coreboot-kgpe-d16/src/soc/nvidia/tegra210/spi.c
Patrick Georgi a73b93157f tree: drop last paragraph of GPL copyright header
It encourages users from writing to the FSF without giving an address.
Linux also prefers to drop that and their checkpatch.pl (that we
imported) looks out for that.

This is the result of util/scripts/no-fsf-addresses.sh with no further
editing.

Change-Id: Ie96faea295fe001911d77dbc51e9a6789558fbd6
Signed-off-by: Patrick Georgi <pgeorgi@chromium.org>
Reviewed-on: http://review.coreboot.org/11888
Tested-by: build bot (Jenkins)
Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
2015-10-31 21:37:39 +01:00

939 lines
25 KiB
C

/*
* NVIDIA Tegra SPI controller (T114 and later)
*
* Copyright (c) 2010-2013 NVIDIA Corporation
* Copyright (C) 2013 Google Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <arch/cache.h>
#include <arch/io.h>
#include <assert.h>
#include <boot_device.h>
#include <cbfs.h>
#include <console/console.h>
#include <delay.h>
#include <inttypes.h>
#include <spi-generic.h>
#include <spi_flash.h>
#include <soc/addressmap.h>
#include <soc/dma.h>
#include <soc/spi.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <symbols.h>
#include <timer.h>
#if defined(CONFIG_DEBUG_SPI) && CONFIG_DEBUG_SPI
# define DEBUG_SPI(x,...) printk(BIOS_DEBUG, "TEGRA_SPI: " x)
#else
# define DEBUG_SPI(x,...)
#endif
/*
* 64 packets in FIFO mode, BLOCK_SIZE packets in DMA mode. Packets can vary
* in size from 4 to 32 bits. To keep things simple we'll use 8-bit packets.
*/
#define SPI_PACKET_SIZE_BYTES 1
#define SPI_MAX_TRANSFER_BYTES_FIFO (64 * SPI_PACKET_SIZE_BYTES)
#define SPI_MAX_TRANSFER_BYTES_DMA (65535 * SPI_PACKET_SIZE_BYTES)
/*
* This is used to workaround an issue seen where it may take some time for
* packets to show up in the FIFO after they have been received and the
* BLOCK_COUNT has been incremented.
*/
#define SPI_FIFO_XFER_TIMEOUT_US 1000
/* COMMAND1 */
#define SPI_CMD1_GO (1 << 31)
#define SPI_CMD1_M_S (1 << 30)
#define SPI_CMD1_MODE_MASK 0x3
#define SPI_CMD1_MODE_SHIFT 28
#define SPI_CMD1_CS_SEL_MASK 0x3
#define SPI_CMD1_CS_SEL_SHIFT 26
#define SPI_CMD1_CS_POL_INACTIVE3 (1 << 25)
#define SPI_CMD1_CS_POL_INACTIVE2 (1 << 24)
#define SPI_CMD1_CS_POL_INACTIVE1 (1 << 23)
#define SPI_CMD1_CS_POL_INACTIVE0 (1 << 22)
#define SPI_CMD1_CS_SW_HW (1 << 21)
#define SPI_CMD1_CS_SW_VAL (1 << 20)
#define SPI_CMD1_IDLE_SDA_MASK 0x3
#define SPI_CMD1_IDLE_SDA_SHIFT 18
#define SPI_CMD1_BIDIR (1 << 17)
#define SPI_CMD1_LSBI_FE (1 << 16)
#define SPI_CMD1_LSBY_FE (1 << 15)
#define SPI_CMD1_BOTH_EN_BIT (1 << 14)
#define SPI_CMD1_BOTH_EN_BYTE (1 << 13)
#define SPI_CMD1_RX_EN (1 << 12)
#define SPI_CMD1_TX_EN (1 << 11)
#define SPI_CMD1_PACKED (1 << 5)
#define SPI_CMD1_BIT_LEN_MASK 0x1f
#define SPI_CMD1_BIT_LEN_SHIFT 0
/* COMMAND2 */
#define SPI_CMD2_TX_CLK_TAP_DELAY (1 << 6)
#define SPI_CMD2_TX_CLK_TAP_DELAY_MASK (0x3F << 6)
