coreboot-kgpe-d16/util/x86emu/yabel/biosemu.c

369 lines
11 KiB
C

/******************************************************************************
* Copyright (c) 2004, 2008 IBM Corporation
* Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
* All rights reserved.
* This program and the accompanying materials
* are made available under the terms of the BSD License
* which accompanies this distribution, and is available at
* http://www.opensource.org/licenses/bsd-license.php
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
#include <string.h>
#include <types.h>
#ifndef CONFIG_COREBOOT_V2
#include <cpu.h>
#endif
#include "debug.h"
#include <x86emu/x86emu.h>
#include <x86emu/regs.h>
#ifdef CONFIG_COREBOOT_V2
#include "../x86emu/prim_ops.h"
#else
#include <x86emu/prim_ops.h> // for push_word
#endif
#include "biosemu.h"
#include "io.h"
#include "mem.h"
#include "interrupt.h"
#include "device.h"
#include "pmm.h"
#ifdef CONFIG_COREBOOT_V2
#include "compat/rtas.h"
#else
#include <rtas.h>
#endif
#include <device/device.h>
static X86EMU_memFuncs my_mem_funcs = {
my_rdb, my_rdw, my_rdl,
my_wrb, my_wrw, my_wrl
};
static X86EMU_pioFuncs my_pio_funcs = {
my_inb, my_inw, my_inl,
my_outb, my_outw, my_outl
};
/* interrupt function override array (see biosemu.h) */
yabel_handleIntFunc yabel_intFuncArray[256];
void dump(u8 * addr, u32 len);
/* main entry into YABEL biosemu, arguments are:
* *biosmem = pointer to virtual memory
* biosmem_size = size of the virtual memory
* *dev = pointer to the device to be initialised
* rom_addr = address of the OptionROM to be executed, if this is = 0, YABEL
* will look for an ExpansionROM BAR and use the code from there.
*/
u32
biosemu(u8 *biosmem, u32 biosmem_size, struct device * dev, unsigned long rom_addr)
{
u8 *rom_image;
int i = 0;
#ifdef CONFIG_DEBUG
debug_flags = 0;//DEBUG_PRINT_INT10 | DEBUG_PNP | DEBUG_INTR | DEBUG_CHECK_VMEM_ACCESS | DEBUG_MEM | DEBUG_IO;
// | DEBUG_CHECK_VMEM_ACCESS | DEBUG_MEM | DEBUG_IO;
// | DEBUG_TRACE_X86EMU | DEBUG_JMP;
/* use CONFIG_YABEL_DEBUG_FLAGS, too... */
debug_flags |= CONFIG_YABEL_DEBUG_FLAGS;
#endif
if (biosmem_size < MIN_REQUIRED_VMEM_SIZE) {
printf("Error: Not enough virtual memory: %x, required: %x!\n",
biosmem_size, MIN_REQUIRED_VMEM_SIZE);
return -1;
}
if (biosemu_dev_init(dev) != 0) {
printf("Error initializing device!\n");
return -1;
}
if (biosemu_dev_check_exprom(rom_addr) != 0) {
printf("Error: Device Expansion ROM invalid!\n");
return -1;
}
rom_image = (u8 *) bios_device.img_addr;
DEBUG_PRINTF("executing rom_image from %p\n", rom_image);
DEBUG_PRINTF("biosmem at %p\n", biosmem);
DEBUG_PRINTF("Image Size: %d\n", bios_device.img_size);
// in case we jump somewhere unexpected, or execution is finished,
// fill the biosmem with hlt instructions (0xf4)
memset(biosmem, 0xf4, biosmem_size);
M.mem_base = (long) biosmem;
M.mem_size = biosmem_size;
DEBUG_PRINTF("membase set: %08x, size: %08x\n", (int) M.mem_base,
(int) M.mem_size);
// copy expansion ROM image to segment OPTION_ROM_CODE_SEGMENT
// NOTE: this sometimes fails, some bytes are 0x00... so we compare
// after copying and do some retries...
u8 *mem_img = biosmem + (OPTION_ROM_CODE_SEGMENT << 4);
u8 copy_count = 0;
u8 cmp_result = 0;
do {
#if 0
set_ci();
memcpy(mem_img, rom_image, len);
clr_ci();
#else
// memcpy fails... try copy byte-by-byte with set/clr_ci
u8 c;
for (i = 0; i < bios_device.img_size; i++) {
set_ci();
c = *(rom_image + i);
if (c != *(rom_image + i)) {
clr_ci();
printf("Copy failed at: %x/%x\n", i,
bios_device.img_size);
printf("rom_image(%x): %x, mem_img(%x): %x\n",
i, *(rom_image + i), i, *(mem_img + i));
break;
}
clr_ci();
*(mem_img + i) = c;
}
#endif
copy_count++;
set_ci();
cmp_result = memcmp(mem_img, rom_image, bios_device.img_size);
clr_ci();
}
while ((copy_count < 5) && (cmp_result != 0));
if (cmp_result != 0) {
printf
("\nCopying Expansion ROM Image to Memory failed after %d retries! (%x)\n",
copy_count, cmp_result);
dump(rom_image, 0x20);
dump(mem_img, 0x20);
return 0;
}
// setup default Interrupt Vectors
// some expansion ROMs seem to check for these addresses..
