coreboot-kgpe-d16/util/intelmetool/me.c
Maximilian Schander 17034d6f63 intelmetool: Print colored capabilities
In general more ME capabilities are considered harmfull, useless or
unwanted. Therefore an easy overview can be obtained by coloring in red
and green.

Taken from Change with id:
Ifeec8e20fa8efc35d7db4c6a84be1f118dccfc4a
Add bootguard information dump support
https://review.coreboot.org/#/c/16328/

Change-Id: Ia911cc935d512174399aaf93bba982e071942212
Signed-off-by: Maximilian Schander <maxschander@googlemail.com>
Reviewed-on: https://review.coreboot.org/22217
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Jonathan Neuschäfer <j.neuschaefer@gmx.net>
2017-11-03 23:58:41 +00:00

646 lines
16 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2011 The Chromium OS Authors. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <pci/pci.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/io.h>
#include <assert.h>
#include <unistd.h>
#include "me.h"
#include "mmap.h"
#include "intelmetool.h"
#define read32(addr, off) ( *((uint32_t *) (addr + off)) )
#define write32(addr, off, val) ( *((uint32_t *) (addr + off)) = val)
/* Path that the BIOS should take based on ME state */
/*
static const char *me_bios_path_values[] = {
[ME_NORMAL_BIOS_PATH] = "Normal",
[ME_S3WAKE_BIOS_PATH] = "S3 Wake",
[ME_ERROR_BIOS_PATH] = "Error",
[ME_RECOVERY_BIOS_PATH] = "Recovery",
[ME_DISABLE_BIOS_PATH] = "Disable",
[ME_FIRMWARE_UPDATE_BIOS_PATH] = "Firmware Update",
};
*/
/* MMIO base address for MEI interface */
static uint32_t mei_base_address;
static uint8_t* mei_mmap;
static void mei_dump(void *ptr, int dword, int offset, const char *type)
{
/* struct mei_csr *csr; */
switch (offset) {
case MEI_H_CSR:
case MEI_ME_CSR_HA:
/*
csr = ptr;
if (!csr) {
printf("%-9s[%02x] : ", type, offset);
printf("ERROR: 0x%08x\n", dword);
break;
}
printf("%-9s[%02x] : ", type, offset);
printf("depth=%u read=%02u write=%02u ready=%u "
"reset=%u intgen=%u intstatus=%u intenable=%u\n",
csr->buffer_depth, csr->buffer_read_ptr,
csr->buffer_write_ptr, csr->ready, csr->reset,
csr->interrupt_generate, csr->interrupt_status,
csr->interrupt_enable);
*/
break;
case MEI_ME_CB_RW:
case MEI_H_CB_WW:
printf("%-9s[%02x] : ", type, offset);
printf("CB: 0x%08x\n", dword);
break;
default:
printf("%-9s[%02x] : ", type, offset);
printf("0x%08x\n", offset);
break;
}
}
/*
* ME/MEI access helpers using memcpy to avoid aliasing.
*/
static inline void mei_read_dword_ptr(void *ptr, uint32_t offset)
{
uint32_t dword = read32(mei_mmap, offset);
memcpy(ptr, &dword, sizeof(dword));
if (debug) {
mei_dump(ptr, dword, offset, "READ");
}
}
static inline void mei_write_dword_ptr(void *ptr, uint32_t offset)
{
uint32_t dword = 0;
memcpy(&dword, ptr, sizeof(dword));
write32(mei_mmap, offset, dword);
if (debug) {
mei_dump(ptr, dword, offset, "WRITE");
}
}
static inline void pci_read_dword_ptr(struct pci_dev *dev, void *ptr, uint32_t offset)
{
uint32_t dword = pci_read_long(dev, offset);
memcpy(ptr, &dword, sizeof(dword));
if (debug) {
mei_dump(ptr, dword, offset, "PCI READ");
}
}
static inline void read_host_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_H_CSR);
}
static inline void write_host_csr(struct mei_csr *csr)
{
mei_write_dword_ptr(csr, MEI_H_CSR);
}
static inline void read_me_csr(struct mei_csr *csr)
{
mei_read_dword_ptr(csr, MEI_ME_CSR_HA);
}
static inline void write_cb(uint32_t dword)
{
write32(mei_mmap, MEI_H_CB_WW, dword);
if (debug) {
mei_dump(NULL, dword, MEI_H_CB_WW, "WRITE");
}
}
static inline uint32_t read_cb(void)
{
uint32_t dword = read32(mei_mmap, MEI_ME_CB_RW);
if (debug) {
mei_dump(NULL, dword, MEI_ME_CB_RW, "READ");
}
return dword;
}
/* Wait for ME ready bit to be asserted */
static int mei_wait_for_me_ready(void)
{
struct mei_csr me;
unsigned try = ME_RETRY;
while (try--) {
read_me_csr(&me);
if (me.ready)
return 0;
usleep(ME_DELAY);
}
printf("ME: failed to become ready\n");
return -1;
}
void mei_reset(void)
{
struct mei_csr host;
if (mei_wait_for_me_ready() < 0)
return;
/* Reset host and ME circular buffers for next message */
read_host_csr(&host);
host.reset = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
if (mei_wait_for_me_ready() < 0)
return;
/* Re-init and indicate host is ready */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
}
static int mei_send_msg(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data)
{
struct mei_csr host;
unsigned ndata , n;
uint32_t *data;
/* Number of dwords to write, ignoring MKHI */
ndata = (mei->length) >> 2;
/* Pad non-dword aligned request message length */
if (mei->length & 3)
ndata++;
if (!ndata) {
printf("ME: request does not include MKHI\n");
return -1;
}
ndata++; /* Add MEI header */
/*
* Make sure there is still room left in the circular buffer.
