coreboot-kgpe-d16/util/cbmem/cbmem.c

1687 lines
41 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#include <inttypes.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <getopt.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <ctype.h>
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <libgen.h>
#include <assert.h>
#include <regex.h>
#include <commonlib/bsd/cbmem_id.h>
#include <commonlib/loglevel.h>
#include <commonlib/timestamp_serialized.h>
#include <commonlib/tpm_log_serialized.h>
#include <commonlib/coreboot_tables.h>
#ifdef __OpenBSD__
#include <sys/param.h>
#include <sys/sysctl.h>
#endif
#if defined(__i386__) || defined(__x86_64__)
#include <x86intrin.h>
#endif
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
typedef uint8_t u8;
typedef uint16_t u16;
typedef uint32_t u32;
typedef uint64_t u64;
/* Return < 0 on error, 0 on success. */
static int parse_cbtable(u64 address, size_t table_size);
struct mapping {
void *virt;
size_t offset;
size_t virt_size;
unsigned long long phys;
size_t size;
};
#define CBMEM_VERSION "1.1"
/* verbose output? */
static int verbose = 0;
#define debug(x...) if(verbose) printf(x)
/* File handle used to access /dev/mem */
static int mem_fd;
static struct mapping lbtable_mapping;
/* TSC frequency from the LB_TAG_TSC_INFO record. 0 if not present. */
static uint32_t tsc_freq_khz = 0;
static void die(const char *msg)
{
if (msg)
fputs(msg, stderr);
exit(1);
}
static unsigned long long system_page_size(void)
{
static unsigned long long page_size;
if (!page_size)
page_size = getpagesize();
return page_size;
}
static inline size_t size_to_mib(size_t sz)
{
return sz >> 20;
}
/* Return mapping of physical address requested. */
static void *mapping_virt(const struct mapping *mapping)
{
char *v = mapping->virt;
if (v == NULL)
return NULL;
return v + mapping->offset;
}
/* Returns virtual address on success, NULL on error. mapping is filled in. */
static void *map_memory_with_prot(struct mapping *mapping,
unsigned long long phys, size_t sz, int prot)
{
void *v;
unsigned long long page_size;
page_size = system_page_size();
mapping->virt = NULL;
mapping->offset = phys % page_size;
mapping->virt_size = sz + mapping->offset;
mapping->size = sz;
mapping->phys = phys;
if (size_to_mib(mapping->virt_size) == 0) {
debug("Mapping %zuB of physical memory at 0x%llx (requested 0x%llx).\n",
mapping->virt_size, phys - mapping->offset, phys);
} else {
debug("Mapping %zuMB of physical memory at 0x%llx (requested 0x%llx).\n",
size_to_mib(mapping->virt_size), phys - mapping->offset,
phys);
}
v = mmap(NULL, mapping->virt_size, prot, MAP_SHARED, mem_fd,
phys - mapping->offset);
if (v == MAP_FAILED) {
debug("Mapping failed %zuB of physical memory at 0x%llx.\n",
mapping->virt_size, phys - mapping->offset);
return NULL;
}
mapping->virt = v;
if (mapping->offset != 0)
debug(" ... padding virtual address with 0x%zx bytes.\n",
mapping->offset);
return mapping_virt(mapping);
}
/* Convenience helper for the common case of read-only mappings. */
static const void *map_memory(struct mapping *mapping, unsigned long long phys,
size_t sz)
{
return map_memory_with_prot(mapping, phys, sz, PROT_READ);
}
/* Returns 0 on success, < 0 on error. mapping is cleared if successful. */
static int unmap_memory(struct mapping *mapping)
{
if (mapping->virt == NULL)
return -1;
munmap(mapping->virt, mapping->virt_size);
mapping->virt = NULL;
mapping->offset = 0;
mapping->virt_size = 0;
return 0;
}
/* Return size of physical address mapping requested. */
static size_t mapping_size(const struct mapping *mapping)
{
if (mapping->virt == NULL)
return 0;
return mapping->size;
}
/*
* Some architectures map /dev/mem memory in a way that doesn't support
* unaligned accesses. Most normal libc memcpy()s aren't safe to use in this
* case, so build our own which makes sure to never do unaligned accesses on
* *src (*dest is fine since we never map /dev/mem for writing).
*/
static void *aligned_memcpy(void *dest, const void *src, size_t n)
{
u8 *d = dest;
const volatile u8 *s = src; /* volatile to prevent optimization */
while ((uintptr_t)s & (sizeof(size_t) - 1)) {
if (n-- == 0)
return dest;
*d++ = *s++;
}
while (n >= sizeof(size_t)) {
*(size_t *)d = *(const volatile size_t *)s;
d += sizeof(size_t);
s += sizeof(size_t);
n -= sizeof(size_t);
}
while (n-- > 0)
*d++ = *s++;
return dest;
}
/*
* calculate ip checksum (16 bit quantities) on a passed in buffer. In case
* the buffer length is odd last byte is excluded from the calculation
*/
static u16 ipchcksum(const void *addr, unsigned size)
{
const u16 *p = addr;
unsigned i, n = size / 2; /* don't expect odd sized blocks */
u32 sum = 0;
for (i = 0; i < n; i++)
sum += p[i];
sum = (sum >> 16) + (sum & 0xffff);
sum += (sum >> 16);
sum = ~sum & 0xffff;
return (u16) sum;
}
/* Find the first cbmem entry filling in the details. */
static int find_cbmem_entry(uint32_t id, uint64_t *addr, size_t *size)
{
const uint8_t *table;
size_t offset;
int ret = -1;
table = mapping_virt(&lbtable_mapping);
if (table == NULL)
return -1;
offset = 0;
while (offset < mapping_size(&lbtable_mapping)) {
const struct lb_record *lbr;
struct lb_cbmem_entry lbe;
lbr = (const void *)(table + offset);
offset += lbr->size;
if (lbr->tag != LB_TAG_CBMEM_ENTRY)
continue;
aligned_memcpy(&lbe, lbr, sizeof(lbe));
if (lbe.id != id)
continue;
*addr = lbe.address;
*size = lbe.entry_size;
ret = 0;
break;
}
return ret;
}
/*
* Try finding the timestamp table and coreboot cbmem console starting from the
* passed in memory offset. Could be called recursively in case a forwarding
* entry is found.
