coreboot-kgpe-d16/src/lib/imd.c
Aaron Durbin 1ca2d864dd cbmem: add coreboot table records for each cbmem entry
In order to not expose the cbmem data structures to userland
that are used by coreboot internally add each of the cbmem
entries to a coreboot table record. The payload ABI uses
coreboot tables so this just provides a shortcut for cbmem
entries which were manually added previously by doing the
work on behalf of all entries.

A cursor structure and associated functions are added to
the imd code for walking the entries in order to be placed
in the coreboot tables.  Additionally a struct lb_cbmem_entry
is added that lists the base address, size, and id of the
cbmem entry.

BUG=chrome-os-partner:43731
BRANCH=None
TEST=Booted glados. View coreboot table entries with cbmem.

Change-Id: I125940aa1898c3e99077ead0660eff8aa905b13b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/11757
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Tested-by: build bot (Jenkins)
2015-11-03 00:19:46 +01:00

744 lines
16 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright 2015 Google, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <assert.h>
#include <cbmem.h>
#include <console/console.h>
#include <imd.h>
#include <stdlib.h>
#include <string.h>
/* For more details on implementation and usage please see the imd.h header. */
static const uint32_t IMD_ROOT_PTR_MAGIC = 0xc0389481;
static const uint32_t IMD_ENTRY_MAGIC = ~0xc0389481;
static const uint32_t SMALL_REGION_ID = CBMEM_ID_IMD_SMALL;
static const size_t LIMIT_ALIGN = 4096;
/* In-memory data structures. */
struct imd_root_pointer {
uint32_t magic;
/* Relative to upper limit/offset. */
int32_t root_offset;
} __attribute__((packed));
struct imd_entry {
uint32_t magic;
/* start is located relative to imd_root */
int32_t start_offset;
uint32_t size;
uint32_t id;
} __attribute__((packed));
struct imd_root {
uint32_t max_entries;
uint32_t num_entries;
uint32_t flags;
uint32_t entry_align;
/* Used for fixing the size of an imd. Relative to the root. */
int32_t max_offset;
struct imd_entry entries[0];
} __attribute__((packed));
#define IMD_FLAG_LOCKED 1
static void *relative_pointer(void *base, ssize_t offset)
{
intptr_t b = (intptr_t)base;
b += offset;
return (void *)b;
}
static bool imd_root_pointer_valid(const struct imd_root_pointer *rp)
{
return !!(rp->magic == IMD_ROOT_PTR_MAGIC);
}
static struct imd_root *imdr_root(const struct imdr *imdr)
{
return imdr->r;
}
/*
* The root pointer is relative to the upper limit of the imd. i.e. It sits
* just below the upper limit.
*/
static struct imd_root_pointer *imdr_get_root_pointer(const struct imdr *imdr)
{
struct imd_root_pointer *rp;
rp = relative_pointer((void *)imdr->limit, -sizeof(*rp));
return rp;
}
static void imd_link_root(struct imd_root_pointer *rp, struct imd_root *r)
{
rp->magic = IMD_ROOT_PTR_MAGIC;
rp->root_offset = (int32_t)((intptr_t)r - (intptr_t)rp);
}
static struct imd_entry *root_last_entry(struct imd_root *r)
{
return &r->entries[r->num_entries - 1];
}
static size_t root_num_entries(size_t root_size)
{
size_t entries_size;
entries_size = root_size;
entries_size -= sizeof(struct imd_root_pointer);
entries_size -= sizeof(struct imd_root);
return entries_size / sizeof(struct imd_entry);
}
static size_t imd_root_data_left(struct imd_root *r)
{
struct imd_entry *last_entry;
last_entry = root_last_entry(r);
if (r->max_offset != 0)
return last_entry->start_offset - r->max_offset;
return ~(size_t)0;
}
static bool root_is_locked(const struct imd_root *r)
{
return !!(r->flags & IMD_FLAG_LOCKED);
}
static void imd_entry_assign(struct imd_entry *e, uint32_t id,
ssize_t offset, size_t size)
{
e->magic = IMD_ENTRY_MAGIC;
e->start_offset = offset;
e->size = size;
e->id = id;
}
static void imdr_init(struct imdr *ir, void *upper_limit)
{
uintptr_t limit = (uintptr_t)upper_limit;
/* Upper limit is aligned down to 4KiB */
ir->limit = ALIGN_DOWN(limit, LIMIT_ALIGN);
ir->r = NULL;
}
static int imdr_create_empty(struct imdr *imdr, size_t root_size,
size_t entry_align)
{
struct imd_root_pointer *rp;
struct imd_root *r;
struct imd_entry *e;
ssize_t root_offset;
if (!imdr->limit)
return -1;
/* root_size and entry_align should be a power of 2. */
assert(IS_POWER_OF_2(root_size));
assert(IS_POWER_OF_2(entry_align));
if (!imdr->limit)
return -1;
/*
* root_size needs to be large enough to accomodate root pointer and
* root book keeping structure. The caller needs to ensure there's
* enough room for tracking individual allocations.