#define SPI_CMD2_RX_CLK_TAP_DELAY (1 << 0)
#define SPI_CMD2_RX_CLK_TAP_DELAY_MASK (0x3F << 0)
/* SPI_TRANS_STATUS */
#define SPI_STATUS_RDY (1 << 30)
#define SPI_STATUS_SLV_IDLE_COUNT_MASK 0xff
#define SPI_STATUS_SLV_IDLE_COUNT_SHIFT 16
#define SPI_STATUS_BLOCK_COUNT 0xffff
#define SPI_STATUS_BLOCK_COUNT_SHIFT 0
/* SPI_FIFO_STATUS */
#define SPI_FIFO_STATUS_CS_INACTIVE (1 << 31)
#define SPI_FIFO_STATUS_FRAME_END (1 << 30)
#define SPI_FIFO_STATUS_RX_FIFO_FULL_COUNT_MASK 0x7f
#define SPI_FIFO_STATUS_RX_FIFO_FULL_COUNT_SHIFT 23
#define SPI_FIFO_STATUS_TX_FIFO_EMPTY_COUNT_MASK 0x7f
#define SPI_FIFO_STATUS_TX_FIFO_EMPTY_COUNT_SHIFT 16
#define SPI_FIFO_STATUS_RX_FIFO_FLUSH (1 << 15)
#define SPI_FIFO_STATUS_TX_FIFO_FLUSH (1 << 14)
#define SPI_FIFO_STATUS_ERR (1 << 8)
#define SPI_FIFO_STATUS_TX_FIFO_OVF (1 << 7)
#define SPI_FIFO_STATUS_TX_FIFO_UNR (1 << 6)
#define SPI_FIFO_STATUS_RX_FIFO_OVF (1 << 5)
#define SPI_FIFO_STATUS_RX_FIFO_UNR (1 << 4)
#define SPI_FIFO_STATUS_TX_FIFO_FULL (1 << 3)
#define SPI_FIFO_STATUS_TX_FIFO_EMPTY (1 << 2)
#define SPI_FIFO_STATUS_RX_FIFO_FULL (1 << 1)
#define SPI_FIFO_STATUS_RX_FIFO_EMPTY (1 << 0)
/* SPI_DMA_CTL */
#define SPI_DMA_CTL_DMA (1 << 31)
#define SPI_DMA_CTL_CONT (1 << 30)
#define SPI_DMA_CTL_IE_RX (1 << 29)
#define SPI_DMA_CTL_IE_TX (1 << 28)
#define SPI_DMA_CTL_RX_TRIG_MASK 0x3
#define SPI_DMA_CTL_RX_TRIG_SHIFT 19
#define SPI_DMA_CTL_TX_TRIG_MASK 0x3
#define SPI_DMA_CTL_TX_TRIG_SHIFT 15
/* SPI_DMA_BLK */
#define SPI_DMA_CTL_BLOCK_SIZE_MASK 0xffff
#define SPI_DMA_CTL_BLOCK_SIZE_SHIFT 0
static struct tegra_spi_channel tegra_spi_channels[] = {
/*
* Note: Tegra pinmux must be setup for corresponding SPI channel in
* order for its registers to be accessible. If pinmux has not been
* set up, access to the channel's registers will simply hang.
*
* TODO(dhendrix): Clarify or remove this comment (is clock setup
* necessary first, or just pinmux, or both?)
*/
{
.slave = { .bus = 1, },
.regs = (struct tegra_spi_regs *)TEGRA_SPI1_BASE,
.req_sel = APBDMA_SLAVE_SL2B1,
},
{
.slave = { .bus = 2, },
.regs = (struct tegra_spi_regs *)TEGRA_SPI2_BASE,
.req_sel = APBDMA_SLAVE_SL2B2,
},
{
.slave = { .bus = 3, },
.regs = (struct tegra_spi_regs *)TEGRA_SPI3_BASE,
.req_sel = APBDMA_SLAVE_SL2B3,
},
{
.slave = { .bus = 4, },
.regs = (struct tegra_spi_regs *)TEGRA_SPI4_BASE,
.req_sel = APBDMA_SLAVE_SL2B4,
},
{
.slave = { .bus = 5, },
.regs = (struct tegra_spi_regs *)TEGRA_SPI5_BASE,
.req_sel = APBDMA_SLAVE_SL2B5,
},
{
.slave = { .bus = 6, },
.regs = (struct tegra_spi_regs *)TEGRA_SPI6_BASE,
.req_sel = APBDMA_SLAVE_SL2B6,
},
{
.slave = { .bus = 7, },
.regs = (struct tegra_spi_regs *)TEGRA_QSPI_BASE,
.req_sel = APBDMA_SLAVE_QSPI,
},
};
enum spi_direction {
SPI_SEND,
SPI_RECEIVE,
};
struct tegra_spi_channel *tegra_spi_init(unsigned int bus)
{
int i;
struct tegra_spi_channel *spi = NULL;