*
* Returns pointer to a memory buffer containing the timestamp table or zero if
* none found.
*/
static struct lb_cbmem_ref timestamps;
static struct lb_cbmem_ref console;
static struct lb_cbmem_ref tpm_cb_log;
static struct lb_memory_range cbmem;
/* This is a work-around for a nasty problem introduced by initially having
* pointer sized entries in the lb_cbmem_ref structures. This caused problems
* on 64bit x86 systems because coreboot is 32bit on those systems.
* When the problem was found, it was corrected, but there are a lot of
* systems out there with a firmware that does not produce the right
* lb_cbmem_ref structure. Hence we try to autocorrect this issue here.
*/
static struct lb_cbmem_ref parse_cbmem_ref(const struct lb_cbmem_ref *cbmem_ref)
{
struct lb_cbmem_ref ret;
aligned_memcpy(&ret, cbmem_ref, sizeof(ret));
if (cbmem_ref->size < sizeof(*cbmem_ref))
ret.cbmem_addr = (uint32_t)ret.cbmem_addr;
debug(" cbmem_addr = %" PRIx64 "\n", ret.cbmem_addr);
return ret;
}
static void parse_memory_tags(const struct lb_memory *mem)
{
int num_entries;
int i;
/* Peel off the header size and calculate the number of entries. */
num_entries = (mem->size - sizeof(*mem)) / sizeof(mem->map[0]);
for (i = 0; i < num_entries; i++) {
if (mem->map[i].type != LB_MEM_TABLE)
continue;
debug(" LB_MEM_TABLE found.\n");
/* The last one found is CBMEM */
aligned_memcpy(&cbmem, &mem->map[i], sizeof(cbmem));
}
}
/* Return < 0 on error, 0 on success, 1 if forwarding table entry found. */
static int parse_cbtable_entries(const struct mapping *table_mapping)
{
size_t i;
const struct lb_record *lbr_p;
size_t table_size = mapping_size(table_mapping);
const void *lbtable = mapping_virt(table_mapping);
int forwarding_table_found = 0;
for (i = 0; i < table_size; i += lbr_p->size) {
lbr_p = lbtable + i;
debug(" coreboot table entry 0x%02x\n", lbr_p->tag);
switch (lbr_p->tag) {
case LB_TAG_MEMORY:
debug(" Found memory map.\n");
parse_memory_tags(lbtable + i);
continue;
case LB_TAG_TIMESTAMPS: {
debug(" Found timestamp table.\n");
timestamps =
parse_cbmem_ref((struct lb_cbmem_ref *)lbr_p);
continue;
}
case LB_TAG_CBMEM_CONSOLE: {
debug(" Found cbmem console.\n");
console = parse_cbmem_ref((struct lb_cbmem_ref *)lbr_p);
continue;
}
case LB_TAG_TPM_CB_LOG: {
debug(" Found TPM CB log table.\n");
tpm_cb_log =
parse_cbmem_ref((struct lb_cbmem_ref *)lbr_p);
continue;
}
case LB_TAG_TSC_INFO:
debug(" Found TSC info.\n");
tsc_freq_khz = ((struct lb_tsc_info *)lbr_p)->freq_khz;
continue;
case LB_TAG_FORWARD: {
int ret;
/*
* This is a forwarding entry - repeat the
* search at the new address.
*/
struct lb_forward lbf_p =
*(const struct lb_forward *)lbr_p;
debug(" Found forwarding entry.\n");
ret = parse_cbtable(lbf_p.forward, 0);
/* Assume the forwarding entry is valid. If this fails
* then there's a total failure. */
if (ret < 0)
return -1;
forwarding_table_found = 1;
}
default:
break;
}
}
return forwarding_table_found;
}
/* Return < 0 on error, 0 on success. */
static int parse_cbtable(u64 address, size_t table_size)
{
const void *buf;
struct mapping header_mapping;
size_t req_size;
size_t i;
req_size = table_size;
/* Default to 4 KiB search space. */
if (req_size == 0)
req_size = 4 * 1024;
debug("Looking for coreboot table at %" PRIx64 " %zd bytes.\n",
address, req_size);
buf = map_memory(&header_mapping, address, req_size);
if (!buf)
return -1;
/* look at every 16 bytes */
for (i = 0; i <= req_size - sizeof(struct lb_header); i += 16) {
int ret;
const struct lb_header *lbh;
struct mapping table_mapping;
lbh = buf + i;
if (memcmp(lbh->signature, "LBIO", sizeof(lbh->signature)) ||
!lbh->header_bytes ||
ipchcksum(lbh, sizeof(*lbh))) {
continue;
}
/* Map in the whole table to parse. */
if (!map_memory(&table_mapping, address + i + lbh->header_bytes,
lbh->table_bytes)) {
debug("Couldn't map in table\n");
continue;
}
if (ipchcksum(mapping_virt(&table_mapping), lbh->table_bytes) !=
lbh->table_checksum) {
debug("Signature found, but wrong checksum.\n");
unmap_memory(&table_mapping);
continue;
}
debug("Found!\n");
ret = parse_cbtable_entries(&table_mapping);
/* Table parsing failed. */
if (ret < 0) {
unmap_memory(&table_mapping);
continue;
}
/* Succeeded in parsing the table. Header not needed anymore. */
unmap_memory(&header_mapping);
/*
* Table parsing succeeded. If forwarding table not found update
* coreboot table mapping for future use.
*/
if (ret == 0)
lbtable_mapping = table_mapping;
else
unmap_memory(&table_mapping);
return 0;
}
unmap_memory(&header_mapping);
return -1;
}
#if defined(linux) && (defined(__i386__) || defined(__x86_64__))
/*
* read CPU frequency from a sysfs file, return an frequency in Megahertz as
* an int or exit on any error.