*/
if (root_size < (sizeof(*rp) + sizeof(*r)))
return -1;
/* For simplicity don't allow sizes or alignments to exceed LIMIT_ALIGN. */
if (root_size > LIMIT_ALIGN || entry_align > LIMIT_ALIGN)
return -1;
/* Additionally, don't handle an entry alignment > root_size. */
if (entry_align > root_size)
return -1;
rp = imdr_get_root_pointer(imdr);
root_offset = -(ssize_t)root_size;
/* Set root pointer. */
imdr->r = relative_pointer((void *)imdr->limit, root_offset);
r = imdr_root(imdr);
imd_link_root(rp, r);
memset(r, 0, sizeof(*r));
r->entry_align = entry_align;
/* Calculate size left for entries. */
r->max_entries = root_num_entries(root_size);
/* Fill in first entry covering the root region. */
r->num_entries = 1;
e = &r->entries[0];
imd_entry_assign(e, CBMEM_ID_IMD_ROOT, 0, root_size);
printk(BIOS_DEBUG, "IMD: root @ %p %u entries.\n", r, r->max_entries);
return 0;
}
static int imdr_recover(struct imdr *imdr)
{
struct imd_root_pointer *rp;
struct imd_root *r;
uintptr_t low_limit;
size_t i;
if (!imdr->limit)
return -1;
rp = imdr_get_root_pointer(imdr);
if (!imd_root_pointer_valid(rp))
return -1;
r = relative_pointer(rp, rp->root_offset);
/* Confirm the root and root pointer are just under the limit. */
if (ALIGN_UP((uintptr_t)&r->entries[r->max_entries], LIMIT_ALIGN) !=
imdr->limit)
return -1;
if (r->num_entries > r->max_entries)
return -1;
/* Entry alignment should be power of 2. */
if (!IS_POWER_OF_2(r->entry_align))
return -1;
low_limit = (uintptr_t)relative_pointer(r, r->max_offset);
/* If no max_offset then lowest limit is 0. */
if (low_limit == (uintptr_t)r)
low_limit = 0;
for (i = 0; i < r->num_entries; i++) {
uintptr_t start_addr;
const struct imd_entry *e = &r->entries[i];
if (e->magic != IMD_ENTRY_MAGIC)
return -1;
start_addr = (uintptr_t)relative_pointer(r, e->start_offset);
if (start_addr < low_limit)
return -1;
if (start_addr >= imdr->limit ||
(start_addr + e->size) > imdr->limit)
return -1;
}
/* Set root pointer. */
imdr->r = r;
return 0;
}
static const struct imd_entry *imdr_entry_find(const struct imdr *imdr,
uint32_t id)
{
struct imd_root *r;
struct imd_entry *e;
size_t i;
r = imdr_root(imdr);
if (r == NULL)
return NULL;
e = NULL;
/* Skip first entry covering the root. */
for (i = 1; i < r->num_entries; i++) {
if (id != r->entries[i].id)
continue;
e = &r->entries[i];
break;
}
return e;
}
static int imdr_limit_size(struct imdr *imdr, size_t max_size)
{
struct imd_root *r;
ssize_t smax_size;
size_t root_size;
r = imdr_root(imdr);
if (r == NULL)
return -1;
root_size = imdr->limit - (uintptr_t)r;
if (max_size < root_size)
return -1;
/* Take into account the root size. */
smax_size = max_size - root_size;
smax_size = -smax_size;