// each handler is only an IRET (0xCF) instruction
// ROM BIOS Int 10 Handler F000:F065
my_wrl(0x10 * 4, 0xf000f065);
my_wrb(0x000ff065, 0xcf);
// ROM BIOS Int 11 Handler F000:F84D
my_wrl(0x11 * 4, 0xf000f84d);
my_wrb(0x000ff84d, 0xcf);
// ROM BIOS Int 12 Handler F000:F841
my_wrl(0x12 * 4, 0xf000f841);
my_wrb(0x000ff841, 0xcf);
// ROM BIOS Int 13 Handler F000:EC59
my_wrl(0x13 * 4, 0xf000ec59);
my_wrb(0x000fec59, 0xcf);
// ROM BIOS Int 14 Handler F000:E739
my_wrl(0x14 * 4, 0xf000e739);
my_wrb(0x000fe739, 0xcf);
// ROM BIOS Int 15 Handler F000:F859
my_wrl(0x15 * 4, 0xf000f859);
my_wrb(0x000ff859, 0xcf);
// ROM BIOS Int 16 Handler F000:E82E
my_wrl(0x16 * 4, 0xf000e82e);
my_wrb(0x000fe82e, 0xcf);
// ROM BIOS Int 17 Handler F000:EFD2
my_wrl(0x17 * 4, 0xf000efd2);
my_wrb(0x000fefd2, 0xcf);
// ROM BIOS Int 1A Handler F000:FE6E
my_wrl(0x1a * 4, 0xf000fe6e);
my_wrb(0x000ffe6e, 0xcf);
// setup BIOS Data Area (0000:04xx, or 0040:00xx)
// we currently 0 this area, meaning "we dont have
// any hardware" :-) no serial/parallel ports, floppys, ...
memset(biosmem + 0x400, 0x0, 0x100);
// at offset 13h in BDA is the memory size in kbytes
my_wrw(0x413, biosmem_size / 1024);
// at offset 0eh in BDA is the segment of the Extended BIOS Data Area
// see setup further down
my_wrw(0x40e, INITIAL_EBDA_SEGMENT);
// TODO: setup BDA Video Data ( offset 49h-66h)
// e.g. to store video mode, cursor position, ...
// in int10 (done) handler and VBE Functions
// TODO: setup BDA Fixed Disk Data
// 74h: Fixed Disk Last Operation Status
// 75h: Fixed Disk Number of Disk Drives
// TODO: check BDA for further needed data...
//setup Extended BIOS Data Area
//we currently 0 this area
memset(biosmem + (INITIAL_EBDA_SEGMENT << 4), 0, INITIAL_EBDA_SIZE);
// at offset 0h in EBDA is the size of the EBDA in KB
my_wrw((INITIAL_EBDA_SEGMENT << 4) + 0x0, INITIAL_EBDA_SIZE / 1024);
//TODO: check for further needed EBDA data...
// setup original ROM BIOS Area (F000:xxxx)
char *date = "06/11/99";
for (i = 0; date[i]; i++)
my_wrb(0xffff5 + i, date[i]);
// set up eisa ident string
char *ident = "PCI_ISA";
for (i = 0; ident[i]; i++)
my_wrb(0xfffd9 + i, ident[i]);
// write system model id for IBM-AT
// according to "Ralf Browns Interrupt List" Int15 AH=C0 Table 515,
// model FC is the original AT and also used in all DOSEMU Versions.