*/
static unsigned long arch_tick_frequency(void)
{
FILE *cpuf;
char freqs[100];
int size;
char *endp;
u64 rv;
const char* freq_file =
"/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq";
cpuf = fopen(freq_file, "r");
if (!cpuf) {
fprintf(stderr, "Could not open %s: %s\n",
freq_file, strerror(errno));
exit(1);
}
memset(freqs, 0, sizeof(freqs));
size = fread(freqs, 1, sizeof(freqs), cpuf);
if (!size || (size == sizeof(freqs))) {
fprintf(stderr, "Wrong number of bytes(%d) read from %s\n",
size, freq_file);
exit(1);
}
fclose(cpuf);
rv = strtoull(freqs, &endp, 10);
if (*endp == '\0' || *endp == '\n')
/* cpuinfo_max_freq is in kHz. Convert it to MHz. */
return rv / 1000;
fprintf(stderr, "Wrong formatted value ^%s^ read from %s\n",
freqs, freq_file);
exit(1);
}
#elif defined(__OpenBSD__) && (defined(__i386__) || defined(__x86_64__))
static unsigned long arch_tick_frequency(void)
{
int mib[2] = { CTL_HW, HW_CPUSPEED };
static int value = 0;
size_t value_len = sizeof(value);
/* Return 1 MHz when sysctl fails. */
if ((value == 0) && (sysctl(mib, 2, &value, &value_len, NULL, 0) == -1))
return 1;
return value;
}
#else
static unsigned long arch_tick_frequency(void)
{
/* 1 MHz = 1us. */
return 1;
}
#endif
static unsigned long tick_freq_mhz;
static void timestamp_set_tick_freq(unsigned long table_tick_freq_mhz)
{
tick_freq_mhz = table_tick_freq_mhz;
/* Honor table frequency if present. */
if (!tick_freq_mhz)
tick_freq_mhz = arch_tick_frequency();
if (!tick_freq_mhz) {
fprintf(stderr, "Cannot determine timestamp tick frequency.\n");
exit(1);
}
debug("Timestamp tick frequency: %ld MHz\n", tick_freq_mhz);
}
static u64 arch_convert_raw_ts_entry(u64 ts)
{
return ts / tick_freq_mhz;
}
/*
* Print an integer in 'normalized' form - with commas separating every three
* decimal orders.
*/
static void print_norm(u64 v)
{
if (v >= 1000) {
/* print the higher order sections first */
print_norm(v / 1000);
printf(",%3.3u", (u32)(v % 1000));
} else {
printf("%u", (u32)(v % 1000));
}
}
static uint64_t timestamp_get(uint64_t table_tick_freq_mhz)
{
#if defined(__i386__) || defined(__x86_64__)
uint64_t tsc = __rdtsc();
/* No tick frequency specified means raw TSC values. */
if (!table_tick_freq_mhz)
return tsc;
if (tsc_freq_khz)
return tsc * table_tick_freq_mhz * 1000 / tsc_freq_khz;
#else
(void)table_tick_freq_mhz;
#endif
die("Don't know how to obtain timestamps on this platform.\n");
return 0;
}
static const char *timestamp_name(uint32_t id)
{
for (size_t i = 0; i < ARRAY_SIZE(timestamp_ids); i++) {
if (timestamp_ids[i].id == id)
return timestamp_ids[i].name;
}
return "<unknown>";
}
static uint32_t timestamp_enum_name_to_id(const char *name)
{
for (size_t i = 0; i < ARRAY_SIZE(timestamp_ids); i++) {
if (!strcmp(timestamp_ids[i].enum_name, name))
return timestamp_ids[i].id;
}
return 0;
}
static uint64_t timestamp_print_parseable_entry(uint32_t id, uint64_t stamp,
uint64_t prev_stamp)
{
const char *name;
uint64_t step_time;
name = timestamp_name(id);
step_time = arch_convert_raw_ts_entry(stamp - prev_stamp);
/* ID<tab>absolute time<tab>relative time<tab>description */
printf("%d\t", id);
printf("%llu\t", (long long)arch_convert_raw_ts_entry(stamp));
printf("%llu\t", (long long)step_time);
printf("%s\n", name);
return step_time;
}
static uint64_t timestamp_print_entry(uint32_t id, uint64_t stamp, uint64_t prev_stamp)
{
const char *name;
uint64_t step_time;
name = timestamp_name(id);
printf("%4d:", id);
printf("%-50s", name);
print_norm(arch_convert_raw_ts_entry(stamp));
step_time = arch_convert_raw_ts_entry(stamp - prev_stamp);
if (prev_stamp) {
printf(" (");
print_norm(step_time);
printf(")");
}
printf("\n");
return step_time;
}
static int compare_timestamp_entries(const void *a, const void *b)
{
const struct timestamp_entry *tse_a = (struct timestamp_entry *)a;
const struct timestamp_entry *tse_b = (struct timestamp_entry *)b;
if (tse_a->entry_stamp > tse_b->entry_stamp)
return 1;
else if (tse_a->entry_stamp < tse_b->entry_stamp)
return -1;
return 0;
}
static int find_matching_end(struct timestamp_table *sorted_tst_p, uint32_t start, uint32_t end)
{
uint32_t id = sorted_tst_p->entries[start].entry_id;
uint32_t possible_match = 0;
for (uint32_t i = 0; i < ARRAY_SIZE(timestamp_ids); ++i) {
if (timestamp_ids[i].id == id) {
possible_match = timestamp_ids[i].id_end;
break;
}
}
/* No match found or timestamp not defined in IDs table */
if (!possible_match)
return -1;
for (uint32_t i = start + 1; i < end; i++)
if (sorted_tst_p->entries[i].entry_id == possible_match)
return i;
return -1;
}
static const char *get_timestamp_name(const uint32_t id)
{
for (uint32_t i = 0; i < ARRAY_SIZE(timestamp_ids); i++)
if (timestamp_ids[i].id == id)
return timestamp_ids[i].enum_name;