r->max_offset = smax_size;
return 0;
}
static size_t imdr_entry_size(const struct imdr *imdr,
const struct imd_entry *e)
{
return e->size;
}
static void *imdr_entry_at(const struct imdr *imdr, const struct imd_entry *e)
{
return relative_pointer(imdr_root(imdr), e->start_offset);
}
static struct imd_entry *imd_entry_add_to_root(struct imd_root *r, uint32_t id,
size_t size)
{
struct imd_entry *entry;
struct imd_entry *last_entry;
ssize_t e_offset;
size_t used_size;
if (r->num_entries == r->max_entries)
return NULL;
/* Determine total size taken up by entry. */
used_size = ALIGN_UP(size, r->entry_align);
/* See if size overflows imd total size. */
if (used_size > imd_root_data_left(r))
return NULL;
/*
* Determine if offset field overflows. All offsets should be lower
* than the previous one.
*/
last_entry = root_last_entry(r);
e_offset = last_entry->start_offset;
e_offset -= (ssize_t)used_size;
if (e_offset > last_entry->start_offset)
return NULL;
entry = root_last_entry(r) + 1;
r->num_entries++;
imd_entry_assign(entry, id, e_offset, size);
return entry;
}
static const struct imd_entry *imdr_entry_add(const struct imdr *imdr,
uint32_t id, size_t size)
{
struct imd_root *r;
r = imdr_root(imdr);
if (r == NULL)
return NULL;
if (root_is_locked(r))
return NULL;
return imd_entry_add_to_root(r, id, size);
}
static bool imdr_has_entry(const struct imdr *imdr, const struct imd_entry *e)
{
struct imd_root *r;
size_t idx;
r = imdr_root(imdr);
if (r == NULL)
return false;
/* Determine if the entry is within this root structure. */
idx = e - &r->entries[0];
if (idx >= r->num_entries)
return false;
return true;
}
static const struct imdr *imd_entry_to_imdr(const struct imd *imd,
const struct imd_entry *entry)
{
if (imdr_has_entry(&imd->lg, entry))
return &imd->lg;
if (imdr_has_entry(&imd->sm, entry))
return &imd->sm;
return NULL;
}
/* Initialize imd handle. */
void imd_handle_init(struct imd *imd, void *upper_limit)
{
imdr_init(&imd->lg, upper_limit);
imdr_init(&imd->sm, NULL);
}
void imd_handle_init_partial_recovery(struct imd *imd)
{
const struct imd_entry *e;
struct imd_root_pointer *rp;
struct imdr *imdr;
if (imd->lg.limit == 0)
return;
imd_handle_init(imd, (void *)imd->lg.limit);
/* Initialize root pointer for the large regions. */
imdr = &imd->lg;
rp = imdr_get_root_pointer(imdr);
imdr->r = relative_pointer(rp, rp->root_offset);
e = imdr_entry_find(imdr, SMALL_REGION_ID);
if (e == NULL)
return;
imd->sm.limit = (uintptr_t)imdr_entry_at(imdr, e);
imd->sm.limit += imdr_entry_size(imdr, e);
imdr = &imd->sm;
rp = imdr_get_root_pointer(imdr);
imdr->r = relative_pointer(rp, rp->root_offset);
}
int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align)
