coreboot-kgpe-d16/util/cbfstool/cbfs-mkpayload.c

424 lines
11 KiB
C

/*
* cbfs-mkpayload
*
* Copyright (C) 2008 Jordan Crouse <jordan@cosmicpenguin.net>
* 2009 coresystems GmbH
* written by Patrick Georgi <patrick.georgi@coresystems.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "elfparsing.h"
#include "common.h"
#include "cbfs.h"
#include "fv.h"
#include "coff.h"
/* serialize the seg array into the buffer.
* The buffer is assumed to be large enough.
*/
void xdr_segs(struct buffer *output,
struct cbfs_payload_segment *segs, int nseg)
{
struct buffer outheader;
int i;
outheader.data = output->data;
outheader.size = 0;
for(i = 0; i < nseg; i++){
xdr_be.put32(&outheader, segs[i].type);
xdr_be.put32(&outheader, segs[i].compression);
xdr_be.put32(&outheader, segs[i].offset);
xdr_be.put64(&outheader, segs[i].load_addr);
xdr_be.put32(&outheader, segs[i].len);
xdr_be.put32(&outheader, segs[i].mem_len);
}
}
void xdr_get_seg(struct cbfs_payload_segment *out,
struct cbfs_payload_segment *in)
{
struct buffer inheader;
inheader.data = (void *)in;
inheader.size = sizeof(*in);
out->type = xdr_be.get32(&inheader);
out->compression = xdr_be.get32(&inheader);
out->offset = xdr_be.get32(&inheader);
out->load_addr = xdr_be.get64(&inheader);
out->len = xdr_be.get32(&inheader);
out->mem_len = xdr_be.get32(&inheader);
}
int parse_elf_to_payload(const struct buffer *input, struct buffer *output,
enum comp_algo algo)
{
Elf64_Phdr *phdr;
Elf64_Ehdr ehdr;
Elf64_Shdr *shdr;
char *header;
char *strtab;
int headers;
int segments = 1;
int isize = 0, osize = 0;
int doffset = 0;
struct cbfs_payload_segment *segs = NULL;
int i;
int ret = 0;
comp_func_ptr compress = compression_function(algo);
if (!compress)
return -1;
if (elf_headers(input, &ehdr, &phdr, &shdr) < 0)
return -1;
DEBUG("start: parse_elf_to_payload\n");
headers = ehdr.e_phnum;
header = input->data;
strtab = &header[shdr[ehdr.e_shstrndx].sh_offset];
/* Count the number of headers - look for the .notes.pinfo
* section */
for (i = 0; i < ehdr.e_shnum; i++) {
char *name;
if (i == ehdr.e_shstrndx)
continue;
if (shdr[i].sh_size == 0)
continue;
name = (char *)(strtab + shdr[i].sh_name);
if (!strcmp(name, ".note.pinfo")) {
segments++;
isize += (unsigned int)shdr[i].sh_size;
}
}
/* Now, regular headers - we only care about PT_LOAD headers,
* because thats what we're actually going to load
*/
for (i = 0; i < headers; i++) {
if (phdr[i].p_type != PT_LOAD)
continue;
/* Empty segments are never interesting */
if (phdr[i].p_memsz == 0)
continue;
isize += phdr[i].p_filesz;
segments++;
}
/* allocate the segment header array */
segs = calloc(segments, sizeof(*segs));
if (segs == NULL) {
ret = -1;
goto out;
}
/* Allocate a block of memory to store the data in */
if (buffer_create(output, (segments * sizeof(*segs)) + isize,
input->name) != 0) {
ret = -1;
goto out;
}
memset(output->data, 0, output->size);
doffset = (segments * sizeof(*segs));
/* set up for output marshaling. This is a bit
* tricky as we are marshaling the headers at the front,
* and the data starting after the headers. We need to convert
* the headers to the right format but the data
* passes through unchanged. Unlike most XDR code,
* we are doing these two concurrently. The doffset is
* used to compute the address for the raw data, and the
* outheader is used to marshal the headers. To make it simpler
* for The Reader, we set up the headers in a separate array,
* then marshal them all at once to the output.