return "UNKNOWN";
}
struct ts_range_stack {
const char *name;
const char *end_name;
uint32_t end;
};
static void print_with_path(struct ts_range_stack *range_stack, const int stacklvl,
const uint64_t stamp, const char *last_part)
{
for (int i = 1; i <= stacklvl; ++i) {
printf("%s -> %s", range_stack[i].name, range_stack[i].end_name);
if (i < stacklvl || last_part)
putchar(';');
}
if (last_part)
printf("%s", last_part);
printf(" %llu\n", (long long)arch_convert_raw_ts_entry(stamp));
}
enum timestamps_print_type {
TIMESTAMPS_PRINT_NONE,
TIMESTAMPS_PRINT_NORMAL,
TIMESTAMPS_PRINT_MACHINE_READABLE,
TIMESTAMPS_PRINT_STACKED,
};
/* dump the timestamp table */
static void dump_timestamps(enum timestamps_print_type output_type)
{
const struct timestamp_table *tst_p;
struct timestamp_table *sorted_tst_p;
size_t size;
uint64_t prev_stamp = 0;
uint64_t total_time = 0;
struct mapping timestamp_mapping;
if (timestamps.tag != LB_TAG_TIMESTAMPS) {
fprintf(stderr, "No timestamps found in coreboot table.\n");
return;
}
size = sizeof(*tst_p);
tst_p = map_memory(&timestamp_mapping, timestamps.cbmem_addr, size);
if (!tst_p)
die("Unable to map timestamp header\n");
timestamp_set_tick_freq(tst_p->tick_freq_mhz);
if (output_type == TIMESTAMPS_PRINT_NORMAL)
printf("%d entries total:\n\n", tst_p->num_entries);
size += tst_p->num_entries * sizeof(tst_p->entries[0]);
unmap_memory(&timestamp_mapping);
tst_p = map_memory(&timestamp_mapping, timestamps.cbmem_addr, size);
if (!tst_p)
die("Unable to map full timestamp table\n");
sorted_tst_p = malloc(size + sizeof(struct timestamp_entry));
if (!sorted_tst_p)
die("Failed to allocate memory");
aligned_memcpy(sorted_tst_p, tst_p, size);
/*
* Insert a timestamp to represent the base time (start of coreboot),
* in case we have to rebase for negative timestamps below.
*/
sorted_tst_p->entries[tst_p->num_entries].entry_id = 0;
sorted_tst_p->entries[tst_p->num_entries].entry_stamp = 0;
sorted_tst_p->num_entries += 1;
qsort(&sorted_tst_p->entries[0], sorted_tst_p->num_entries,
sizeof(struct timestamp_entry), compare_timestamp_entries);
/*
* If there are negative timestamp entries, rebase all of the
* timestamps to the lowest one in the list.
*/
if (sorted_tst_p->entries[0].entry_stamp < 0) {
sorted_tst_p->base_time = -sorted_tst_p->entries[0].entry_stamp;
prev_stamp = 0;
} else {
prev_stamp = tst_p->base_time;
}
struct ts_range_stack range_stack[20];
range_stack[0].end = sorted_tst_p->num_entries;
int stacklvl = 0;
for (uint32_t i = 0; i < sorted_tst_p->num_entries; i++) {
uint64_t stamp;
const struct timestamp_entry *tse = &sorted_tst_p->entries[i];
/* Make all timestamps absolute. */
stamp = tse->entry_stamp + sorted_tst_p->base_time;
if (output_type == TIMESTAMPS_PRINT_MACHINE_READABLE) {
timestamp_print_parseable_entry(tse->entry_id, stamp, prev_stamp);
} else if (output_type == TIMESTAMPS_PRINT_NORMAL) {
total_time += timestamp_print_entry(tse->entry_id, stamp, prev_stamp);
} else if (output_type == TIMESTAMPS_PRINT_STACKED) {
bool end_of_range = false;
/* Iterate over stacked entries to pop all ranges, which are closed by
current element. For example, assuming two ranges: (TS_A, TS_C),
(TS_B, TS_C) it will pop all of them instead of just last one. */
while (stacklvl > 0 && range_stack[stacklvl].end == i) {
end_of_range = true;
stacklvl--;
}
int match =
find_matching_end(sorted_tst_p, i, range_stack[stacklvl].end);
if (match != -1) {
const uint64_t match_stamp =
sorted_tst_p->entries[match].entry_stamp
+ sorted_tst_p->base_time;
stacklvl++;
assert(stacklvl < (int)ARRAY_SIZE(range_stack));
range_stack[stacklvl].name = get_timestamp_name(tse->entry_id);
range_stack[stacklvl].end_name = get_timestamp_name(
sorted_tst_p->entries[match].entry_id);
range_stack[stacklvl].end = match;
print_with_path(range_stack, stacklvl, match_stamp - stamp,
NULL);
} else if (!end_of_range) {
print_with_path(range_stack, stacklvl, stamp - prev_stamp,
get_timestamp_name(tse->entry_id));
}
/* else: No match && end_of_range == true */
}
prev_stamp = stamp;
}
if (output_type == TIMESTAMPS_PRINT_NORMAL) {
printf("\nTotal Time: ");
print_norm(total_time);
printf("\n");
}
unmap_memory(&timestamp_mapping);
free(sorted_tst_p);
}
/* add a timestamp entry */
static void timestamp_add_now(uint32_t timestamp_id)
{
struct timestamp_table *tst_p;
struct mapping timestamp_mapping;
if (timestamps.tag != LB_TAG_TIMESTAMPS) {
die("No timestamps found in coreboot table.\n");
}
tst_p = map_memory_with_prot(&timestamp_mapping, timestamps.cbmem_addr,
timestamps.size, PROT_READ | PROT_WRITE);
if (!tst_p)
die("Unable to map timestamp table\n");
/*
* Note that coreboot sizes the cbmem entry in the table according to
* max_entries, so it's OK to just add more entries if there's room.