for (i = 0; i < ARRAY_SIZE(tegra_spi_channels); i++) {
if (tegra_spi_channels[i].slave.bus == bus) {
spi = &tegra_spi_channels[i];
break;
}
}
if (!spi)
return NULL;
/* software drives chip-select, set value to high */
setbits_le32(&spi->regs->command1,
SPI_CMD1_CS_SW_HW | SPI_CMD1_CS_SW_VAL);
/* 8-bit transfers, unpacked mode, most significant bit first */
clrbits_le32(&spi->regs->command1,
SPI_CMD1_BIT_LEN_MASK | SPI_CMD1_PACKED);
setbits_le32(&spi->regs->command1, 7 << SPI_CMD1_BIT_LEN_SHIFT);
return spi;
}
static struct tegra_spi_channel * const to_tegra_spi(int bus) {
return &tegra_spi_channels[bus - 1];
}
int spi_claim_bus(struct spi_slave *slave)
{
struct tegra_spi_regs *regs = to_tegra_spi(slave->bus)->regs;
u32 val;
tegra_spi_init(slave->bus);
val = read32(&regs->command1);
/* select appropriate chip-select line */
val &= ~(SPI_CMD1_CS_SEL_MASK << SPI_CMD1_CS_SEL_SHIFT);
val |= (slave->cs << SPI_CMD1_CS_SEL_SHIFT);
/* drive chip-select with the inverse of the "inactive" value */
if (val & (SPI_CMD1_CS_POL_INACTIVE0 << slave->cs))
val &= ~SPI_CMD1_CS_SW_VAL;
else
val |= SPI_CMD1_CS_SW_VAL;
write32(&regs->command1, val);
return 0;
}
void spi_release_bus(struct spi_slave *slave)
{
struct tegra_spi_regs *regs = to_tegra_spi(slave->bus)->regs;
u32 val;
val = read32(&regs->command1);
if (val & (SPI_CMD1_CS_POL_INACTIVE0 << slave->cs))
val |= SPI_CMD1_CS_SW_VAL;
else
val &= ~SPI_CMD1_CS_SW_VAL;
write32(&regs->command1, val);
}
static void dump_fifo_status(struct tegra_spi_channel *spi)
{
u32 status = read32(&spi->regs->fifo_status);
printk(BIOS_INFO, "Raw FIFO status: 0x%08x\n", status);
if (status & SPI_FIFO_STATUS_TX_FIFO_OVF)
printk(BIOS_INFO, "\tTx overflow detected\n");
if (status & SPI_FIFO_STATUS_TX_FIFO_UNR)
printk(BIOS_INFO, "\tTx underrun detected\n");
if (status & SPI_FIFO_STATUS_RX_FIFO_OVF)
printk(BIOS_INFO, "\tRx overflow detected\n");
if (status & SPI_FIFO_STATUS_RX_FIFO_UNR)
printk(BIOS_INFO, "\tRx underrun detected\n");
printk(BIOS_INFO, "TX_FIFO: 0x%08x, TX_DATA: 0x%08x\n",
read32(&spi->regs->tx_fifo), read32(&spi->regs->tx_data));
printk(BIOS_INFO, "RX_FIFO: 0x%08x, RX_DATA: 0x%08x\n",
read32(&spi->regs->rx_fifo), read32(&spi->regs->rx_data));
}
static void clear_fifo_status(struct tegra_spi_channel *spi)
{
clrbits_le32(&spi->regs->fifo_status,
SPI_FIFO_STATUS_ERR |
SPI_FIFO_STATUS_TX_FIFO_OVF |
SPI_FIFO_STATUS_TX_FIFO_UNR |
SPI_FIFO_STATUS_RX_FIFO_OVF |
SPI_FIFO_STATUS_RX_FIFO_UNR);
}
static void dump_spi_regs(struct tegra_spi_channel *spi)
{
printk(BIOS_INFO, "SPI regs:\n"
"\tdma_blk: 0x%08x\n"
"\tcommand1: 0x%08x\n"
"\tdma_ctl: 0x%08x\n"
"\ttrans_status: 0x%08x\n",
read32(&spi->regs->dma_blk),
read32(&spi->regs->command1),
read32(&spi->regs->dma_ctl),
read32(&spi->regs->trans_status));
}
static void dump_dma_regs(struct apb_dma_channel *dma)
{
printk(BIOS_INFO, "DMA regs:\n"
"\tahb_ptr: 0x%08x\n"
