coreboot-kgpe-d16/util/cbfstool/cbfs-mkpayload.c
Aaron Durbin ca63027ef7 cbfstool: process cbfs_payload_segment(s) in host byte order
The printing routines of the cbfs_payload_segment assumed the type
could be accessed in host order. Each of the fields need to be
converted to the host order before inspecting the fields. In addition,
this removes all the ntoh*() calls while processing the
cbfs_payload_segment structures.

cbfstool would crash adding entries or just printing entries
containing a payload when -v was passed on the command line.

Change-Id: Iff41c64a99001b9e3920e2e26828c5fd6e671239
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/6498
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Martin Roth <gaumless@gmail.com>
2014-08-07 19:05:43 +02:00

409 lines
11 KiB
C

/*
* cbfs-mkpayload
*
* Copyright (C) 2008 Jordan Crouse <jordan@cosmicpenguin.net>
* 2009 coresystems GmbH
* written by Patrick Georgi <patrick.georgi@coresystems.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "elfparsing.h"
#include "common.h"
#include "cbfs.h"
#include "fv.h"
#include "coff.h"
/* serialize the seg array into the buffer.
* The buffer is assumed to be large enough.
*/
void xdr_segs(struct buffer *output,
struct cbfs_payload_segment *segs, int nseg)
{
struct buffer outheader;
int i;
outheader.data = output->data;
outheader.size = 0;
for(i = 0; i < nseg; i++){
xdr_be.put32(&outheader, segs[i].type);
xdr_be.put32(&outheader, segs[i].compression);
xdr_be.put32(&outheader, segs[i].offset);
xdr_be.put64(&outheader, segs[i].load_addr);
xdr_be.put32(&outheader, segs[i].len);
xdr_be.put32(&outheader, segs[i].mem_len);
}
}
void xdr_get_seg(struct cbfs_payload_segment *out,
struct cbfs_payload_segment *in)
{
struct buffer inheader;
inheader.data = (void *)in;
inheader.size = sizeof(*in);
out->type = xdr_be.get32(&inheader);
out->compression = xdr_be.get32(&inheader);
out->offset = xdr_be.get32(&inheader);
out->load_addr = xdr_be.get64(&inheader);
out->len = xdr_be.get32(&inheader);
out->mem_len = xdr_be.get32(&inheader);
}
int parse_elf_to_payload(const struct buffer *input,
struct buffer *output, uint32_t arch, comp_algo algo)
{
Elf64_Phdr *phdr;
Elf64_Ehdr ehdr;
Elf64_Shdr *shdr;
char *header;
char *strtab;
int headers;
int segments = 1;
int isize = 0, osize = 0;
int doffset = 0;
struct cbfs_payload_segment *segs;
int i;
comp_func_ptr compress = compression_function(algo);
if (!compress)
return -1;
if (elf_headers(input, arch, &ehdr, &phdr, &shdr) < 0)
return -1;
DEBUG("start: parse_elf_to_payload\n");
headers = ehdr.e_phnum;
header = input->data;
strtab = &header[shdr[ehdr.e_shstrndx].sh_offset];
/* Count the number of headers - look for the .notes.pinfo
* section */
for (i = 0; i < ehdr.e_shnum; i++) {
char *name;
if (i == ehdr.e_shstrndx)
continue;
if (shdr[i].sh_size == 0)
continue;
name = (char *)(strtab + shdr[i].sh_name);
if (!strcmp(name, ".note.pinfo")) {
segments++;
isize += (unsigned int)shdr[i].sh_size;
}
}
/* Now, regular headers - we only care about PT_LOAD headers,
* because thats what we're actually going to load
*/
for (i = 0; i < headers; i++) {
if (phdr[i].p_type != PT_LOAD)
continue;
/* Empty segments are never interesting */
if (phdr[i].p_memsz == 0)
continue;
isize += phdr[i].p_filesz;
segments++;
}
/* allocate the segment header array */
segs = calloc(segments, sizeof(*segs));
if (segs == NULL)
return -1;
/* Allocate a block of memory to store the data in */
if (buffer_create(output, (segments * sizeof(*segs)) + isize,
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
doffset = (segments * sizeof(*segs));
/* set up for output marshaling. This is a bit
* tricky as we are marshaling the headers at the front,
* and the data starting after the headers. We need to convert
* the headers to the right format but the data
* passes through unchanged. Unlike most XDR code,
* we are doing these two concurrently. The doffset is
* used to compute the address for the raw data, and the
* outheader is used to marshal the headers. To make it simpler
* for The Reader, we set up the headers in a separate array,
* then marshal them all at once to the output.