*/
if (tst_p->num_entries >= tst_p->max_entries) {
die("Not enough space to add timestamp.\n");
} else {
int64_t time =
timestamp_get(tst_p->tick_freq_mhz) - tst_p->base_time;
tst_p->entries[tst_p->num_entries].entry_id = timestamp_id;
tst_p->entries[tst_p->num_entries].entry_stamp = time;
tst_p->num_entries += 1;
}
unmap_memory(&timestamp_mapping);
}
/* dump the TPM CB log table */
static void dump_tpm_cb_log(void)
{
const struct tpm_cb_log_table *tclt_p;
size_t size;
struct mapping log_mapping;
if (tpm_cb_log.tag != LB_TAG_TPM_CB_LOG) {
fprintf(stderr, "No TPM log found in coreboot table.\n");
return;
}
size = sizeof(*tclt_p);
tclt_p = map_memory(&log_mapping, tpm_cb_log.cbmem_addr, size);
if (!tclt_p)
die("Unable to map TPM log header\n");
size += tclt_p->num_entries * sizeof(tclt_p->entries[0]);
unmap_memory(&log_mapping);
tclt_p = map_memory(&log_mapping, tpm_cb_log.cbmem_addr, size);
if (!tclt_p)
die("Unable to map full TPM log table\n");
printf("coreboot TPM log:\n\n");
for (uint16_t i = 0; i < tclt_p->num_entries; i++) {
const struct tpm_cb_log_entry *tce = &tclt_p->entries[i];
printf(" PCR-%u ", tce->pcr);
for (uint32_t j = 0; j < tce->digest_length; j++)
printf("%02x", tce->digest[j]);
printf(" %s [%s]\n", tce->digest_type, tce->name);
}
unmap_memory(&log_mapping);
}
struct cbmem_console {
u32 size;
u32 cursor;
u8 body[0];
} __attribute__ ((__packed__));
#define CBMC_CURSOR_MASK ((1 << 28) - 1)
#define CBMC_OVERFLOW (1 << 31)
enum console_print_type {
CONSOLE_PRINT_FULL = 0,
CONSOLE_PRINT_LAST,
CONSOLE_PRINT_PREVIOUS,
};
static int parse_loglevel(char *arg, int *print_unknown_logs)
{
if (arg[0] == '+') {
*print_unknown_logs = 1;
arg++;
} else {
*print_unknown_logs = 0;
}
char *endptr;
int loglevel = strtol(arg, &endptr, 0);
if (*endptr == '\0' && loglevel >= BIOS_EMERG && loglevel <= BIOS_LOG_PREFIX_MAX_LEVEL)
return loglevel;
/* Only match first 3 characters so `NOTE` and `NOTICE` both match. */
for (int i = BIOS_EMERG; i <= BIOS_LOG_PREFIX_MAX_LEVEL; i++)
if (!strncasecmp(arg, bios_log_prefix[i], 3))
return i;
*print_unknown_logs = 1;
return BIOS_NEVER;
}
/* dump the cbmem console */
static void dump_console(enum console_print_type type, int max_loglevel, int print_unknown_logs)
{
const struct cbmem_console *console_p;
char *console_c;
size_t size, cursor, previous;
struct mapping console_mapping;
if (console.tag != LB_TAG_CBMEM_CONSOLE) {
fprintf(stderr, "No console found in coreboot table.\n");
return;
}
size = sizeof(*console_p);
console_p = map_memory(&console_mapping, console.cbmem_addr, size);
if (!console_p)
die("Unable to map console object.\n");
cursor = console_p->cursor & CBMC_CURSOR_MASK;
if (!(console_p->cursor & CBMC_OVERFLOW) && cursor < console_p->size)
size = cursor;
else
size = console_p->size;
unmap_memory(&console_mapping);
console_c = malloc(size + 1);
if (!console_c) {
fprintf(stderr, "Not enough memory for console.\n");
exit(1);
}
console_c[size] = '\0';
console_p = map_memory(&console_mapping, console.cbmem_addr,
size + sizeof(*console_p));
if (!console_p)
die("Unable to map full console object.\n");
if (console_p->cursor & CBMC_OVERFLOW) {
if (cursor >= size) {
printf("cbmem: ERROR: CBMEM console struct is illegal, "
"output may be corrupt or out of order!\n\n");
cursor = 0;
}
aligned_memcpy(console_c, console_p->body + cursor,
size - cursor);
aligned_memcpy(console_c + size - cursor,
console_p->body, cursor);
} else {
aligned_memcpy(console_c, console_p->body, size);
}
/* Slight memory corruption may occur between reboots and give us a few
unprintable characters like '\0'. Replace them with '?' on output. */
for (cursor = 0; cursor < size; cursor++)
if (!isprint(console_c[cursor]) && !isspace(console_c[cursor])
&& !BIOS_LOG_IS_MARKER(console_c[cursor]))
console_c[cursor] = '?';
/* We detect the reboot cutoff by looking for a bootblock, romstage or
ramstage banner, in that order (to account for platforms without
CONFIG_BOOTBLOCK_CONSOLE and/or CONFIG_EARLY_CONSOLE). Once we find
a banner, store the last two matches for that stage and stop. */
cursor = previous = 0;
if (type != CONSOLE_PRINT_FULL) {
#define BANNER_REGEX(stage) \
"\n\n.?coreboot-[^\n]* " stage " starting.*\\.\\.\\.\n"
#define OVERFLOW_REGEX(stage) "\n.?\\*\\*\\* Pre-CBMEM " stage " console overflow"
const char *regex[] = { BANNER_REGEX("verstage-before-bootblock"),
BANNER_REGEX("bootblock"),
BANNER_REGEX("verstage"),
OVERFLOW_REGEX("romstage"),
BANNER_REGEX("romstage"),
OVERFLOW_REGEX("ramstage"),
BANNER_REGEX("ramstage") };
for (size_t i = 0; !cursor && i < ARRAY_SIZE(regex); i++) {
regex_t re;
regmatch_t match;
int res = regcomp(&re, regex[i], REG_EXTENDED | REG_NEWLINE);
assert(res == 0);
/* Keep looking for matches so we find the last one. */
while (!regexec(&re, console_c + cursor, 1, &match, 0)) {