"\tapb_ptr: 0x%08x\n"
"\tahb_seq: 0x%08x\n"
"\tapb_seq: 0x%08x\n"
"\tcsr: 0x%08x\n"
"\tcsre: 0x%08x\n"
"\twcount: 0x%08x\n"
"\tdma_byte_sta: 0x%08x\n"
"\tword_transfer: 0x%08x\n",
read32(&dma->regs->ahb_ptr),
read32(&dma->regs->apb_ptr),
read32(&dma->regs->ahb_seq),
read32(&dma->regs->apb_seq),
read32(&dma->regs->csr),
read32(&dma->regs->csre),
read32(&dma->regs->wcount),
read32(&dma->regs->dma_byte_sta),
read32(&dma->regs->word_transfer));
}
static inline unsigned int spi_byte_count(struct tegra_spi_channel *spi)
{
/* FIXME: Make this take total packet size into account */
return read32(&spi->regs->trans_status) &
(SPI_STATUS_BLOCK_COUNT << SPI_STATUS_BLOCK_COUNT_SHIFT);
}
static void tegra_spi_wait(struct tegra_spi_channel *spi)
{
uint32_t dma_blk_count = 1 + (read32(&spi->regs->dma_blk) &
(SPI_DMA_CTL_BLOCK_SIZE_MASK <<
SPI_DMA_CTL_BLOCK_SIZE_SHIFT));
while ((read32(&spi->regs->trans_status) & SPI_STATUS_RDY) !=
SPI_STATUS_RDY)
;
/*
* If RDY bit is set, we should never encounter the condition that
* blocks processed is not equal to the number programmed in dma_blk
* register.
*/
ASSERT(spi_byte_count(spi) == dma_blk_count);
}
static int fifo_error(struct tegra_spi_channel *spi)
{
return read32(&spi->regs->fifo_status) & SPI_FIFO_STATUS_ERR ? 1 : 0;
}
static void flush_fifos(struct tegra_spi_channel *spi)
{
const uint32_t flush_mask = SPI_FIFO_STATUS_TX_FIFO_FLUSH |
SPI_FIFO_STATUS_RX_FIFO_FLUSH;
uint32_t fifo_status = read32(&spi->regs->fifo_status);
fifo_status |= flush_mask;
write32(&spi->regs->fifo_status, flush_mask);
while (read32(&spi->regs->fifo_status) & flush_mask)
;
}
static int tegra_spi_pio_prepare(struct tegra_spi_channel *spi,
unsigned int bytes, enum spi_direction dir)
{
u8 *p = spi->out_buf;
unsigned int todo = MIN(bytes, SPI_MAX_TRANSFER_BYTES_FIFO);
u32 enable_mask;
flush_fifos(spi);
if (dir == SPI_SEND)
enable_mask = SPI_CMD1_TX_EN;
else
enable_mask = SPI_CMD1_RX_EN;
/*
* BLOCK_SIZE in SPI_DMA_BLK register applies to both DMA and
* PIO transfers. And, it should be programmed before RX_EN or
* TX_EN is set.
*/
write32(&spi->regs->dma_blk, todo - 1);
setbits_le32(&spi->regs->command1, enable_mask);
if (dir == SPI_SEND) {
unsigned int to_fifo = bytes;
while (to_fifo) {
write32(&spi->regs->tx_fifo, *p);
p++;
to_fifo--;
}
}
return todo;
}
static void tegra_spi_pio_start(struct tegra_spi_channel *spi)
{
setbits_le32(&spi->regs->trans_status, SPI_STATUS_RDY);
/*
* Need to stabilize other reg bit before GO bit set.
*
* From IAS:
* For successful operation at various freq combinations, min of 4-5
* spi_clk cycle delay might be required before enabling PIO or DMA bit.
* This is needed to overcome the MCP between core and pad_macro.
* The worst case delay calculation can be done considering slowest
* qspi_clk as 1 MHz. based on that 1 us delay should be enough before
* enabling pio or dma.
