coreboot-kgpe-d16/src/soc/intel/braswell/spi.c
Patrick Georgi 25509ee245 Remove address from GPLv2 headers
Follow up for commit b890a12, some contributions brought
back a number of FSF addresses, so get rid of them again.

Change-Id: I0ac0c957738ce512deb0ed82b2219ef90d96d46b
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: http://review.coreboot.org/10322
Tested-by: build bot (Jenkins)
Reviewed-by: Paul Menzel <paulepanter@users.sourceforge.net>
Reviewed-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
2015-05-28 04:21:52 +02:00

646 lines
15 KiB
C

/*
* Copyright (c) 2013 Google Inc.
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but without any warranty; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
/* This file is derived from the flashrom project. */
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <bootstate.h>
#include <delay.h>
#include <arch/io.h>
#include <console/console.h>
#include <device/pci_ids.h>
#include <spi_flash.h>
#include <soc/lpc.h>
#include <soc/pci_devs.h>
#ifdef __SMM__
#define pci_read_config_byte(dev, reg, targ)\
*(targ) = pci_read_config8(dev, reg)
#define pci_read_config_word(dev, reg, targ)\
*(targ) = pci_read_config16(dev, reg)
#define pci_read_config_dword(dev, reg, targ)\
*(targ) = pci_read_config32(dev, reg)
#define pci_write_config_byte(dev, reg, val)\
pci_write_config8(dev, reg, val)
#define pci_write_config_word(dev, reg, val)\
pci_write_config16(dev, reg, val)
#define pci_write_config_dword(dev, reg, val)\
pci_write_config32(dev, reg, val)
#else /* !__SMM__ */
#include <device/device.h>
#include <device/pci.h>
#define pci_read_config_byte(dev, reg, targ)\
*(targ) = pci_read_config8(dev, reg)
#define pci_read_config_word(dev, reg, targ)\
*(targ) = pci_read_config16(dev, reg)
#define pci_read_config_dword(dev, reg, targ)\
*(targ) = pci_read_config32(dev, reg)
#define pci_write_config_byte(dev, reg, val)\
pci_write_config8(dev, reg, val)
#define pci_write_config_word(dev, reg, val)\
pci_write_config16(dev, reg, val)
#define pci_write_config_dword(dev, reg, val)\
pci_write_config32(dev, reg, val)
#endif /* !__SMM__ */
typedef struct spi_slave ich_spi_slave;
static int ichspi_lock = 0;
typedef struct ich9_spi_regs {
uint32_t bfpr;
uint16_t hsfs;
uint16_t hsfc;
uint32_t faddr;
uint32_t _reserved0;
uint32_t fdata[16];
uint32_t frap;
uint32_t freg[5];
uint32_t _reserved1[3];
uint32_t pr[5];
uint32_t _reserved2[2];
uint8_t ssfs;
uint8_t ssfc[3];
uint16_t preop;
uint16_t optype;
uint8_t opmenu[8];
uint32_t bbar;
uint8_t _reserved3[12];
uint32_t fdoc;
uint32_t fdod;
uint8_t _reserved4[8];
uint32_t afc;
uint32_t lvscc;
uint32_t uvscc;
uint8_t _reserved5[4];
uint32_t fpb;
uint8_t _reserved6[28];
uint32_t srdl;
uint32_t srdc;
uint32_t srd;
} __attribute__((packed)) ich9_spi_regs;
typedef struct ich_spi_controller {
int locked;
uint8_t *opmenu;
int menubytes;
uint16_t *preop;
uint16_t *optype;
uint32_t *addr;
uint8_t *data;
unsigned databytes;
uint8_t *status;
uint16_t *control;
uint32_t *bbar;
} ich_spi_controller;
static ich_spi_controller cntlr;
enum {
SPIS_SCIP = 0x0001,
SPIS_GRANT = 0x0002,
SPIS_CDS = 0x0004,
SPIS_FCERR = 0x0008,
SSFS_AEL = 0x0010,
SPIS_LOCK = 0x8000,
SPIS_RESERVED_MASK = 0x7ff0,
SSFS_RESERVED_MASK = 0x7fe2
};
enum {
SPIC_SCGO = 0x000002,
SPIC_ACS = 0x000004,
SPIC_SPOP = 0x000008,
SPIC_DBC = 0x003f00,
SPIC_DS = 0x004000,
SPIC_SME = 0x008000,
SSFC_SCF_MASK = 0x070000,
SSFC_RESERVED = 0xf80000
};
enum {
HSFS_FDONE = 0x0001,
HSFS_FCERR = 0x0002,
HSFS_AEL = 0x0004,
HSFS_BERASE_MASK = 0x0018,
HSFS_BERASE_SHIFT = 3,
HSFS_SCIP = 0x0020,
HSFS_FDOPSS = 0x2000,
HSFS_FDV = 0x4000,