previous = cursor;
cursor += match.rm_so + 1;
}
regfree(&re);
}
}
if (type == CONSOLE_PRINT_PREVIOUS) {
console_c[cursor] = '\0';
cursor = previous;
}
char c;
int suppressed = 0;
int tty = isatty(fileno(stdout));
while ((c = console_c[cursor++])) {
if (BIOS_LOG_IS_MARKER(c)) {
int lvl = BIOS_LOG_MARKER_TO_LEVEL(c);
if (lvl > max_loglevel) {
suppressed = 1;
continue;
}
suppressed = 0;
if (tty)
printf(BIOS_LOG_ESCAPE_PATTERN, bios_log_escape[lvl]);
printf(BIOS_LOG_PREFIX_PATTERN, bios_log_prefix[lvl]);
} else {
if (!suppressed)
putchar(c);
if (c == '\n') {
if (tty && !suppressed)
printf(BIOS_LOG_ESCAPE_RESET);
suppressed = !print_unknown_logs;
}
}
}
if (tty)
printf(BIOS_LOG_ESCAPE_RESET);
free(console_c);
unmap_memory(&console_mapping);
}
static void hexdump(unsigned long memory, int length)
{
int i;
const uint8_t *m;
int all_zero = 0;
struct mapping hexdump_mapping;
m = map_memory(&hexdump_mapping, memory, length);
if (!m)
die("Unable to map hexdump memory.\n");
for (i = 0; i < length; i += 16) {
int j;
all_zero++;
for (j = 0; j < 16; j++) {
if(m[i+j] != 0) {
all_zero = 0;
break;
}
}
if (all_zero < 2) {
printf("%08lx:", memory + i);
for (j = 0; j < 16; j++)
printf(" %02x", m[i+j]);
printf(" ");
for (j = 0; j < 16; j++)
printf("%c", isprint(m[i+j]) ? m[i+j] : '.');
printf("\n");
} else if (all_zero == 2) {
printf("...\n");
}
}
unmap_memory(&hexdump_mapping);
}
static void dump_cbmem_hex(void)
{
if (cbmem.type != LB_MEM_TABLE) {
fprintf(stderr, "No coreboot CBMEM area found!\n");
return;
}
hexdump(cbmem.start, cbmem.size);
}
static void rawdump(uint64_t base, uint64_t size)
{
const uint8_t *m;
struct mapping dump_mapping;
m = map_memory(&dump_mapping, base, size);
if (!m)
die("Unable to map rawdump memory\n");
for (uint64_t i = 0 ; i < size; i++)
printf("%c", m[i]);
unmap_memory(&dump_mapping);
}
static void dump_cbmem_raw(unsigned int id)
{
const uint8_t *table;
size_t offset;
uint64_t base = 0;
uint64_t size = 0;
table = mapping_virt(&lbtable_mapping);
if (table == NULL)
return;
offset = 0;
while (offset < mapping_size(&lbtable_mapping)) {
const struct lb_record *lbr;
struct lb_cbmem_entry lbe;
lbr = (const void *)(table + offset);
offset += lbr->size;
if (lbr->tag != LB_TAG_CBMEM_ENTRY)
continue;
aligned_memcpy(&lbe, lbr, sizeof(lbe));
if (lbe.id == id) {
debug("found id for raw dump %0x", lbe.id);
base = lbe.address;
size = lbe.entry_size;
break;
}
}
if (!base)
fprintf(stderr, "id %0x not found in cbtable\n", id);
else
rawdump(base, size);
}
struct cbmem_id_to_name {
uint32_t id;
const char *name;
};
static const struct cbmem_id_to_name cbmem_ids[] = { CBMEM_ID_TO_NAME_TABLE };
#define MAX_STAGEx 10
static void cbmem_print_entry(int n, uint32_t id, uint64_t base, uint64_t size)
{
const char *name;
char stage_x[20];
name = NULL;
for (size_t i = 0; i < ARRAY_SIZE(cbmem_ids); i++) {
if (cbmem_ids[i].id == id) {
name = cbmem_ids[i].name;
break;
}
if (id >= CBMEM_ID_STAGEx_META &&
id < CBMEM_ID_STAGEx_META + MAX_STAGEx) {
snprintf(stage_x, sizeof(stage_x), "STAGE%d META",
(id - CBMEM_ID_STAGEx_META));
name = stage_x;
}
if (id >= CBMEM_ID_STAGEx_CACHE &&
id < CBMEM_ID_STAGEx_CACHE + MAX_STAGEx) {
snprintf(stage_x, sizeof(stage_x), "STAGE%d $ ",
(id - CBMEM_ID_STAGEx_CACHE));
name = stage_x;
}
}
printf("%2d. ", n);
if (name == NULL)
name = "(unknown)";
printf("%-20s %08x", name, id);
printf(" %08" PRIx64 " ", base);
printf(" %08" PRIx64 "\n", size);
}
static void dump_cbmem_toc(void)
{
int i;
const uint8_t *table;
size_t offset;
table = mapping_virt(&lbtable_mapping);
if (table == NULL)
return;
printf("CBMEM table of contents:\n");
printf(" %-20s %-8s %-8s %-8s\n", "NAME", "ID", "START",
"LENGTH");
i = 0;
offset = 0;
while (offset < mapping_size(&lbtable_mapping)) {
const struct lb_record *lbr;
struct lb_cbmem_entry lbe;
lbr = (const void *)(table + offset);
offset += lbr->size;
if (lbr->tag != LB_TAG_CBMEM_ENTRY)
continue;
aligned_memcpy(&lbe, lbr, sizeof(lbe));
cbmem_print_entry(i, lbe.id, lbe.address, lbe.entry_size);
i++;
}
}
#define COVERAGE_MAGIC 0x584d4153
struct file {
uint32_t magic;
uint32_t next;
uint32_t filename;
uint32_t data;
int offset;
int len;
};
static int mkpath(char *path, mode_t mode)
{
assert (path && *path);
char *p;
for (p = strchr(path+1, '/'); p; p = strchr(p + 1, '/')) {
*p = '\0';
if (mkdir(path, mode) == -1) {
if (errno != EEXIST) {
*p = '/';
return -1;
}
}
*p = '/';
}
return 0;
}
static void dump_coverage(void)
{
uint64_t start;
size_t size;
const void *coverage;
struct mapping coverage_mapping;
unsigned long phys_offset;
#define phys_to_virt(x) ((void *)(unsigned long)(x) + phys_offset)
if (find_cbmem_entry(CBMEM_ID_COVERAGE, &start, &size)) {
fprintf(stderr, "No coverage information found\n");
return;
}
/* Map coverage area */
coverage = map_memory(&coverage_mapping, start, size);
if (!coverage)