*/
udelay(2);
setbits_le32(&spi->regs->command1, SPI_CMD1_GO);
/* Need to wait a few cycles before command1 register is read */
udelay(1);
/* Make sure the write to command1 completes. */
read32(&spi->regs->command1);
}
static inline u32 rx_fifo_count(struct tegra_spi_channel *spi)
{
return (read32(&spi->regs->fifo_status) >>
SPI_FIFO_STATUS_RX_FIFO_FULL_COUNT_SHIFT) &
SPI_FIFO_STATUS_RX_FIFO_FULL_COUNT_MASK;
}
static int tegra_spi_pio_finish(struct tegra_spi_channel *spi)
{
u8 *p = spi->in_buf;
clrbits_le32(&spi->regs->command1, SPI_CMD1_RX_EN | SPI_CMD1_TX_EN);
ASSERT(rx_fifo_count(spi) == spi_byte_count(spi));
if (p) {
while (!(read32(&spi->regs->fifo_status) &
SPI_FIFO_STATUS_RX_FIFO_EMPTY)) {
*p = read8(&spi->regs->rx_fifo);
p++;
}
}
if (fifo_error(spi)) {
printk(BIOS_ERR, "%s: ERROR:\n", __func__);
dump_spi_regs(spi);
dump_fifo_status(spi);
return -1;
}
return 0;
}
static void setup_dma_params(struct tegra_spi_channel *spi,
struct apb_dma_channel *dma)
{
/* APB bus width = 8-bits, address wrap for each word */
clrbits_le32(&dma->regs->apb_seq,
APB_BUS_WIDTH_MASK << APB_BUS_WIDTH_SHIFT);
/* AHB 1 word burst, bus width = 32 bits (fixed in hardware),
* no address wrapping */
clrsetbits_le32(&dma->regs->ahb_seq,
(AHB_BURST_MASK << AHB_BURST_SHIFT),
4 << AHB_BURST_SHIFT);
/* Set ONCE mode to transfer one "block" at a time (64KB) and enable
* flow control. */
clrbits_le32(&dma->regs->csr,
APB_CSR_REQ_SEL_MASK << APB_CSR_REQ_SEL_SHIFT);
setbits_le32(&dma->regs->csr, APB_CSR_ONCE | APB_CSR_FLOW |
(spi->req_sel << APB_CSR_REQ_SEL_SHIFT));
}
static int tegra_spi_dma_prepare(struct tegra_spi_channel *spi,
unsigned int bytes, enum spi_direction dir)
{
unsigned int todo, wcount;
/*
* For DMA we need to think of things in terms of word count.
* AHB width is fixed at 32-bits. To avoid overrunning
* the in/out buffers we must align down. (Note: lowest 2-bits
* in WCOUNT register are ignored, and WCOUNT seems to count
* words starting at n-1)
*
* Example: If "bytes" is 7 and we are transferring 1-byte at a time,
* WCOUNT should be 4. The remaining 3 bytes must be transferred
* using PIO.
*/
todo = MIN(bytes, SPI_MAX_TRANSFER_BYTES_DMA - TEGRA_DMA_ALIGN_BYTES);
todo = ALIGN_DOWN(todo, TEGRA_DMA_ALIGN_BYTES);
wcount = ALIGN_DOWN(todo - TEGRA_DMA_ALIGN_BYTES, TEGRA_DMA_ALIGN_BYTES);
flush_fifos(spi);
if (dir == SPI_SEND) {
spi->dma_out = dma_claim();
if (!spi->dma_out)
return -1;
/* ensure bytes to send will be visible to DMA controller */
dcache_clean_by_mva(spi->out_buf, bytes);
write32(&spi->dma_out->regs->apb_ptr,
(uintptr_t) & spi->regs->tx_fifo);
write32(&spi->dma_out->regs->ahb_ptr, (uintptr_t)spi->out_buf);
setbits_le32(&spi->dma_out->regs->csr, APB_CSR_DIR);
setup_dma_params(spi, spi->dma_out);
write32(&spi->dma_out->regs->wcount, wcount);
} else {
spi->dma_in = dma_claim();
if (!spi->dma_in)
return -1;
/* avoid data collisions */
dcache_clean_invalidate_by_mva(spi->in_buf, bytes);
write32(&spi->dma_in->regs->apb_ptr,
(uintptr_t)&spi->regs->rx_fifo);
write32(&spi->dma_in->regs->ahb_ptr, (uintptr_t)spi->in_buf);
clrbits_le32(&spi->dma_in->regs->csr, APB_CSR_DIR);
setup_dma_params(spi, spi->dma_in);
write32(&spi->dma_in->regs->wcount, wcount);
}
/* BLOCK_SIZE starts at n-1 */
write32(&spi->regs->dma_blk, todo - 1);
return todo;
}
static void tegra_spi_dma_start(struct tegra_spi_channel *spi)
{
/*
* The RDY bit in SPI_TRANS_STATUS needs to be cleared manually
* (set bit to clear) between each transaction. Otherwise the next
* transaction does not start.