HSFS_FLOCKDN = 0x8000
};
enum {
HSFC_FGO = 0x0001,
HSFC_FCYCLE_MASK = 0x0006,
HSFC_FCYCLE_SHIFT = 1,
HSFC_FDBC_MASK = 0x3f00,
HSFC_FDBC_SHIFT = 8,
HSFC_FSMIE = 0x8000
};
enum {
SPI_OPCODE_TYPE_READ_NO_ADDRESS = 0,
SPI_OPCODE_TYPE_WRITE_NO_ADDRESS = 1,
SPI_OPCODE_TYPE_READ_WITH_ADDRESS = 2,
SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS = 3
};
#if CONFIG_DEBUG_SPI_FLASH
static u8 readb_(const void *addr)
{
u8 v = read8((unsigned long)addr);
printk(BIOS_DEBUG, "read %2.2x from %4.4x\n",
v, ((unsigned) addr & 0xffff) - 0xf020);
return v;
}
static u16 readw_(const void *addr)
{
u16 v = read16((unsigned long)addr);
printk(BIOS_DEBUG, "read %4.4x from %4.4x\n",
v, ((unsigned) addr & 0xffff) - 0xf020);
return v;
}
static u32 readl_(const void *addr)
{
u32 v = read32((unsigned long)addr);
printk(BIOS_DEBUG, "read %8.8x from %4.4x\n",
v, ((unsigned) addr & 0xffff) - 0xf020);
return v;
}
static void writeb_(u8 b, const void *addr)
{
write8(addr, b);
printk(BIOS_DEBUG, "wrote %2.2x to %4.4x\n",
b, ((unsigned) addr & 0xffff) - 0xf020);
}
static void writew_(u16 b, const void *addr)
{
write16(addr, b);
printk(BIOS_DEBUG, "wrote %4.4x to %4.4x\n",
b, ((unsigned) addr & 0xffff) - 0xf020);
}
static void writel_(u32 b, const void *addr)
{
write32(addr, b);
printk(BIOS_DEBUG, "wrote %8.8x to %4.4x\n",
b, ((unsigned) addr & 0xffff) - 0xf020);
}
#else /* CONFIG_DEBUG_SPI_FLASH ^^^ enabled vvv NOT enabled */
#define readb_(a) read8(a)
#define readw_(a) read16(a)
#define readl_(a) read32(a)
#define writeb_(val, addr) write8(addr, val)
#define writew_(val, addr) write16(addr, val)
#define writel_(val, addr) write32(addr, val)
#endif /* CONFIG_DEBUG_SPI_FLASH ^^^ NOT enabled */
static void write_reg(const void *value, void *dest, uint32_t size)
{
const uint8_t *bvalue = value;
uint8_t *bdest = dest;
while (size >= 4) {
writel_(*(const uint32_t *)bvalue, bdest);
bdest += 4; bvalue += 4; size -= 4;
}
while (size) {
writeb_(*bvalue, bdest);
bdest++; bvalue++; size--;
}
}
static void read_reg(const void *src, void *value, uint32_t size)
{
const uint8_t *bsrc = src;
uint8_t *bvalue = value;
while (size >= 4) {
*(uint32_t *)bvalue = readl_(bsrc);
bsrc += 4; bvalue += 4; size -= 4;
}
while (size) {
*bvalue = readb_(bsrc);
bsrc++; bvalue++; size--;
}
}
static void ich_set_bbar(uint32_t minaddr)
{
const uint32_t bbar_mask = 0x00ffff00;
uint32_t ichspi_bbar;
minaddr &= bbar_mask;
ichspi_bbar = readl_(cntlr.bbar) & ~bbar_mask;
ichspi_bbar |= minaddr;
writel_(ichspi_bbar, cntlr.bbar);
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs)
{
ich_spi_slave *slave = malloc(sizeof(*slave));
if (!slave) {
printk(BIOS_DEBUG, "ICH SPI: Bad allocation\n");
return NULL;
}
memset(slave, 0, sizeof(*slave));
slave->bus = bus;
slave->cs = cs;
return slave;
}
static ich9_spi_regs *spi_regs(void)
{
device_t dev;
uint32_t sbase;
#ifdef __SMM__
dev = PCI_DEV(0, LPC_DEV, LPC_FUNC);
#else
dev = dev_find_slot(0, PCI_DEVFN(LPC_DEV, LPC_FUNC));
#endif
pci_read_config_dword(dev, SBASE, &sbase);
sbase &= ~0x1ff;
return (void *)sbase;
}
void spi_init(void)
{
ich9_spi_regs *ich9_spi = spi_regs();
ichspi_lock = readw_(&ich9_spi->hsfs) & HSFS_FLOCKDN;
cntlr.opmenu = ich9_spi->opmenu;
cntlr.menubytes = sizeof(ich9_spi->opmenu);
cntlr.optype = &ich9_spi->optype;
cntlr.addr = &ich9_spi->faddr;
cntlr.data = (uint8_t *)ich9_spi->fdata;
cntlr.databytes = sizeof(ich9_spi->fdata);
cntlr.status = &ich9_spi->ssfs;
cntlr.control = (uint16_t *)ich9_spi->ssfc;
cntlr.bbar = &ich9_spi->bbar;
cntlr.preop = &ich9_spi->preop;
ich_set_bbar(0);
}
#ifndef __SMM__
static void spi_init_cb(void *unused)
{
spi_init();
}