die("Unable to map coverage area.\n");
phys_offset = (unsigned long)coverage - (unsigned long)start;
printf("Dumping coverage data...\n");
struct file *file = (struct file *)coverage;
while (file && file->magic == COVERAGE_MAGIC) {
FILE *f;
char *filename;
debug(" -> %s\n", (char *)phys_to_virt(file->filename));
filename = strdup((char *)phys_to_virt(file->filename));
if (mkpath(filename, 0755) == -1) {
perror("Directory for coverage data could "
"not be created");
exit(1);
}
f = fopen(filename, "wb");
if (!f) {
printf("Could not open %s: %s\n",
filename, strerror(errno));
exit(1);
}
if (fwrite((void *)phys_to_virt(file->data),
file->len, 1, f) != 1) {
printf("Could not write to %s: %s\n",
filename, strerror(errno));
exit(1);
}
fclose(f);
free(filename);
if (file->next)
file = (struct file *)phys_to_virt(file->next);
else
file = NULL;
}
unmap_memory(&coverage_mapping);
}
static void print_version(void)
{
printf("cbmem v%s -- ", CBMEM_VERSION);
printf("Copyright (C) 2012 The ChromiumOS Authors. All rights reserved.\n\n");
printf(
"This program is free software: you can redistribute it and/or modify\n"
"it under the terms of the GNU General Public License as published by\n"
"the Free Software Foundation, version 2 of the License.\n\n"
"This program is distributed in the hope that it will be useful,\n"
"but WITHOUT ANY WARRANTY; without even the implied warranty of\n"
"MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n"
"GNU General Public License for more details.\n\n");
}
static void print_usage(const char *name, int exit_code)
{
printf("usage: %s [-cCltTLxVvh?]\n", name);
printf("\n"
" -c | --console: print cbmem console\n"
" -1 | --oneboot: print cbmem console for last boot only\n"
" -2 | --2ndtolast: print cbmem console for the boot that came before the last one only\n"
" -B | --loglevel: maximum loglevel to print; prefix `+` (e.g. -B +INFO) to also print lines that have no level\n"
" -C | --coverage: dump coverage information\n"
" -l | --list: print cbmem table of contents\n"
" -x | --hexdump: print hexdump of cbmem area\n"
" -r | --rawdump ID: print rawdump of specific ID (in hex) of cbtable\n"
" -t | --timestamps: print timestamp information\n"
" -T | --parseable-timestamps: print parseable timestamps\n"
" -S | --stacked-timestamps: print stacked timestamps (e.g. for flame graph tools)\n"
" -a | --add-timestamp ID: append timestamp with ID\n"
" -L | --tcpa-log print TPM log\n"
" -V | --verbose: verbose (debugging) output\n"
" -v | --version: print the version\n"
" -h | --help: print this help\n"
"\n");
exit(exit_code);
}
#if defined(__arm__) || defined(__aarch64__)
static void dt_update_cells(const char *name, int *addr_cells_ptr,
int *size_cells_ptr)
{
if (*addr_cells_ptr >= 0 && *size_cells_ptr >= 0)
return;
int buffer;
size_t nlen = strlen(name);
char *prop = alloca(nlen + sizeof("/#address-cells"));
strcpy(prop, name);
if (*addr_cells_ptr < 0) {
strcpy(prop + nlen, "/#address-cells");
int fd = open(prop, O_RDONLY);
if (fd < 0 && errno != ENOENT) {
perror(prop);
} else if (fd >= 0) {
if (read(fd, &buffer, sizeof(int)) < 0)
perror(prop);
else
*addr_cells_ptr = ntohl(buffer);
close(fd);
}
}
if (*size_cells_ptr < 0) {
strcpy(prop + nlen, "/#size-cells");
int fd = open(prop, O_RDONLY);
if (fd < 0 && errno != ENOENT) {
perror(prop);
} else if (fd >= 0) {
if (read(fd, &buffer, sizeof(int)) < 0)
perror(prop);
else
*size_cells_ptr = ntohl(buffer);
close(fd);
}
}
}
static char *dt_find_compat(const char *parent, const char *compat,
int *addr_cells_ptr, int *size_cells_ptr)
{
char *ret = NULL;
struct dirent *entry;
DIR *dir;
if (!(dir = opendir(parent))) {
perror(parent);
return NULL;
}
/* Loop through all files in the directory (DT node). */
while ((entry = readdir(dir))) {
/* We only care about compatible props or subnodes. */
if (entry->d_name[0] == '.' || !((entry->d_type & DT_DIR) ||
!strcmp(entry->d_name, "compatible")))
continue;
/* Assemble the file name (on the stack, for speed). */
size_t plen = strlen(parent);
char *name = alloca(plen + strlen(entry->d_name) + 2);
strcpy(name, parent);
name[plen] = '/';
strcpy(name + plen + 1, entry->d_name);
/* If it's a subnode, recurse. */
if (entry->d_type & DT_DIR) {
ret = dt_find_compat(name, compat, addr_cells_ptr,
size_cells_ptr);
/* There is only one matching node to find, abort. */
if (ret) {
/* Gather cells values on the way up. */
dt_update_cells(parent, addr_cells_ptr,
size_cells_ptr);
break;
}
continue;
}
/* If it's a compatible string, see if it's the right one. */
int fd = open(name, O_RDONLY);
int clen = strlen(compat);
char *buffer = alloca(clen + 1);
if (fd < 0) {
perror(name);
continue;
}
if (read(fd, buffer, clen + 1) < 0) {
perror(name);
close(fd);
continue;
}
close(fd);
if (!strcmp(compat, buffer)) {
/* Initialize these to "unset" for the way up. */