*/
setbits_le32(&spi->regs->trans_status, SPI_STATUS_RDY);
struct apb_dma * const apb_dma = (struct apb_dma *)TEGRA_APB_DMA_BASE;
/*
* The DMA triggers have units of packets. As each packet is currently
* 1 byte the triggers need to be set to 4 packets (0b01) to match
* the AHB 32-bit (4 byte) tranfser. Otherwise the FIFO errors can
* occur.
*/
if (spi->dma_out) {
/* Enable secure access for the channel. */
setbits_le32(&apb_dma->security_reg,
SECURITY_EN_BIT(spi->dma_out->num));
clrsetbits_le32(&spi->regs->dma_ctl,
SPI_DMA_CTL_TX_TRIG_MASK << SPI_DMA_CTL_TX_TRIG_SHIFT,
1 << SPI_DMA_CTL_TX_TRIG_SHIFT);
setbits_le32(&spi->regs->command1, SPI_CMD1_TX_EN);
}
if (spi->dma_in) {
/* Enable secure access for the channel. */
setbits_le32(&apb_dma->security_reg,
SECURITY_EN_BIT(spi->dma_in->num));
clrsetbits_le32(&spi->regs->dma_ctl,
SPI_DMA_CTL_RX_TRIG_MASK << SPI_DMA_CTL_RX_TRIG_SHIFT,
1 << SPI_DMA_CTL_RX_TRIG_SHIFT);
setbits_le32(&spi->regs->command1, SPI_CMD1_RX_EN);
}
/*
* To avoid underrun conditions, enable APB DMA before SPI DMA for
* Tx and enable SPI DMA before APB DMA before Rx.
*/
if (spi->dma_out)
dma_start(spi->dma_out);
setbits_le32(&spi->regs->dma_ctl, SPI_DMA_CTL_DMA);
if (spi->dma_in)
dma_start(spi->dma_in);
}
static int tegra_spi_dma_finish(struct tegra_spi_channel *spi)
{
int ret;
unsigned int todo;
struct apb_dma * const apb_dma = (struct apb_dma *)TEGRA_APB_DMA_BASE;
todo = read32(&spi->dma_in->regs->wcount);
if (spi->dma_in) {
while ((read32(&spi->dma_in->regs->dma_byte_sta) < todo) ||
dma_busy(spi->dma_in))
;
dma_stop(spi->dma_in);
clrbits_le32(&spi->regs->command1, SPI_CMD1_RX_EN);
/* Disable secure access for the channel. */
clrbits_le32(&apb_dma->security_reg,
SECURITY_EN_BIT(spi->dma_in->num));
dma_release(spi->dma_in);
}
if (spi->dma_out) {
while ((read32(&spi->dma_out->regs->dma_byte_sta) < todo) ||
dma_busy(spi->dma_out))
;
clrbits_le32(&spi->regs->command1, SPI_CMD1_TX_EN);
dma_stop(spi->dma_out);
/* Disable secure access for the channel. */
clrbits_le32(&apb_dma->security_reg,
SECURITY_EN_BIT(spi->dma_out->num));
dma_release(spi->dma_out);
}
if (fifo_error(spi)) {
printk(BIOS_ERR, "%s: ERROR:\n", __func__);
dump_dma_regs(spi->dma_out);
dump_dma_regs(spi->dma_in);
dump_spi_regs(spi);
dump_fifo_status(spi);
ret = -1;
goto done;
}
ret = 0;
done:
spi->dma_in = NULL;
spi->dma_out = NULL;
return ret;
}
/*
* xfer_setup() prepares a transfer. It does sanity checking, alignment, and
* sets transfer mode used by this channel (if not set already).
*
* A few caveats to watch out for:
* - The number of bytes which can be transferred may be smaller than the
* number of bytes the caller specifies. The number of bytes ready for
* a transfer will be returned (unless an error occurs).
*
* - Only one mode can be used for both RX and TX. The transfer mode of the
* SPI channel (spi->xfer_mode) is checked each time this function is called.
* If conflicting modes are detected, spi->xfer_mode will be set to
* XFER_MODE_NONE and an error will be returned.
*
* Returns bytes ready for transfer if successful, <0 to indicate error.