{
return imdr_create_empty(&imd->lg, root_size, entry_align);
}
int imd_create_tiered_empty(struct imd *imd,
size_t lg_root_size, size_t lg_entry_align,
size_t sm_root_size, size_t sm_entry_align)
{
size_t sm_region_size;;
const struct imd_entry *e;
struct imdr *imdr;
imdr = &imd->lg;
if (imdr_create_empty(imdr, lg_root_size, lg_entry_align) != 0)
return -1;
/* Calculate the size of the small region to request. */
sm_region_size = root_num_entries(sm_root_size) * sm_entry_align;
sm_region_size += sm_root_size;
sm_region_size = ALIGN_UP(sm_region_size, lg_entry_align);
/* Add a new entry to the large region to cover the root and entries. */
e = imdr_entry_add(imdr, SMALL_REGION_ID, sm_region_size);
if (e == NULL)
goto fail;
imd->sm.limit = (uintptr_t)imdr_entry_at(imdr, e);
imd->sm.limit += sm_region_size;
if (imdr_create_empty(&imd->sm, sm_root_size, sm_entry_align) != 0 ||
imdr_limit_size(&imd->sm, sm_region_size))
goto fail;
return 0;
fail:
imd_handle_init(imd, (void *)imdr->limit);
return -1;
}
int imd_recover(struct imd *imd)
{
const struct imd_entry *e;
uintptr_t small_upper_limit;
struct imdr *imdr;
imdr = &imd->lg;
if (imdr_recover(imdr) != 0)
return -1;
/* Determine if small region is region is present. */
e = imdr_entry_find(imdr, SMALL_REGION_ID);
if (e == NULL)
return 0;
small_upper_limit = (uintptr_t)imdr_entry_at(imdr, e);
small_upper_limit += imdr_entry_size(imdr, e);
imd->sm.limit = small_upper_limit;
/* Tear down any changes on failure. */
if (imdr_recover(&imd->sm) != 0) {
imd_handle_init(imd, (void *)imd->lg.limit);
return -1;
}
return 0;
}
int imd_limit_size(struct imd *imd, size_t max_size)
{
return imdr_limit_size(&imd->lg, max_size);
}
int imd_lockdown(struct imd *imd)
{
struct imd_root *r;
r = imdr_root(&imd->lg);
if (r == NULL)
return -1;
r->flags |= IMD_FLAG_LOCKED;
r = imdr_root(&imd->sm);
if (r != NULL)
r->flags |= IMD_FLAG_LOCKED;
return 0;
}
int imd_region_used(struct imd *imd, void **base, size_t *size)
{
struct imd_root *r;
struct imd_entry *e;
void *low_addr;
size_t sz_used;
if (!imd->lg.limit)
return -1;
r = imdr_root(&imd->lg);
if (r == NULL)
return -1;
/* Use last entry to obtain lowest address. */
e = root_last_entry(r);
low_addr = relative_pointer(r, e->start_offset);
/* Total size used is the last entry's base up to the limit. */
sz_used = imd->lg.limit - (uintptr_t)low_addr;
*base = low_addr;
*size = sz_used;
return 0;
}
const struct imd_entry *imd_entry_add(const struct imd *imd, uint32_t id,
size_t size)
{
struct imd_root *r;
const struct imdr *imdr;
const struct imd_entry *e = NULL;
/*
* Determine if requested size is less than 1/4 of small data
* region is left.