my_wrb(0xFFFFE, 0xfc);
//setup interrupt handler
X86EMU_intrFuncs intrFuncs[256];
for (i = 0; i < 256; i++)
intrFuncs[i] = handleInterrupt;
X86EMU_setupIntrFuncs(intrFuncs);
X86EMU_setupPioFuncs(&my_pio_funcs);
X86EMU_setupMemFuncs(&my_mem_funcs);
//setup PMM struct in BIOS_DATA_SEGMENT, offset 0x0
u8 pmm_length = pmm_setup(BIOS_DATA_SEGMENT, 0x0);
if (pmm_length <= 0) {
printf ("\nYABEL: Warning: PMM Area could not be setup. PMM not available (%x)\n",
pmm_length);
return 0;
} else {
CHECK_DBG(DEBUG_PMM) {
/* test the PMM */
pmm_test();
/* and clean it again by calling pmm_setup... */
pmm_length = pmm_setup(BIOS_DATA_SEGMENT, 0x0);
}
}
// setup the CPU
M.x86.R_AH = bios_device.bus;
M.x86.R_AL = bios_device.devfn;
M.x86.R_DX = 0x80;
M.x86.R_EIP = 3;
M.x86.R_CS = OPTION_ROM_CODE_SEGMENT;
// Initialize stack and data segment
M.x86.R_SS = STACK_SEGMENT;
M.x86.R_SP = STACK_START_OFFSET;
M.x86.R_DS = DATA_SEGMENT;
// push a HLT instruction and a pointer to it onto the stack
// any return will pop the pointer and jump to the HLT, thus
// exiting (more or less) cleanly
push_word(0xf4f4); //F4=HLT
push_word(M.x86.R_SS);
push_word(M.x86.R_SP + 2);
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
} else {
#ifdef CONFIG_DEBUG
M.x86.debug |= DEBUG_SAVE_IP_CS_F;
M.x86.debug |= DEBUG_DECODE_F;
M.x86.debug |= DEBUG_DECODE_NOPRINT_F;
#endif
}
CHECK_DBG(DEBUG_JMP) {
M.x86.debug |= DEBUG_TRACEJMP_F;
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACECALL_F;
M.x86.debug |= DEBUG_TRACECALL_REGS_F;
}
DEBUG_PRINTF("Executing Initialization Vector...\n");
X86EMU_exec();
DEBUG_PRINTF("done\n");
/* According to the PNP BIOS Spec, Option ROMs should upon exit, return
* some boot device status in AX (see PNP BIOS Spec Section 3.3
*/
DEBUG_PRINTF_CS_IP("Option ROM Exit Status: %04x\n", M.x86.R_AX);
#ifdef CONFIG_DEBUG
DEBUG_PRINTF("Exit Status Decode:\n");
if (M.x86.R_AX & 0x100) { // bit 8
DEBUG_PRINTF
(" IPL Device supporting INT 13h Block Device Format:\n");
switch (((M.x86.R_AX >> 4) & 0x3)) { // bits 5:4
case 0:
DEBUG_PRINTF(" No IPL Device attached\n");
break;
case 1:
DEBUG_PRINTF(" IPL Device status unknown\n");
break;
case 2:
DEBUG_PRINTF(" IPL Device attached\n");
break;
case 3:
DEBUG_PRINTF(" IPL Device status RESERVED!!\n");
break;
}
}
if (M.x86.R_AX & 0x80) { // bit 7
DEBUG_PRINTF
(" Output Device supporting INT 10h Character Output:\n");
switch (((M.x86.R_AX >> 4) & 0x3)) { // bits 5:4
case 0:
DEBUG_PRINTF(" No Display Device attached\n");
break;
case 1:
DEBUG_PRINTF(" Display Device status unknown\n");
break;
case 2:
DEBUG_PRINTF(" Display Device attached\n");
break;
case 3:
DEBUG_PRINTF(" Display Device status RESERVED!!\n");
break;
}
}
if (M.x86.R_AX & 0x40) { // bit 6
DEBUG_PRINTF
(" Input Device supporting INT 9h Character Input:\n");
switch (((M.x86.R_AX >> 4) & 0x3)) { // bits 5:4
case 0:
DEBUG_PRINTF(" No Input Device attached\n");
break;
case 1:
DEBUG_PRINTF(" Input Device status unknown\n");
break;
case 2:
DEBUG_PRINTF(" Input Device attached\n");
break;
case 3:
DEBUG_PRINTF(" Input Device status RESERVED!!\n");
break;
}
}
#endif
/* Check whether the stack is "clean" i.e. containing the HLT
* instruction we pushed before executing and pointing to the original
* stack address... indicating that the initialization probably was
* successful
*/
if ((pop_word() == 0xf4f4) && (M.x86.R_SS == STACK_SEGMENT)
&& (M.x86.R_SP == STACK_START_OFFSET)) {
DEBUG_PRINTF("Stack is clean, initialization successfull!\n");
} else {
DEBUG_PRINTF
("Stack unclean, initialization probably NOT COMPLETE!!\n");
DEBUG_PRINTF("SS:SP = %04x:%04x, expected: %04x:%04x\n",
M.x86.R_SS, M.x86.R_SP, STACK_SEGMENT,
STACK_START_OFFSET);
}
// TODO: according to the BIOS Boot Spec initializations may be ended using INT18h and setting
// the status.
// We need to implement INT18 accordingly, pseudo code is in specsbbs101.pdf page 30
// (also for Int19)
return 0;
}