*/
static int xfer_setup(struct tegra_spi_channel *spi, void *buf,
unsigned int bytes, enum spi_direction dir)
{
unsigned int line_size = dcache_line_bytes();
unsigned int align;
int ret = -1;
if (!bytes)
return 0;
if (dir == SPI_SEND)
spi->out_buf = buf;
else if (dir == SPI_RECEIVE)
spi->in_buf = buf;
/*
* Alignment consideratons:
* When we enable caching we'll need to clean/invalidate portions of
* memory. So we need to be careful about memory alignment. Also, DMA
* likes to operate on 4-bytes at a time on the AHB side. So for
* example, if we only want to receive 1 byte, 4 bytes will be be
* written in memory even if those extra 3 bytes are beyond the length
* we want.
*
* For now we'll use PIO to send/receive unaligned bytes. We may
* consider setting aside some space for a kind of bounce buffer to
* stay in DMA mode once we have a chance to benchmark the two
* approaches.
*/
if (bytes < line_size) {
if (spi->xfer_mode == XFER_MODE_DMA) {
spi->xfer_mode = XFER_MODE_NONE;
ret = -1;
} else {
spi->xfer_mode = XFER_MODE_PIO;
ret = tegra_spi_pio_prepare(spi, bytes, dir);
}
goto done;
}
/* transfer bytes before the aligned boundary */
align = line_size - ((uintptr_t)buf % line_size);
if ((align != 0) && (align != line_size)) {
if (spi->xfer_mode == XFER_MODE_DMA) {
spi->xfer_mode = XFER_MODE_NONE;
ret = -1;
} else {
spi->xfer_mode = XFER_MODE_PIO;
ret = tegra_spi_pio_prepare(spi, align, dir);
}
goto done;
}
/* do aligned DMA transfer */
align = (((uintptr_t)buf + bytes) % line_size);
if (bytes - align > 0) {
unsigned int dma_bytes = bytes - align;
if (spi->xfer_mode == XFER_MODE_PIO) {
spi->xfer_mode = XFER_MODE_NONE;
ret = -1;
} else {
spi->xfer_mode = XFER_MODE_DMA;
ret = tegra_spi_dma_prepare(spi, dma_bytes, dir);
}
goto done;
}
/* transfer any remaining unaligned bytes */
if (align) {
if (spi->xfer_mode == XFER_MODE_DMA) {
spi->xfer_mode = XFER_MODE_NONE;
ret = -1;
} else {
spi->xfer_mode = XFER_MODE_PIO;
ret = tegra_spi_pio_prepare(spi, align, dir);
}
goto done;
}
done:
return ret;
}
static void xfer_start(struct tegra_spi_channel *spi)
{
if (spi->xfer_mode == XFER_MODE_DMA)
tegra_spi_dma_start(spi);
else
tegra_spi_pio_start(spi);
}
static void xfer_wait(struct tegra_spi_channel *spi)
{
tegra_spi_wait(spi);
}
static int xfer_finish(struct tegra_spi_channel *spi)
{
int ret;
if (spi->xfer_mode == XFER_MODE_DMA)
ret = tegra_spi_dma_finish(spi);
else
ret = tegra_spi_pio_finish(spi);
spi->xfer_mode = XFER_MODE_NONE;
return ret;
}
unsigned int spi_crop_chunk(unsigned int cmd_len, unsigned int buf_len)
{
return buf_len;
}
int spi_xfer(struct spi_slave *slave, const void *dout,
unsigned int out_bytes, void *din, unsigned int in_bytes)
{
struct tegra_spi_channel *spi = to_tegra_spi(slave->bus);
u8 *out_buf = (u8 *)dout;
u8 *in_buf = (u8 *)din;
unsigned int todo;
int ret = 0;
/* tegra bus numbers start at 1 */
ASSERT(slave->bus >= 1 && slave->bus <= ARRAY_SIZE(tegra_spi_channels));
while (out_bytes || in_bytes) {
int x = 0;
if (out_bytes == 0)
todo = in_bytes;
else if (in_bytes == 0)
todo = out_bytes;
else
todo = MIN(out_bytes, in_bytes);
if (out_bytes) {
x = xfer_setup(spi, out_buf, todo, SPI_SEND);
if (x < 0) {
if (spi->xfer_mode == XFER_MODE_NONE) {
spi->xfer_mode = XFER_MODE_PIO;
continue;
} else {
ret = -1;
break;
}
}
}
if (in_bytes) {
x = xfer_setup(spi, in_buf, todo, SPI_RECEIVE);
if (x < 0) {
if (spi->xfer_mode == XFER_MODE_NONE) {
spi->xfer_mode = XFER_MODE_PIO;
continue;
} else {
ret = -1;
break;
}
}
}
/*
* Note: Some devices (such as Chrome EC) are sensitive to
* delays, so be careful when adding debug prints not to
* cause timeouts between transfers.