BOOT_STATE_INIT_ENTRY(BS_DEV_INIT, BS_ON_ENTRY, spi_init_cb, NULL);
#endif
int spi_claim_bus(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
/* Handled by ICH automatically. */
}
typedef struct spi_transaction {
const uint8_t *out;
uint32_t bytesout;
uint8_t *in;
uint32_t bytesin;
uint8_t type;
uint8_t opcode;
uint32_t offset;
} spi_transaction;
static inline void spi_use_out(spi_transaction *trans, unsigned bytes)
{
trans->out += bytes;
trans->bytesout -= bytes;
}
static inline void spi_use_in(spi_transaction *trans, unsigned bytes)
{
trans->in += bytes;
trans->bytesin -= bytes;
}
static void spi_setup_type(spi_transaction *trans)
{
trans->type = 0xFF;
/* Try to guess spi type from read/write sizes. */
if (trans->bytesin == 0) {
if (trans->bytesout > 4)
/*
* If bytesin = 0 and bytesout > 4, we presume this is
* a write data operation, which is accompanied by an
* address.
*/
trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS;
else
trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS;
return;
}
if (trans->bytesout == 1) { /* and bytesin is > 0 */
trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS;
return;
}
if (trans->bytesout == 4) { /* and bytesin is > 0 */
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
}
/* Fast read command is called with 5 bytes instead of 4 */
if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) {
trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS;
--trans->bytesout;
}
}
static int spi_setup_opcode(spi_transaction *trans)
{
uint16_t optypes;
uint8_t opmenu[cntlr.menubytes];
trans->opcode = trans->out[0];
spi_use_out(trans, 1);
if (!ichspi_lock) {
/* The lock is off, so just use index 0. */
writeb_(trans->opcode, cntlr.opmenu);
optypes = readw_(cntlr.optype);
optypes = (optypes & 0xfffc) | (trans->type & 0x3);
writew_(optypes, cntlr.optype);
return 0;
} else {
/* The lock is on. See if what we need is on the menu. */
uint8_t optype;
uint16_t opcode_index;
/* Write Enable is handled as atomic prefix */
if (trans->opcode == SPI_OPCODE_WREN)
return 0;
read_reg(cntlr.opmenu, opmenu, sizeof(opmenu));
for (opcode_index = 0; opcode_index < cntlr.menubytes;
opcode_index++) {
if (opmenu[opcode_index] == trans->opcode)
break;
}
if (opcode_index == cntlr.menubytes) {
printk(BIOS_DEBUG, "ICH SPI: Opcode %x not found\n",
trans->opcode);
return -1;
}
optypes = readw_(cntlr.optype);
optype = (optypes >> (opcode_index * 2)) & 0x3;
if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS &&
optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS &&
trans->bytesout >= 3) {
/* We guessed wrong earlier. Fix it up. */
trans->type = optype;
}
if (optype != trans->type) {
printk(BIOS_DEBUG, "ICH SPI: Transaction doesn't fit type %d\n",
optype);
return -1;
}
return opcode_index;
}
}
static int spi_setup_offset(spi_transaction *trans)
{
/* Separate the SPI address and data. */
switch (trans->type) {
case SPI_OPCODE_TYPE_READ_NO_ADDRESS:
case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS:
return 0;
case SPI_OPCODE_TYPE_READ_WITH_ADDRESS:
case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS:
trans->offset = ((uint32_t)trans->out[0] << 16) |
((uint32_t)trans->out[1] << 8) |
((uint32_t)trans->out[2] << 0);
spi_use_out(trans, 3);
return 1;
default:
printk(BIOS_DEBUG, "Unrecognized SPI transaction type %#x\n", trans->type);
return -1;
}
}
/*
* Wait for up to 60ms til status register bit(s) turn 1 (in case wait_til_set
* below is True) or 0. In case the wait was for the bit(s) to set - write
* those bits back, which would cause resetting them.
*
* Return the last read status value on success or -1 on failure.