*addr_cells_ptr = *size_cells_ptr = -1;
/* Can't leave string on the stack or we'll lose it! */
ret = strdup(parent);
break;
}
}
closedir(dir);
return ret;
}
#endif /* defined(__arm__) || defined(__aarch64__) */
int main(int argc, char** argv)
{
int print_defaults = 1;
int print_console = 0;
int print_coverage = 0;
int print_list = 0;
int print_hexdump = 0;
int print_rawdump = 0;
int print_tcpa_log = 0;
enum timestamps_print_type timestamp_type = TIMESTAMPS_PRINT_NONE;
enum console_print_type console_type = CONSOLE_PRINT_FULL;
unsigned int rawdump_id = 0;
int max_loglevel = BIOS_NEVER;
int print_unknown_logs = 1;
uint32_t timestamp_id = 0;
int opt, option_index = 0;
static struct option long_options[] = {
{"console", 0, 0, 'c'},
{"oneboot", 0, 0, '1'},
{"2ndtolast", 0, 0, '2'},
{"loglevel", required_argument, 0, 'B'},
{"coverage", 0, 0, 'C'},
{"list", 0, 0, 'l'},
{"tcpa-log", 0, 0, 'L'},
{"timestamps", 0, 0, 't'},
{"parseable-timestamps", 0, 0, 'T'},
{"stacked-timestamps", 0, 0, 'S'},
{"add-timestamp", required_argument, 0, 'a'},
{"hexdump", 0, 0, 'x'},
{"rawdump", required_argument, 0, 'r'},
{"verbose", 0, 0, 'V'},
{"version", 0, 0, 'v'},
{"help", 0, 0, 'h'},
{0, 0, 0, 0}
};
while ((opt = getopt_long(argc, argv, "c12B:CltTSa:LxVvh?r:",
long_options, &option_index)) != EOF) {
switch (opt) {
case 'c':
print_console = 1;
print_defaults = 0;
break;
case '1':
print_console = 1;
console_type = CONSOLE_PRINT_LAST;
print_defaults = 0;
break;
case '2':
print_console = 1;
console_type = CONSOLE_PRINT_PREVIOUS;
print_defaults = 0;
break;
case 'B':
max_loglevel = parse_loglevel(optarg, &print_unknown_logs);
break;
case 'C':
print_coverage = 1;
print_defaults = 0;
break;
case 'l':
print_list = 1;
print_defaults = 0;
break;
case 'L':
print_tcpa_log = 1;
print_defaults = 0;
break;
case 'x':
print_hexdump = 1;
print_defaults = 0;
break;
case 'r':
print_rawdump = 1;
print_defaults = 0;
rawdump_id = strtoul(optarg, NULL, 16);
break;
case 't':
timestamp_type = TIMESTAMPS_PRINT_NORMAL;
print_defaults = 0;
break;
case 'T':
timestamp_type = TIMESTAMPS_PRINT_MACHINE_READABLE;
print_defaults = 0;
break;
case 'S':
timestamp_type = TIMESTAMPS_PRINT_STACKED;
print_defaults = 0;
break;
case 'a':
print_defaults = 0;
timestamp_id = timestamp_enum_name_to_id(optarg);
/* Parse numeric value if name is unknown */
if (timestamp_id == 0)
timestamp_id = strtoul(optarg, NULL, 0);
break;
case 'V':
verbose = 1;
break;
case 'v':
print_version();
exit(0);
break;
case 'h':
print_usage(argv[0], 0);
break;
case '?':
default:
print_usage(argv[0], 1);
break;
}
}
if (optind < argc) {
fprintf(stderr, "Error: Extra parameter found.\n");
print_usage(argv[0], 1);
}
mem_fd = open("/dev/mem", timestamp_id ? O_RDWR : O_RDONLY, 0);
if (mem_fd < 0) {
fprintf(stderr, "Failed to gain memory access: %s\n",
strerror(errno));
return 1;
}
#if defined(__arm__) || defined(__aarch64__)
int addr_cells, size_cells;
char *coreboot_node = dt_find_compat("/proc/device-tree", "coreboot",
&addr_cells, &size_cells);
if (!coreboot_node) {
fprintf(stderr, "Could not find 'coreboot' compatible node!\n");
return 1;
}
if (addr_cells < 0) {
fprintf(stderr, "Warning: no #address-cells node in tree!\n");
addr_cells = 1;
}
int nlen = strlen(coreboot_node);
char *reg = alloca(nlen + sizeof("/reg"));
strcpy(reg, coreboot_node);
strcpy(reg + nlen, "/reg");
free(coreboot_node);
int fd = open(reg, O_RDONLY);
if (fd < 0) {
perror(reg);
return 1;
}
int i;
size_t size_to_read = addr_cells * 4 + size_cells * 4;
u8 *dtbuffer = alloca(size_to_read);
if (read(fd, dtbuffer, size_to_read) < 0) {
perror(reg);
return 1;
}
close(fd);
/* No variable-length byte swap function anywhere in C... how sad. */
u64 baseaddr = 0;
for (i = 0; i < addr_cells * 4; i++) {
baseaddr <<= 8;
baseaddr |= *dtbuffer;
dtbuffer++;
}
u64 cb_table_size = 0;
for (i = 0; i < size_cells * 4; i++) {
cb_table_size <<= 8;
cb_table_size |= *dtbuffer;
dtbuffer++;
}
parse_cbtable(baseaddr, cb_table_size);
#else
unsigned long long possible_base_addresses[] = { 0, 0xf0000 };
/* Find and parse coreboot table */
for (size_t j = 0; j < ARRAY_SIZE(possible_base_addresses); j++) {
if (!parse_cbtable(possible_base_addresses[j], 0))
break;
}
#endif
if (mapping_virt(&lbtable_mapping) == NULL)
die("Table not found.\n");
if (print_console)
dump_console(console_type, max_loglevel, print_unknown_logs);
if (print_coverage)
dump_coverage();
if (print_list)
dump_cbmem_toc();
if (print_hexdump)
dump_cbmem_hex();
if (print_rawdump)
dump_cbmem_raw(rawdump_id);
if (timestamp_id)
timestamp_add_now(timestamp_id);
if (print_defaults)
timestamp_type = TIMESTAMPS_PRINT_NORMAL;
if (timestamp_type != TIMESTAMPS_PRINT_NONE)
dump_timestamps(timestamp_type);
if (print_tcpa_log)
dump_tpm_cb_log();
unmap_memory(&lbtable_mapping);
close(mem_fd);
return 0;
}