*/
xfer_start(spi);
xfer_wait(spi);
if (xfer_finish(spi)) {
ret = -1;
break;
}
/* Post-processing. */
if (out_bytes) {
out_bytes -= x;
out_buf += x;
}
if (in_bytes) {
in_bytes -= x;
in_buf += x;
}
}
if (ret < 0) {
printk(BIOS_ERR, "%s: Error detected\n", __func__);
printk(BIOS_ERR, "Transaction size: %u, bytes remaining: "
"%u out / %u in\n", todo, out_bytes, in_bytes);
clear_fifo_status(spi);
}
return ret;
}
#define JEDEC_READ 0x03
#define JEDEC_READ_OUTSIZE 0x04
#define JEDEC_FAST_READ_DUAL 0x3b
#define JEDEC_FAST_READ_DUAL_OUTSIZE 0x05
static struct spi_slave *boot_slave;
static ssize_t tegra_spi_readat(const struct region_device *rdev, void *dest,
size_t offset, size_t count)
{
u8 spi_read_cmd[JEDEC_FAST_READ_DUAL_OUTSIZE];
unsigned int read_cmd_bytes;
int ret = count;
struct tegra_spi_channel *channel;
channel = to_tegra_spi(boot_slave->bus);
if (channel->dual_mode) {
/*
* Command 0x3b will interleave data only, command 0xbb will
* interleave the address as well. It's nice to see the address
* plainly when debugging, and we're mostly concerned with
* large transfers so the optimization of using 0xbb isn't
* really worthwhile.
*/
spi_read_cmd[0] = JEDEC_FAST_READ_DUAL;
spi_read_cmd[4] = 0x00; /* dummy byte */
read_cmd_bytes = JEDEC_FAST_READ_DUAL_OUTSIZE;
} else {
spi_read_cmd[0] = JEDEC_READ;
read_cmd_bytes = JEDEC_READ_OUTSIZE;
}
spi_read_cmd[1] = (offset >> 16) & 0xff;
spi_read_cmd[2] = (offset >> 8) & 0xff;
spi_read_cmd[3] = offset & 0xff;
spi_claim_bus(boot_slave);
if (spi_xfer(boot_slave, spi_read_cmd,
read_cmd_bytes, NULL, 0) < 0) {
ret = -1;
printk(BIOS_ERR, "%s: Failed to transfer %zu bytes\n",
__func__, sizeof(spi_read_cmd));
goto tegra_spi_cbfs_read_exit;
}
if (channel->dual_mode) {
setbits_le32(&channel->regs->command1, SPI_CMD1_BOTH_EN_BIT);
}
if (spi_xfer(boot_slave, NULL, 0, dest, count)) {
ret = -1;
printk(BIOS_ERR, "%s: Failed to transfer %zu bytes\n",
__func__, count);
}
if (channel->dual_mode)
clrbits_le32(&channel->regs->command1, SPI_CMD1_BOTH_EN_BIT);
tegra_spi_cbfs_read_exit:
/* de-assert /CS */
spi_release_bus(boot_slave);
return ret;
}
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs)
{
struct tegra_spi_channel *channel = to_tegra_spi(bus);
if (!channel)
return NULL;
return &channel->slave;
}
static const struct region_device_ops tegra_spi_ops = {
.mmap = mmap_helper_rdev_mmap,
.munmap = mmap_helper_rdev_munmap,
.readat = tegra_spi_readat,
};
__attribute__((unused))
static struct mmap_helper_region_device mdev =
MMAP_HELPER_REGION_INIT(&tegra_spi_ops, 0, CONFIG_ROM_SIZE);
#if !IS_ENABLED(CONFIG_COMMON_CBFS_SPI_WRAPPER)
const struct region_device *boot_device_ro(void)
{
return &mdev.rdev;
}
void boot_device_init(void)
{
struct tegra_spi_channel *boot_chan;
boot_chan = &tegra_spi_channels[CONFIG_BOOT_MEDIA_SPI_BUS - 1];
boot_chan->slave.cs = CONFIG_BOOT_MEDIA_SPI_CHIP_SELECT;
#if CONFIG_SPI_FLASH_FAST_READ_DUAL_OUTPUT_3B == 1
boot_chan->dual_mode = 1;
#endif
boot_slave = &boot_chan->slave;
mmap_helper_device_init(&mdev, _cbfs_cache, _cbfs_cache_size);
}
#endif