* Reset the buffer pointers if the requested message will not fit.
*/
read_host_csr(&host);
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printf("ME: circular buffer full, resetting...\n");
mei_reset();
read_host_csr(&host);
}
/*
* This implementation does not handle splitting large messages
* across multiple transactions. Ensure the requested length
* will fit in the available circular buffer depth.
*/
if ((host.buffer_depth - host.buffer_write_ptr) < ndata) {
printf("ME: message (%u) too large for buffer (%u)\n",
ndata + 2, host.buffer_depth);
return -1;
}
/* Write MEI header */
mei_write_dword_ptr(mei, MEI_H_CB_WW);
ndata--;
/* Write MKHI header */
mei_write_dword_ptr(mkhi, MEI_H_CB_WW);
ndata--;
/* Write message data */
data = req_data;
for (n = 0; n < ndata; ++n)
write_cb(*data++);
/* Generate interrupt to the ME */
read_host_csr(&host);
host.interrupt_generate = 1;
write_host_csr(&host);
/* Make sure ME is ready after sending request data */
return mei_wait_for_me_ready();
}
static int mei_recv_msg(struct mei_header *mei, struct mkhi_header *mkhi,
void *rsp_data, uint32_t rsp_bytes)
{
struct mei_header mei_rsp;
struct mkhi_header mkhi_rsp;
struct mei_csr me, host;
unsigned ndata, n;
unsigned expected;
uint32_t *data;
/* Total number of dwords to read from circular buffer */
expected = (rsp_bytes + sizeof(mei_rsp) + sizeof(mkhi_rsp)) >> 2;
if (rsp_bytes & 3)
expected++;
if (debug) {
printf("expected u32 = %d\n", expected);
}
/*
* The interrupt status bit does not appear to indicate that the
* message has actually been received. Instead we wait until the
* expected number of dwords are present in the circular buffer.
*/
for (n = ME_RETRY; n; --n) {
read_me_csr(&me);
if ((me.buffer_write_ptr - me.buffer_read_ptr) >= expected)
//if (me.interrupt_generate && !me.interrupt_status)
//if (me.interrupt_status)
break;
usleep(ME_DELAY);
}
if (!n) {
printf("ME: timeout waiting for data: expected "
"%u, available %u\n", expected,
me.buffer_write_ptr - me.buffer_read_ptr);
return -1;
}
/* Read and verify MEI response header from the ME */
mei_read_dword_ptr(&mei_rsp, MEI_ME_CB_RW);
if (!mei_rsp.is_complete) {
printf("ME: response is not complete\n");
return -1;
}
/* Handle non-dword responses and expect at least MKHI header */
ndata = mei_rsp.length >> 2;
if (mei_rsp.length & 3)
ndata++;
if (ndata != (expected - 1)) { //XXX
printf("ME: response is missing data\n");
//return -1;
}
/* Read and verify MKHI response header from the ME */
mei_read_dword_ptr(&mkhi_rsp, MEI_ME_CB_RW);
if (!mkhi_rsp.is_response ||
mkhi->group_id != mkhi_rsp.group_id ||
mkhi->command != mkhi_rsp.command) {
printf("ME: invalid response, group %u ?= %u, "
"command %u ?= %u, is_response %u\n", mkhi->group_id,
mkhi_rsp.group_id, mkhi->command, mkhi_rsp.command,
mkhi_rsp.is_response);
//return -1;
}
ndata--; /* MKHI header has been read */
/* Make sure caller passed a buffer with enough space */
if (ndata != (rsp_bytes >> 2)) {
printf("ME: not enough room in response buffer: "
"%u != %u\n", ndata, rsp_bytes >> 2);
//return -1;
}
/* Read response data from the circular buffer */
data = rsp_data;
for (n = 0; n < ndata; ++n)
*data++ = read_cb();
/* Tell the ME that we have consumed the response */
read_host_csr(&host);
host.interrupt_status = 1;
host.interrupt_generate = 1;
write_host_csr(&host);
return mei_wait_for_me_ready();
}
static inline int mei_sendrecv(struct mei_header *mei, struct mkhi_header *mkhi,
void *req_data, void *rsp_data, uint32_t rsp_bytes)
{
if (mei_send_msg(mei, mkhi, req_data) < 0)