*/
imdr = &imd->sm;
r = imdr_root(imdr);
/* No small region. Use the large region. */
if (r == NULL)
return imdr_entry_add(&imd->lg, id, size);
else if (size <= r->entry_align || size <= imd_root_data_left(r) / 4)
e = imdr_entry_add(imdr, id, size);
/* Fall back on large region allocation. */
if (e == NULL)
e = imdr_entry_add(&imd->lg, id, size);
return e;
}
const struct imd_entry *imd_entry_find(const struct imd *imd, uint32_t id)
{
const struct imd_entry *e;
/* Many of the smaller allocations are used a lot. Therefore, try
* the small region first. */
e = imdr_entry_find(&imd->sm, id);
if (e == NULL)
e = imdr_entry_find(&imd->lg, id);
return e;
}
const struct imd_entry *imd_entry_find_or_add(const struct imd *imd,
uint32_t id, size_t size)
{
const struct imd_entry *e;
e = imd_entry_find(imd, id);
if (e != NULL)
return e;
return imd_entry_add(imd, id, size);
}
size_t imd_entry_size(const struct imd *imd, const struct imd_entry *entry)
{
return imdr_entry_size(NULL, entry);
}
void *imd_entry_at(const struct imd *imd, const struct imd_entry *entry)
{
const struct imdr *imdr;
imdr = imd_entry_to_imdr(imd, entry);
if (imdr == NULL)
return NULL;
return imdr_entry_at(imdr, entry);
}
uint32_t imd_entry_id(const struct imd *imd, const struct imd_entry *entry)
{
return entry->id;
}
int imd_entry_remove(const struct imd *imd, const struct imd_entry *entry)
{
struct imd_root *r;
const struct imdr *imdr;
imdr = imd_entry_to_imdr(imd, entry);
if (imdr == NULL)
return - 1;
r = imdr_root(imdr);
if (r == NULL)
return -1;
if (root_is_locked(r))
return -1;
if (entry != root_last_entry(r))
return -1;
r->num_entries--;
return 0;
}
static void imdr_print_entries(const struct imdr *imdr, const char *indent,
const struct imd_lookup *lookup, size_t size)
{
struct imd_root *r;
size_t i;
size_t j;
if (imdr == NULL)
return;
r = imdr_root(imdr);
for (i = 0; i < r->num_entries; i++) {
const char *name = NULL;
const struct imd_entry *e = &r->entries[i];
for (j = 0; j < size; j++) {
if (lookup[j].id == e->id) {
name = lookup[j].name;
break;
}
}
printk(BIOS_DEBUG, "%s", indent);
if (name == NULL)
printk(BIOS_DEBUG, "%08x ", e->id);
else
printk(BIOS_DEBUG, "%s", name);
printk(BIOS_DEBUG, "%2zu. ", i);
printk(BIOS_DEBUG, "%p ", imdr_entry_at(imdr, e));
printk(BIOS_DEBUG, "%08zx\n", imdr_entry_size(imdr, e));
}
}
int imd_print_entries(const struct imd *imd, const struct imd_lookup *lookup,
size_t size)
{
if (imdr_root(&imd->lg) == NULL)
return -1;
imdr_print_entries(&imd->lg, "", lookup, size);
if (imdr_root(&imd->sm) != NULL) {
printk(BIOS_DEBUG, "IMD small region:\n");
imdr_print_entries(&imd->sm, " ", lookup, size);
}
return 0;
}
int imd_cursor_init(const struct imd *imd, struct imd_cursor *cursor)
{
if (imd == NULL || cursor == NULL)
return -1;
memset(cursor, 0, sizeof(*cursor));
cursor->imdr[0] = &imd->lg;
cursor->imdr[1] = &imd->sm;
return 0;
}
const struct imd_entry *imd_cursor_next(struct imd_cursor *cursor)
{
struct imd_root *r;
const struct imd_entry *e;
if (cursor->current_imdr >= ARRAY_SIZE(cursor->imdr))
return NULL;
r = imdr_root(cursor->imdr[cursor->current_imdr]);
if (r == NULL)
return NULL;
if (cursor->current_entry >= r->num_entries) {
/* Try next imdr. */
cursor->current_imdr++;
cursor->current_entry = 0;
return imd_cursor_next(cursor);
}
e = &r->entries[cursor->current_entry];
cursor->current_entry++;
return e;
}