector_t callback, const void *arg)
{
assert(fmap);
assert(callback);
unsigned count = 0;
for (unsigned i = 0; i < fmap->nareas; ++i) {
if (callback(fmap->areas + i, arg))
++count;
}
return count;
}
static partitioned_file_t *reopen_flat_file(const char *filename,
bool write_access)
{
assert(filename);
struct partitioned_file *file = calloc(1, sizeof(*file));
const char *access_mode;
if (!file) {
ERROR("Failed to allocate partitioned file structure\n");
return NULL;
}
if (buffer_from_file(&file->buffer, filename)) {
free(file);
return NULL;
}
access_mode = write_access ? "rb+" : "rb";
file->stream = fopen(filename, access_mode);
if (!file->stream || flock(fileno(file->stream), LOCK_EX)) {
perror(filename);
partitioned_file_close(file);
return NULL;
}
return file;
}
partitioned_file_t *partitioned_file_create_flat(const char *filename,
size_t image_size)
{
assert(filename);
struct partitioned_file *file = calloc(1, sizeof(*file));
if (!file) {
ERROR("Failed to allocate partitioned file structure\n");
return NULL;
}
file->stream = fopen(filename, "wb");
if (!file->stream || flock(fileno(file->stream), LOCK_EX)) {
perror(filename);
free(file);
return NULL;
}
if (buffer_create(&file->buffer, image_size, filename)) {
partitioned_file_close(file);
return NULL;
}
if (!fill_ones_through(file)) {
partitioned_file_close(file);
return NULL;
}
return file;
}
partitioned_file_t *partitioned_file_create(const char *filename,
struct buffer *flashmap)
{
assert(filename);
assert(flashmap);
assert(flashmap->data);
if (fmap_find((const uint8_t *)flashmap->data, flashmap->size) != 0) {
ERROR("Attempted to create a partitioned image out of something that isn't an FMAP\n");
return NULL;
}
struct fmap *bootstrap_fmap = (struct fmap *)flashmap->data;
const struct fmap_area *fmap_area =
fmap_find_area(bootstrap_fmap, SECTION_NAME_FMAP);
if (!fmap_area) {
ERROR("Provided FMAP missing '%s' region\n", SECTION_NAME_FMAP);
return NULL;
}
if (count_selected_fmap_entries(bootstrap_fmap,
partitioned_file_fmap_select_children_of, fmap_area)) {
ERROR("Provided FMAP's '%s' region contains other regions\n",
SECTION_NAME_FMAP);
return NULL;
}
int fmap_len = fmap_size(bootstrap_fmap);
if (fmap_len < 0) {
ERROR("Unable to determine size of provided FMAP\n");
return NULL;
}
assert((size_t)fmap_len <= flashmap->size);
if ((uint32_t)fmap_len > fmap_area->size) {
ERROR("Provided FMAP's '%s' region needs to be at least %d bytes\n",
SECTION_NAME_FMAP, fmap_len);
return NULL;
}
partitioned_file_t *file = partitioned_file_create_flat(filename,
bootstrap_fmap->size);
if (!file)
return NULL;
struct buffer fmap_region;
buffer_splice(&fmap_region, &file->buffer, fmap_area->offset, fmap_area->size);
memcpy(fmap_region.data, bootstrap_fmap, fmap_len);
if (!partitioned_file_write_region(file, &fmap_region)) {
partitioned_file_close(file);
return NULL;
}
file->fmap = (struct fmap *)(file->buffer.data + fmap_area->offset);
return file;
}
partitioned_file_t *partitioned_file_reopen(const char *filename,
bool write_access)
{
assert(filename);
partitioned_file_t *file = reopen_flat_file(filename, write_access);
if (!file)
return NULL;
long fmap_region_offset = fmap_find((const uint8_t *)file->buffer.data,
file->buffer.size);
if (fmap_region_offset < 0) {
INFO("Opening image as a flat file because it doesn't contain any FMAP\n");
return file;
}
file->fmap = (struct fmap *)(file->buffer.data + fmap_region_offset);
if (file->fmap->size > file->buffer.size) {
int fmap_region_size = fmap_size(file->fmap);
ERROR("FMAP records image size as %u, but file is only %zu bytes%s\n",
file->fmap->size, file->buffer.size,
fmap_region_offset == 0 &&
(signed)file->buffer.size == fmap_region_size ?