return -1;
if (mei_recv_msg(mei, mkhi, rsp_data, rsp_bytes) < 0)
return -1;
return 0;
}
/* Send END OF POST message to the ME */
/*
static int mkhi_end_of_post(void)
{
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = MKHI_END_OF_POST,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi),
};
if (mei_sendrecv(&mei, &mkhi, NULL, NULL, 0) < 0) {
printf("ME: END OF POST message failed\n");
return -1;
}
printf("ME: END OF POST message successful\n");
return 0;
}
*/
/* Get ME firmware version */
int mkhi_get_fw_version(void)
{
uint32_t data = 0;
struct me_fw_version version = {0};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = GEN_GET_FW_VERSION,
.is_response = 0,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi),
};
#ifndef OLDARC
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &data, &version, sizeof(version) ) < 0) {
printf("ME: GET FW VERSION message failed\n");
return -1;
}
printf("ME: Firmware Version %u.%u.%u.%u (code) "
"%u.%u.%u.%u (recovery) "
"%u.%u.%u.%u (fitc)\n\n",
version.code_major, version.code_minor,
version.code_build_number, version.code_hot_fix,
version.recovery_major, version.recovery_minor,
version.recovery_build_number, version.recovery_hot_fix,
version.fitcmajor, version.fitcminor,
version.fitcbuildno, version.fitchotfix);
#else
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &data, &version, 2*sizeof(uint32_t) ) < 0) {
printf("ME: GET FW VERSION message failed\n");
return -1;
}
printf("ME: Firmware Version %u.%u (code)\n\n"
version.code_major, version.code_minor);
#endif
return 0;
}
static inline void print_cap(const char *name, int state)
{
printf("ME Capability: %-30s : %s\n",
name, state ? CRED "ON" RESET : CGRN "OFF" RESET);
}
/* Get ME Firmware Capabilities */
int mkhi_get_fwcaps(void)
{
struct {
uint32_t rule_id;
uint32_t rule_len;
struct me_fwcaps cap;
} fwcaps;
fwcaps.rule_id = 0;
fwcaps.rule_len = 0;
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_FWCAPS,
.command = MKHI_FWCAPS_GET_RULE,
.is_response = 0,
};
struct mei_header mei = {
.is_complete = 1,
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
.length = sizeof(mkhi) + sizeof(fwcaps.rule_id),
};
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &fwcaps.rule_id, &fwcaps.cap, sizeof(fwcaps.cap)) < 0) {
printf("ME: GET FWCAPS message failed\n");
return -1;
}
print_cap("Full Network manageability ", fwcaps.cap.caps_sku.full_net);
print_cap("Regular Network manageability ", fwcaps.cap.caps_sku.std_net);
print_cap("Manageability ", fwcaps.cap.caps_sku.manageability);
print_cap("Small business technology ", fwcaps.cap.caps_sku.small_business);
print_cap("Level III manageability ", fwcaps.cap.caps_sku.l3manageability);
print_cap("IntelR Anti-Theft (AT) ", fwcaps.cap.caps_sku.intel_at);
print_cap("IntelR Capability Licensing Service (CLS) ", fwcaps.cap.caps_sku.intel_cls);
print_cap("IntelR Power Sharing Technology (MPC) ", fwcaps.cap.caps_sku.intel_mpc);
print_cap("ICC Over Clocking ", fwcaps.cap.caps_sku.icc_over_clocking);
print_cap("Protected Audio Video Path (PAVP) ", fwcaps.cap.caps_sku.pavp);
print_cap("IPV6 ", fwcaps.cap.caps_sku.ipv6);
print_cap("KVM Remote Control (KVM) ", fwcaps.cap.caps_sku.kvm);
print_cap("Outbreak Containment Heuristic (OCH) ", fwcaps.cap.caps_sku.och);
print_cap("Virtual LAN (VLAN) ", fwcaps.cap.caps_sku.vlan);
print_cap("TLS ", fwcaps.cap.caps_sku.tls);
print_cap("Wireless LAN (WLAN) ", fwcaps.cap.caps_sku.wlan);
return 0;
}
/* Tell ME to issue a global reset */
uint32_t mkhi_global_reset(void)