*/
segments = 0;
for (i = 0; i < ehdr.e_shnum; i++) {
char *name;
if (i == ehdr.e_shstrndx)
continue;
if (shdr[i].sh_size == 0)
continue;
name = (char *)(strtab + shdr[i].sh_name);
if (!strcmp(name, ".note.pinfo")) {
segs[segments].type = PAYLOAD_SEGMENT_PARAMS;
segs[segments].load_addr = 0;
segs[segments].len = (unsigned int)shdr[i].sh_size;
segs[segments].offset = doffset;
memcpy((unsigned long *)(output->data + doffset),
&header[shdr[i].sh_offset], shdr[i].sh_size);
doffset += segs[segments].len;
osize += segs[segments].len;
segments++;
}
}
for (i = 0; i < headers; i++) {
if (phdr[i].p_type != PT_LOAD)
continue;
if (phdr[i].p_memsz == 0)
continue;
if (phdr[i].p_filesz == 0) {
segs[segments].type = PAYLOAD_SEGMENT_BSS;
segs[segments].load_addr = phdr[i].p_paddr;
segs[segments].mem_len = phdr[i].p_memsz;
segs[segments].offset = doffset;
segments++;
continue;
}
if (phdr[i].p_flags & PF_X)
segs[segments].type = PAYLOAD_SEGMENT_CODE;
else
segs[segments].type = PAYLOAD_SEGMENT_DATA;
segs[segments].load_addr = phdr[i].p_paddr;
segs[segments].mem_len = phdr[i].p_memsz;
segs[segments].compression = algo;
segs[segments].offset = doffset;
int len;
compress((char *)&header[phdr[i].p_offset],
phdr[i].p_filesz, output->data + doffset, &len);
segs[segments].len = len;
/* If the compressed section is larger, then use the
original stuff */
if ((unsigned int)len > phdr[i].p_filesz) {
segs[segments].compression = 0;
segs[segments].len = phdr[i].p_filesz;
memcpy(output->data + doffset,
&header[phdr[i].p_offset], phdr[i].p_filesz);
}
doffset += segs[segments].len;
osize += segs[segments].len;
segments++;
}
segs[segments].type = PAYLOAD_SEGMENT_ENTRY;
segs[segments++].load_addr = ehdr.e_entry;
output->size = (segments * sizeof(*segs)) + osize;
xdr_segs(output, segs, segments);
return 0;
}
int parse_flat_binary_to_payload(const struct buffer *input,
struct buffer *output,
uint32_t loadaddress,
uint32_t entrypoint,
comp_algo algo)
{
comp_func_ptr compress;
struct cbfs_payload_segment segs[2];
int doffset, len = 0;
compress = compression_function(algo);
if (!compress)
return -1;
DEBUG("start: parse_flat_binary_to_payload\n");
if (buffer_create(output, (sizeof(segs) + input->size),
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
doffset = (2 * sizeof(*segs));
/* Prepare code segment */
segs[0].type = PAYLOAD_SEGMENT_CODE;
segs[0].load_addr = loadaddress;
segs[0].mem_len = input->size;
segs[0].offset = doffset;
compress(input->data, input->size, output->data + doffset, &len);
segs[0].compression = algo;
segs[0].len = len;
if ((unsigned int)len >= input->size) {
WARN("Compressing data would make it bigger - disabled.\n");
segs[0].compression = 0;
segs[0].len = input->size;
memcpy(output->data + doffset, input->data, input->size);
}
/* prepare entry point segment */
segs[1].type = PAYLOAD_SEGMENT_ENTRY;
segs[1].load_addr = entrypoint;
output->size = doffset + segs[0].len;
xdr_segs(output, segs, 2);
return 0;
}
int parse_fv_to_payload(const struct buffer *input,
struct buffer *output, comp_algo algo)
{
comp_func_ptr compress;
struct cbfs_payload_segment segs[2];
int doffset, len = 0;
firmware_volume_header_t *fv;
ffs_file_header_t *fh;