" (is it really an image, or *just* an FMAP?)" :
" (did something truncate this file?)");
partitioned_file_close(file);
return NULL;
}
const struct fmap_area *fmap_fmap_entry =
fmap_find_area(file->fmap, SECTION_NAME_FMAP);
if (!fmap_fmap_entry) {
partitioned_file_close(file);
return NULL;
}
if ((long)fmap_fmap_entry->offset != fmap_region_offset) {
ERROR("FMAP's '%s' section doesn't point back to FMAP start (did something corrupt this file?)\n",
SECTION_NAME_FMAP);
partitioned_file_close(file);
return NULL;
}
return file;
}
bool partitioned_file_write_region(partitioned_file_t *file,
const struct buffer *buffer)
{
assert(file);
assert(file->stream);
assert(buffer);
assert(buffer->data);
if (buffer->data - buffer->offset != file->buffer.data) {
ERROR("Attempted to write a partition buffer back to a different file than it came from\n");
return false;
}
if (buffer->offset + buffer->size > file->buffer.size) {
ERROR("Attempted to write data off the end of image file\n");
return false;
}
if (fseek(file->stream, buffer->offset, SEEK_SET)) {
ERROR("Failed to seek within image file\n");
return false;
}
if (!fwrite(buffer->data, buffer->size, 1, file->stream)) {
ERROR("Failed to write to image file\n");
return false;
}
return true;
}
bool partitioned_file_read_region(struct buffer *dest,
const partitioned_file_t *file, const char *region)
{
assert(dest);
assert(file);
assert(file->buffer.data);
assert(region);
if (file->fmap) {
const struct fmap_area *area = fmap_find_area(file->fmap,
region);
if (!area) {
ERROR("Image is missing '%s' region\n", region);
return false;
}
if (area->offset + area->size > file->buffer.size) {
ERROR("Region '%s' runs off the end of the image file\n",
region);
return false;
}
buffer_splice(dest, &file->buffer, area->offset, area->size);
} else {
if (strcmp(region, SECTION_NAME_PRIMARY_CBFS) != 0) {
ERROR("This is a legacy image that contains only a CBFS\n");
return false;
}
buffer_clone(dest, &file->buffer);
}
return true;
}
void partitioned_file_close(partitioned_file_t *file)
{
if (!file)
return;
file->fmap = NULL;
buffer_delete(&file->buffer);
if (file->stream) {
flock(fileno(file->stream), LOCK_UN);
fclose(file->stream);
file->stream = NULL;
}
free(file);
}
bool partitioned_file_is_partitioned(const partitioned_file_t *file)
{
return partitioned_file_get_fmap(file) != NULL;
}
size_t partitioned_file_total_size(const partitioned_file_t *file)
{
assert(file);
return file->buffer.size;
}
bool partitioned_file_region_check_magic(const partitioned_file_t *file,
const char *region, const char *magic, size_t magic_len)
{
struct buffer area;
return partitioned_file_read_region(&area, file, region) &&
buffer_check_magic(&area, magic, magic_len);
}
bool partitioned_file_region_contains_nested(const partitioned_file_t *file,
const char *region)
{
assert(file);
assert(region);
if (!file->fmap)
return false;
const struct fmap_area *area = fmap_find_area(file->fmap, region);
return area && partitioned_file_fmap_count(file,
partitioned_file_fmap_select_children_of, area);
}
const struct fmap *partitioned_file_get_fmap(const partitioned_file_t *file)
{
assert(file);
return file->fmap;
}
unsigned partitioned_file_fmap_count(const partitioned_file_t *file,
partitioned_file_fmap_selector_t callback, const void *arg)
{
assert(file);
assert(callback);
if (!file->fmap)
return 0;
return count_selected_fmap_entries(file->fmap, callback, arg);
}
static bool select_all(unused const struct fmap_area *area,
unused const void *arg)
{
return true;
}
const partitioned_file_fmap_selector_t partitioned_file_fmap_select_all =
select_all;
static bool select_children_of(const struct fmap_area *child, const void *arg)
{
assert(child);
assert(arg);
const struct fmap_area *parent = (const struct fmap_area *)arg;
if (child == arg || (child->offset == parent->offset &&
child->size == parent->size))
return false;
return child->offset >= parent->offset &&
child->offset + child->size <= parent->offset + parent->size;
}
const partitioned_file_fmap_selector_t
partitioned_file_fmap_select_children_of = select_children_of;
static bool select_parents_of(const struct fmap_area *parent, const void *arg)
{
return select_children_of((const struct fmap_area *)arg, parent);
}
const partitioned_file_fmap_selector_t partitioned_file_fmap_select_parents_of =
select_parents_of;