{
struct me_global_reset reset = {
.request_origin = GLOBAL_RESET_BIOS_POST,
.reset_type = CBM_RR_GLOBAL_RESET,
};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_CBM,
.command = MKHI_GLOBAL_RESET,
};
struct mei_header mei = {
.is_complete = 1,
.length = sizeof(mkhi) + sizeof(reset),
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
};
printf("ME: Requesting global reset\n");
/* Send request and wait for response */
if (mei_sendrecv(&mei, &mkhi, &reset, NULL, 0) < 0) {
/* No response means reset will happen shortly... */
asm("hlt");
}
/* If the ME responded it rejected the reset request */
printf("ME: Global Reset failed\n");
return -1;
}
/* Tell ME thermal reporting parameters */
/*
void mkhi_thermal(void)
{
struct me_thermal_reporting thermal = {
.polling_timeout = 2,
.smbus_ec_msglen = 1,
.smbus_ec_msgpec = 0,
.dimmnumber = 4,
};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_CBM,
.command = MKHI_THERMAL_REPORTING,
};
struct mei_header mei = {
.is_complete = 1,
.length = sizeof(mkhi) + sizeof(thermal),
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_THERMAL,
};
printf("ME: Sending thermal reporting params\n");
mei_sendrecv(&mei, &mkhi, &thermal, NULL, 0);
}
*/
/* Enable debug of internal ME memory */
int mkhi_debug_me_memory(void *physaddr)
{
uint32_t data = 0;
/* copy whole ME memory to a readable space */
struct me_debug_mem memory = {
.debug_phys = (uintptr_t)physaddr,
.debug_size = 0x2000000,
.me_phys = 0x20000000,
.me_size = 0x2000000,
};
struct mkhi_header mkhi = {
.group_id = MKHI_GROUP_ID_GEN,
.command = GEN_SET_DEBUG_MEM,
.is_response = 0,
};
struct mei_header mei = {
.is_complete = 1,
.length = sizeof(mkhi) + sizeof(memory),
.host_address = MEI_HOST_ADDRESS,
.client_address = MEI_ADDRESS_MKHI,
};
printf("ME: Debug memory to 0x%zx ...", (size_t)physaddr);
if (mei_sendrecv(&mei, &mkhi, &memory, &data, 0) < 0) {
printf("failed\n");
return -1;
} else {
printf("done\n");
}
return 0;
}
/* Prepare ME for MEI messages */
uint32_t intel_mei_setup(struct pci_dev *dev)
{
struct mei_csr host;
uint32_t reg32;
uint32_t pagerounded;
mei_base_address = dev->base_addr[0] & ~0xf;
pagerounded = mei_base_address & ~0xfff;
mei_mmap = map_physical(pagerounded, 0x2000);
mei_mmap += mei_base_address - pagerounded;
if (mei_mmap == NULL) {
printf("Could not map ME setup memory\n");
return 1;
}
/* Ensure Memory and Bus Master bits are set */
reg32 = pci_read_long(dev, PCI_COMMAND);
reg32 |= PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY;
pci_write_long(dev, PCI_COMMAND, reg32);
/* Clean up status for next message */
read_host_csr(&host);
host.interrupt_generate = 1;
host.ready = 1;
host.reset = 0;
write_host_csr(&host);
return 0;
}
/* Read the Extend register hash of ME firmware */
int intel_me_extend_valid(struct pci_dev *dev)
{
struct me_heres status;
uint32_t extend[8] = {0};
int i, count = 0;
pci_read_dword_ptr(dev, &status, PCI_ME_HERES);
if (!status.extend_feature_present) {
printf("ME: Extend Feature not present\n");
return -1;
}
if (!status.extend_reg_valid) {
printf("ME: Extend Register not valid\n");
return -1;
}
switch (status.extend_reg_algorithm) {
case PCI_ME_EXT_SHA1:
count = 5;
printf("ME: Extend SHA-1: ");
break;
case PCI_ME_EXT_SHA256:
count = 8;
printf("ME: Extend SHA-256: ");
break;
default:
printf("ME: Extend Algorithm %d unknown\n",
status.extend_reg_algorithm);
return -1;
}
for (i = 0; i < count; ++i) {
extend[i] = pci_read_long(dev, PCI_ME_HER(i));
printf("%08x", extend[i]);
}
printf("\n");
return 0;
}