coreboot-kgpe-d16/src/include/imd.h
Patrick Georgi 6b5bc77c9b treewide: Remove "this file is part of" lines
Stefan thinks they don't add value.

Command used:
sed -i -e '/file is part of /d' $(git grep "file is part of " |egrep ":( */\*.*\*/\$|#|;#|-- | *\* )" | cut -d: -f1 |grep -v crossgcc |grep -v gcov | grep -v /elf.h |grep -v nvramtool)

The exceptions are for:
 - crossgcc (patch file)
 - gcov (imported from gcc)
 - elf.h (imported from GNU's libc)
 - nvramtool (more complicated header)

The removed lines are:
-       fmt.Fprintln(f, "/* This file is part of the coreboot project. */")
-# This file is part of a set of unofficial pre-commit hooks available
-/* This file is part of coreboot */
-# This file is part of msrtool.
-/* This file is part of msrtool. */
- * This file is part of ncurses, designed to be appended after curses.h.in
-/* This file is part of pgtblgen. */
- * This file is part of the coreboot project.
- /* This file is part of the coreboot project. */
-#  This file is part of the coreboot project.
-# This file is part of the coreboot project.
-## This file is part of the coreboot project.
--- This file is part of the coreboot project.
-/* This file is part of the coreboot project */
-/* This file is part of the coreboot project. */
-;## This file is part of the coreboot project.
-# This file is part of the coreboot project. It originated in the
- * This file is part of the coreinfo project.
-## This file is part of the coreinfo project.
- * This file is part of the depthcharge project.
-/* This file is part of the depthcharge project. */
-/* This file is part of the ectool project. */
- * This file is part of the GNU C Library.
- * This file is part of the libpayload project.
-## This file is part of the libpayload project.
-/* This file is part of the Linux kernel. */
-## This file is part of the superiotool project.
-/* This file is part of the superiotool project */
-/* This file is part of uio_usbdebug */

Change-Id: I82d872b3b337388c93d5f5bf704e9ee9e53ab3a9
Signed-off-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/41194
Reviewed-by: HAOUAS Elyes <ehaouas@noos.fr>
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
2020-05-11 17:11:40 +00:00

154 lines
5.1 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
#ifndef _IMD_H_
#define _IMD_H_
#include <stdint.h>
#include <stddef.h>
/*
* imd is an in-memory database/directory/datastore (whatever d word you
* desire). It grows downwards in memory from provided upper limit and
* root size. Each entry has a size alignment which is also provided by
* the caller.
*
* +----------------------+ <- upper_limit
* | +----| root pointer |
* | | +----------------------+
* | | | |--------+
* | +--->| root block |-----+ |
* | +----------------------+-----|--|--- root_size
* | | | | |
* | | | | |
* | | alloc N |<----+ |
* | +----------------------+ |
* | | | |
* | | | |
* \|/ | alloc N + 1 |<-------+
* v +----------------------+
*
* The root_size in imd_create_empty() encompasses the root pointer
* and root block. The root_size value, therefore, dictates the number
* of allocations maintained by the imd.
*/
/*
* NOTE: This API has the following calling conventions: all functions
* returning int supply 0 on success or < 0 on error.
*/
struct imd_entry;
struct imd;
/*
* Initialize handle to use for working with an imd. Upper limit is the
* exclusive address to start allocating down from. This function needs
* to be called at least once before any other imd related functions
* can be used.
*/
void imd_handle_init(struct imd *imd, void *upper_limit);
/*
* Initialize a handle with a shallow recovery. This function doesn't
* verify every entry, but it does set up the root pointer. Because of
* this behavior it's not very safe. However, the current CBMEM constraints
* demand having these semantics.
*/
void imd_handle_init_partial_recovery(struct imd *imd);
/*
* Create an empty imd with a specified root_size and each entry is aligned to
* the provided entry_align. As noted above the root size encompasses the
* root pointer and root block leading to the number of imd entries being a
* function of the root_size parameter.
*/
int imd_create_empty(struct imd *imd, size_t root_size, size_t entry_align);
/*
* Create an empty imd with both large and small allocations. The small
* allocations come from a fixed imd stored internally within the large
* imd. The region allocated for tracking the smaller allocations is dependent
* on the small root_size and the large entry alignment by calculating the
* number of entries within the small imd and multiplying that by the small
* entry alignment.
*/
int imd_create_tiered_empty(struct imd *imd,
size_t lg_root_size, size_t lg_entry_align,
size_t sm_root_size, size_t sm_entry_align);
/*
* Recover a previously created imd.
*/
int imd_recover(struct imd *imd);
/* Limit imd to provided max_size. */
int imd_limit_size(struct imd *imd, size_t max_size);
/* Lock down imd from further modifications. */
int imd_lockdown(struct imd *imd);
/* Fill in base address and size of region used by imd. */
int imd_region_used(struct imd *imd, void **base, size_t *size);
/* Add an entry to the imd. If id already exists NULL is returned. */
const struct imd_entry *imd_entry_add(const struct imd *imd, uint32_t id,
size_t size);
/* Locate an entry within the imd. NULL is returned when not found. */
const struct imd_entry *imd_entry_find(const struct imd *imd, uint32_t id);
/* Find an existing entry or add a new one. */
const struct imd_entry *imd_entry_find_or_add(const struct imd *imd,
uint32_t id, size_t size);
/* Returns size of entry or 0 on failure. */
size_t imd_entry_size(const struct imd *imd, const struct imd_entry *entry);
/* Returns pointer to region described by entry or NULL on failure. */
void *imd_entry_at(const struct imd *imd, const struct imd_entry *entry);
/* Returns id for the imd entry. */
uint32_t imd_entry_id(const struct imd *imd, const struct imd_entry *entry);
/* Attempt to remove entry from imd. */
int imd_entry_remove(const struct imd *imd, const struct imd_entry *entry);
/* Print the entry information provided by lookup with the specified size. */
struct imd_lookup {
uint32_t id;
const char *name;
};
int imd_print_entries(const struct imd *imd, const struct imd_lookup *lookup,
size_t size);
struct imd_cursor;
/* Initialize an imd_cursor object to walk the IMD entries. */
int imd_cursor_init(const struct imd *imd, struct imd_cursor *cursor);
/* Retrieve the next imd entry the cursor is referencing. Returns NULL when
* no more entries exist. */
const struct imd_entry *imd_cursor_next(struct imd_cursor *cursor);
/*
* The struct imd is a handle for working with an in-memory directory.
*
* NOTE: Do not directly touch any fields within this structure. An imd pointer
* is meant to be opaque, but the fields are exposed for stack allocation.
*/
struct imdr {
uintptr_t limit;
void *r;
};
struct imd {
struct imdr lg;
struct imdr sm;
};
struct imd_cursor {
size_t current_imdr;
size_t current_entry;
const struct imdr *imdr[2];
};
#endif /* _IMD_H_ */