*/
static int ich_status_poll(u16 bitmask, int wait_til_set)
{
int timeout = 40000; /* This will result in 400 ms */
u16 status = 0;
while (timeout--) {
status = readw_(cntlr.status);
if (wait_til_set ^ ((status & bitmask) == 0)) {
if (wait_til_set)
writew_((status & bitmask), cntlr.status);
return status;
}
udelay(10);
}
printk(BIOS_DEBUG, "ICH SPI: SCIP timeout, read %x, expected %x\n",
status, bitmask);
return -1;
}
unsigned int spi_crop_chunk(unsigned int cmd_len, unsigned int buf_len)
{
return min(cntlr.databytes, buf_len);
}
int spi_xfer(struct spi_slave *slave, const void *dout,
unsigned int bytesout, void *din, unsigned int bytesin)
{
uint16_t control;
int16_t opcode_index;
int with_address;
int status;
spi_transaction trans = {
dout, bytesout,
din, bytesin,
0xff, 0xff, 0
};
/* There has to always at least be an opcode. */
if (!bytesout || !dout) {
printk(BIOS_DEBUG, "ICH SPI: No opcode for transfer\n");
return -1;
}
/* Make sure if we read something we have a place to put it. */
if (bytesin != 0 && !din) {
printk(BIOS_DEBUG, "ICH SPI: Read but no target buffer\n");
return -1;
}
if (ich_status_poll(SPIS_SCIP, 0) == -1)
return -1;
writew_(SPIS_CDS | SPIS_FCERR, cntlr.status);
spi_setup_type(&trans);
if ((opcode_index = spi_setup_opcode(&trans)) < 0)
return -1;
if ((with_address = spi_setup_offset(&trans)) < 0)
return -1;
if (trans.opcode == SPI_OPCODE_WREN) {
/*
* Treat Write Enable as Atomic Pre-Op if possible
* in order to prevent the Management Engine from
* issuing a transaction between WREN and DATA.
*/
if (!ichspi_lock)
writew_(trans.opcode, cntlr.preop);
return 0;
}
/* Preset control fields */
control = SPIC_SCGO | ((opcode_index & 0x07) << 4);
/* Issue atomic preop cycle if needed */
if (readw_(cntlr.preop))
control |= SPIC_ACS;
if (!trans.bytesout && !trans.bytesin) {
/* SPI addresses are 24 bit only */
if (with_address)
writel_(trans.offset & 0x00FFFFFF, cntlr.addr);
/*
* This is a 'no data' command (like Write Enable), its
* bytesout size was 1, decremented to zero while executing
* spi_setup_opcode() above. Tell the chip to send the
* command.
*/
writew_(control, cntlr.control);
/* wait for the result */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
if (status == -1)
return -1;
if (status & SPIS_FCERR) {
printk(BIOS_DEBUG, "ICH SPI: Command transaction error\n");
return -1;
}
return 0;
}
/*
* Check if this is a write command attempting to transfer more bytes
* than the controller can handle. Iterations for writes are not
* supported here because each SPI write command needs to be preceded
* and followed by other SPI commands, and this sequence is controlled
* by the SPI chip driver.
*/
if (trans.bytesout > cntlr.databytes) {
printk(BIOS_DEBUG, "ICH SPI: Too much to write. Does your SPI chip driver use"
" spi_crop_chunk()?\n");
return -1;
}
/*
* Read or write up to databytes bytes at a time until everything has
* been sent.
*/
while (trans.bytesout || trans.bytesin) {
uint32_t data_length;
/* SPI addresses are 24 bit only */
writel_(trans.offset & 0x00FFFFFF, cntlr.addr);
if (trans.bytesout)
data_length = min(trans.bytesout, cntlr.databytes);
else
data_length = min(trans.bytesin, cntlr.databytes);
/* Program data into FDATA0 to N */
if (trans.bytesout) {
write_reg(trans.out, cntlr.data, data_length);
spi_use_out(&trans, data_length);
if (with_address)
trans.offset += data_length;
}
/* Add proper control fields' values */
control &= ~((cntlr.databytes - 1) << 8);
control |= SPIC_DS;
control |= (data_length - 1) << 8;
/* write it */
writew_(control, cntlr.control);
/* Wait for Cycle Done Status or Flash Cycle Error. */
status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1);
if (status == -1)
return -1;
if (status & SPIS_FCERR) {
printk(BIOS_DEBUG, "ICH SPI: Data transaction error\n");
return -1;
}
if (trans.bytesin) {
read_reg(cntlr.data, trans.in, data_length);
spi_use_in(&trans, data_length);
if (with_address)
trans.offset += data_length;
}
}
/* Clear atomic preop now that xfer is done */
writew_(0, cntlr.preop);
return 0;
}