*/
segments = 0;
for (i = 0; i < ehdr.e_shnum; i++) {
char *name;
if (i == ehdr.e_shstrndx)
continue;
if (shdr[i].sh_size == 0)
continue;
name = (char *)(strtab + shdr[i].sh_name);
if (!strcmp(name, ".note.pinfo")) {
segs[segments].type = PAYLOAD_SEGMENT_PARAMS;
segs[segments].load_addr = 0;
segs[segments].len = (unsigned int)shdr[i].sh_size;
segs[segments].offset = doffset;
memcpy((unsigned long *)(output->data + doffset),
&header[shdr[i].sh_offset], shdr[i].sh_size);
doffset += segs[segments].len;
osize += segs[segments].len;
segments++;
}
}
for (i = 0; i < headers; i++) {
if (phdr[i].p_type != PT_LOAD)
continue;
if (phdr[i].p_memsz == 0)
continue;
if (phdr[i].p_filesz == 0) {
segs[segments].type = PAYLOAD_SEGMENT_BSS;
segs[segments].load_addr = phdr[i].p_paddr;
segs[segments].mem_len = phdr[i].p_memsz;
segs[segments].offset = doffset;
segments++;
continue;
}
if (phdr[i].p_flags & PF_X)
segs[segments].type = PAYLOAD_SEGMENT_CODE;
else
segs[segments].type = PAYLOAD_SEGMENT_DATA;
segs[segments].load_addr = phdr[i].p_paddr;
segs[segments].mem_len = phdr[i].p_memsz;
segs[segments].offset = doffset;
/* If the compression failed or made the section is larger,
use the original stuff */
int len;
if (compress((char *)&header[phdr[i].p_offset],
phdr[i].p_filesz, output->data + doffset, &len) ||
(unsigned int)len > phdr[i].p_filesz) {
WARN("Compression failed or would make the data bigger "
"- disabled.\n");
segs[segments].compression = 0;
segs[segments].len = phdr[i].p_filesz;
memcpy(output->data + doffset,
&header[phdr[i].p_offset], phdr[i].p_filesz);
} else {
segs[segments].compression = algo;
segs[segments].len = len;
}
doffset += segs[segments].len;
osize += segs[segments].len;
segments++;
}
segs[segments].type = PAYLOAD_SEGMENT_ENTRY;
segs[segments++].load_addr = ehdr.e_entry;
output->size = (segments * sizeof(*segs)) + osize;
xdr_segs(output, segs, segments);
out:
if (segs) free(segs);
if (shdr) free(shdr);
if (phdr) free(phdr);
return ret;
}
int parse_flat_binary_to_payload(const struct buffer *input,
struct buffer *output,
uint32_t loadaddress,
uint32_t entrypoint,
enum comp_algo algo)
{
comp_func_ptr compress;
struct cbfs_payload_segment segs[2];
int doffset, len = 0;
compress = compression_function(algo);
if (!compress)
return -1;
DEBUG("start: parse_flat_binary_to_payload\n");
if (buffer_create(output, (sizeof(segs) + input->size),
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
doffset = (2 * sizeof(*segs));
/* Prepare code segment */
segs[0].type = PAYLOAD_SEGMENT_CODE;
segs[0].load_addr = loadaddress;
segs[0].mem_len = input->size;
segs[0].offset = doffset;
if (!compress(input->data, input->size, output->data + doffset, &len) &&
(unsigned int)len < input->size) {
segs[0].compression = algo;
segs[0].len = len;
} else {
WARN("Compression failed or would make the data bigger "
"- disabled.\n");
segs[0].compression = 0;
segs[0].len = input->size;
memcpy(output->data + doffset, input->data, input->size);
}
/* prepare entry point segment */
segs[1].type = PAYLOAD_SEGMENT_ENTRY;
segs[1].load_addr = entrypoint;
output->size = doffset + segs[0].len;
xdr_segs(output, segs, 2);
return 0;
}
int parse_fv_to_payload(const struct buffer *input, struct buffer *output,
enum comp_algo algo)
{
comp_func_ptr compress;
struct cbfs_payload_segment segs[2];