common_section_header_t *cs;
dos_header_t *dh;
coff_header_t *ch;
int dh_offset;
uint32_t loadaddress = 0;
uint32_t entrypoint = 0;
compress = compression_function(algo);
if (!compress)
return -1;
DEBUG("start: parse_fv_to_payload\n");
fv = (firmware_volume_header_t *)input->data;
if (fv->signature != FV_SIGNATURE) {
INFO("Not a UEFI firmware volume.\n");
return -1;
}
fh = (ffs_file_header_t *)(input->data + fv->header_length);
while (fh->file_type == FILETYPE_PAD) {
unsigned long offset = (fh->size[2] << 16) | (fh->size[1] << 8) | fh->size[0];
ERROR("skipping %lu bytes of FV padding\n", offset);
fh = (ffs_file_header_t *)(((void*)fh) + offset);
}
if (fh->file_type != FILETYPE_SEC) {
ERROR("Not a usable UEFI firmware volume.\n");
INFO("First file in first FV not a SEC core.\n");
return -1;
}
cs = (common_section_header_t *)&fh[1];
while (cs->section_type == SECTION_RAW) {
unsigned long offset = (cs->size[2] << 16) | (cs->size[1] << 8) | cs->size[0];
ERROR("skipping %lu bytes of section padding\n", offset);
cs = (common_section_header_t *)(((void*)cs) + offset);
}
if (cs->section_type != SECTION_PE32) {
ERROR("Not a usable UEFI firmware volume.\n");
INFO("Section type not PE32.\n");
return -1;
}
dh = (dos_header_t *)&cs[1];
if (dh->signature != DOS_MAGIC) {
ERROR("Not a usable UEFI firmware volume.\n");
INFO("DOS header signature wrong.\n");
return -1;
}
dh_offset = (unsigned long)dh - (unsigned long)input->data;
DEBUG("dos header offset = %x\n", dh_offset);
ch = (coff_header_t *)(((void *)dh)+dh->e_lfanew);
if (ch->machine == MACHINE_TYPE_X86) {
pe_opt_header_32_t *ph;
ph = (pe_opt_header_32_t *)&ch[1];
if (ph->signature != PE_HDR_32_MAGIC) {
WARN("PE header signature incorrect.\n");
return -1;
}
DEBUG("image base %x\n", ph->image_addr);
DEBUG("entry point %x\n", ph->entry_point);
loadaddress = ph->image_addr - dh_offset;
entrypoint = ph->image_addr + ph->entry_point;
} else if (ch->machine == MACHINE_TYPE_X64) {
pe_opt_header_64_t *ph;
ph = (pe_opt_header_64_t *)&ch[1];
if (ph->signature != PE_HDR_64_MAGIC) {
WARN("PE header signature incorrect.\n");
return -1;
}
DEBUG("image base %lx\n", (unsigned long)ph->image_addr);
DEBUG("entry point %x\n", ph->entry_point);
loadaddress = ph->image_addr - dh_offset;
entrypoint = ph->image_addr + ph->entry_point;
} else {
ERROR("Machine type not x86 or x64.\n");
return -1;
}
if (buffer_create(output, (sizeof(segs) + input->size),
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
doffset = (sizeof(segs));
/* Prepare code segment */
segs[0].type = PAYLOAD_SEGMENT_CODE;
segs[0].load_addr = loadaddress;
segs[0].mem_len = input->size;
segs[0].offset = doffset;
compress(input->data, input->size, output->data + doffset, &len);
segs[0].compression = algo;
segs[0].len = len;
if ((unsigned int)len >= input->size) {
WARN("Compressing data would make it bigger - disabled.\n");
segs[0].compression = 0;
segs[0].len = input->size;
memcpy(output->data + doffset, input->data, input->size);
}
/* prepare entry point segment */
segs[1].type = PAYLOAD_SEGMENT_ENTRY;
segs[1].load_addr = entrypoint;
output->size = doffset + segs[0].len;
xdr_segs(output, segs, 2);
return 0;
}