int doffset, len = 0;
firmware_volume_header_t *fv;
ffs_file_header_t *fh;
common_section_header_t *cs;
dos_header_t *dh;
coff_header_t *ch;
int dh_offset;
uint32_t loadaddress = 0;
uint32_t entrypoint = 0;
compress = compression_function(algo);
if (!compress)
return -1;
DEBUG("start: parse_fv_to_payload\n");
fv = (firmware_volume_header_t *)input->data;
if (fv->signature != FV_SIGNATURE) {
INFO("Not a UEFI firmware volume.\n");
return -1;
}
fh = (ffs_file_header_t *)(input->data + fv->header_length);
while (fh->file_type == FILETYPE_PAD) {
unsigned long offset = (fh->size[2] << 16) | (fh->size[1] << 8) | fh->size[0];
ERROR("skipping %lu bytes of FV padding\n", offset);
fh = (ffs_file_header_t *)(((uintptr_t)fh) + offset);
}
if (fh->file_type != FILETYPE_SEC) {
ERROR("Not a usable UEFI firmware volume.\n");
INFO("First file in first FV not a SEC core.\n");
return -1;
}
cs = (common_section_header_t *)&fh[1];
while (cs->section_type == SECTION_RAW) {
unsigned long offset = (cs->size[2] << 16) | (cs->size[1] << 8) | cs->size[0];
ERROR("skipping %lu bytes of section padding\n", offset);
cs = (common_section_header_t *)(((uintptr_t)cs) + offset);
}
if (cs->section_type != SECTION_PE32) {
ERROR("Not a usable UEFI firmware volume.\n");
INFO("Section type not PE32.\n");
return -1;
}
dh = (dos_header_t *)&cs[1];
if (dh->signature != DOS_MAGIC) {
ERROR("Not a usable UEFI firmware volume.\n");
INFO("DOS header signature wrong.\n");
return -1;
}
dh_offset = (unsigned long)dh - (unsigned long)input->data;
DEBUG("dos header offset = %x\n", dh_offset);
ch = (coff_header_t *)(((uintptr_t)dh)+dh->e_lfanew);
if (ch->machine == MACHINE_TYPE_X86) {
pe_opt_header_32_t *ph;
ph = (pe_opt_header_32_t *)&ch[1];
if (ph->signature != PE_HDR_32_MAGIC) {
WARN("PE header signature incorrect.\n");
return -1;
}
DEBUG("image base %x\n", ph->image_addr);
DEBUG("entry point %x\n", ph->entry_point);
loadaddress = ph->image_addr - dh_offset;
entrypoint = ph->image_addr + ph->entry_point;
} else if (ch->machine == MACHINE_TYPE_X64) {
pe_opt_header_64_t *ph;
ph = (pe_opt_header_64_t *)&ch[1];
if (ph->signature != PE_HDR_64_MAGIC) {
WARN("PE header signature incorrect.\n");
return -1;
}
DEBUG("image base %lx\n", (unsigned long)ph->image_addr);
DEBUG("entry point %x\n", ph->entry_point);
loadaddress = ph->image_addr - dh_offset;
entrypoint = ph->image_addr + ph->entry_point;
} else {
ERROR("Machine type not x86 or x64.\n");
return -1;
}
if (buffer_create(output, (sizeof(segs) + input->size),
input->name) != 0)
return -1;
memset(output->data, 0, output->size);
doffset = (sizeof(segs));
/* Prepare code segment */
segs[0].type = PAYLOAD_SEGMENT_CODE;
segs[0].load_addr = loadaddress;
segs[0].mem_len = input->size;
segs[0].offset = doffset;
if (!compress(input->data, input->size, output->data + doffset, &len) &&
(unsigned int)len < input->size) {
segs[0].compression = algo;
segs[0].len = len;
} else {
WARN("Compression failed or would make the data bigger "
"- disabled.\n");
segs[0].compression = 0;
segs[0].len = input->size;
memcpy(output->data + doffset, input->data, input->size);
}
/* prepare entry point segment */
segs[1].type = PAYLOAD_SEGMENT_ENTRY;
segs[1].load_addr = entrypoint;
output->size = doffset + segs[0].len;
xdr_segs(output, segs, 2);
return 0;
}