d37ab454d4
In order to provide some insight on what code is executed during coreboot's run time and how well our test scenarios work, this adds code coverage support to coreboot's ram stage. This should be easily adaptable for payloads, and maybe even romstage. See http://gcc.gnu.org/onlinedocs/gcc/Gcov.html for more information. To instrument coreboot, select CONFIG_COVERAGE ("Code coverage support") in Kconfig, and recompile coreboot. coreboot will then store its code coverage information into CBMEM, if possible. Then, run "cbmem -CV" as root on the target system running the instrumented coreboot binary. This will create a whole bunch of .gcda files that contain coverage information. Tar them up, copy them to your build system machine, and untar them. Then you can use your favorite coverage utility (gcov, lcov, ...) to visualize code coverage. For a sneak peak of what will expect you, please take a look at http://www.coreboot.org/~stepan/coreboot-coverage/ Change-Id: Ib287d8309878a1f5c4be770c38b1bc0bb3aa6ec7 Signed-off-by: Stefan Reinauer <reinauer@google.com> Reviewed-on: http://review.coreboot.org/2052 Tested-by: build bot (Jenkins) Reviewed-by: David Hendricks <dhendrix@chromium.org> Reviewed-by: Martin Roth <martin@se-eng.com> Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
273 lines
7.1 KiB
C
273 lines
7.1 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2009 coresystems GmbH
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
|
|
*/
|
|
|
|
#include <types.h>
|
|
#include <string.h>
|
|
#include <cbmem.h>
|
|
#include <console/console.h>
|
|
#if CONFIG_HAVE_ACPI_RESUME && !defined(__PRE_RAM__)
|
|
#include <arch/acpi.h>
|
|
#endif
|
|
|
|
// The CBMEM TOC reserves 512 bytes to keep
|
|
// the other entries somewhat aligned.
|
|
// Increase if MAX_CBMEM_ENTRIES exceeds 21
|
|
#define CBMEM_TOC_RESERVED 512
|
|
#define MAX_CBMEM_ENTRIES 16
|
|
#define CBMEM_MAGIC 0x434f5245
|
|
|
|
struct cbmem_entry {
|
|
u32 magic;
|
|
u32 id;
|
|
u64 base;
|
|
u64 size;
|
|
} __attribute__((packed));
|
|
|
|
#ifndef __PRE_RAM__
|
|
static struct cbmem_entry *bss_cbmem_toc;
|
|
|
|
struct cbmem_entry *__attribute__((weak)) get_cbmem_toc(void)
|
|
{
|
|
return bss_cbmem_toc;
|
|
}
|
|
|
|
void __attribute__((weak)) set_cbmem_toc(struct cbmem_entry * x)
|
|
{
|
|
/* do nothing, this should be called by chipset to save TOC in NVRAM */
|
|
}
|
|
#else
|
|
|
|
struct cbmem_entry *__attribute__((weak)) get_cbmem_toc(void)
|
|
{
|
|
printk(BIOS_WARNING, "WARNING: you need to define get_cbmem_toc() for your chipset\n");
|
|
return NULL;
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* cbmem is a simple mechanism to do some kind of book keeping of the coreboot
|
|
* high tables memory. This is a small amount of memory which is "stolen" from
|
|
* the system memory for coreboot purposes. Usually this memory is used for
|
|
* - the coreboot table
|
|
* - legacy tables (PIRQ, MP table)
|
|
* - ACPI tables
|
|
* - suspend/resume backup memory
|
|
*/
|
|
|
|
void cbmem_init(u64 baseaddr, u64 size)
|
|
{
|
|
struct cbmem_entry *cbmem_toc;
|
|
cbmem_toc = (struct cbmem_entry *)(unsigned long)baseaddr;
|
|
|
|
#ifndef __PRE_RAM__
|
|
bss_cbmem_toc = cbmem_toc;
|
|
#endif
|
|
|
|
printk(BIOS_DEBUG, "Initializing CBMEM area to 0x%llx (%lld bytes)\n",
|
|
baseaddr, size);
|
|
|
|
if (size < (64 * 1024)) {
|
|
printk(BIOS_DEBUG, "Increase CBMEM size!\n");
|
|
for (;;) ;
|
|
}
|
|
|
|
/* we don't need to call this in romstage, usefull only from ramstage */
|
|
#ifndef __PRE_RAM__
|
|
set_cbmem_toc((struct cbmem_entry *)(unsigned long)baseaddr);
|
|
#endif
|
|
memset(cbmem_toc, 0, CBMEM_TOC_RESERVED);
|
|
|
|
cbmem_toc[0] = (struct cbmem_entry) {
|
|
.magic = CBMEM_MAGIC,
|
|
.id = CBMEM_ID_FREESPACE,
|
|
.base = baseaddr + CBMEM_TOC_RESERVED,
|
|
.size = size - CBMEM_TOC_RESERVED
|
|
};
|
|
}
|
|
|
|
int cbmem_reinit(u64 baseaddr)
|
|
{
|
|
struct cbmem_entry *cbmem_toc;
|
|
cbmem_toc = (struct cbmem_entry *)(unsigned long)baseaddr;
|
|
|
|
printk(BIOS_DEBUG, "Re-Initializing CBMEM area to 0x%lx\n",
|
|
(unsigned long)baseaddr);
|
|
|
|
#ifndef __PRE_RAM__
|
|
bss_cbmem_toc = cbmem_toc;
|
|
#endif
|
|
|
|
return (cbmem_toc[0].magic == CBMEM_MAGIC);
|
|
}
|
|
|
|
void *cbmem_add(u32 id, u64 size)
|
|
{
|
|
struct cbmem_entry *cbmem_toc;
|
|
int i;
|
|
void *p;
|
|
|
|
/*
|
|
* This could be a restart, check if the section is there already. It
|
|
* is remotely possible that the dram contents persisted over the
|
|
* bootloader upgrade AND the same section now needs more room, but
|
|
* this is quite a remote possibility and it is ignored here.
|
|
*/
|
|
p = cbmem_find(id);
|
|
if (p) {
|
|
printk(BIOS_NOTICE,
|
|
"CBMEM section %x: using existing location at %p.\n",
|
|
id, p);
|
|
return p;
|
|
}
|
|
|
|
cbmem_toc = get_cbmem_toc();
|
|
|
|
if (cbmem_toc == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
if (cbmem_toc[0].magic != CBMEM_MAGIC) {
|
|
printk(BIOS_ERR, "ERROR: CBMEM was not initialized yet.\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* Will the entry fit at all? */
|
|
if (size > cbmem_toc[0].size) {
|
|
printk(BIOS_ERR, "ERROR: Not enough memory for table %x\n", id);
|
|
return NULL;
|
|
}
|
|
|
|
/* Align size to 512 byte blocks */
|
|
|
|
size = ALIGN(size, 512) < cbmem_toc[0].size ?
|
|
ALIGN(size, 512) : cbmem_toc[0].size;
|
|
|
|
/* Now look for the first free/usable TOC entry */
|
|
for (i = 0; i < MAX_CBMEM_ENTRIES; i++) {
|
|
if (cbmem_toc[i].id == CBMEM_ID_NONE)
|
|
break;
|
|
}
|
|
|
|
if (i >= MAX_CBMEM_ENTRIES) {
|
|
printk(BIOS_ERR, "ERROR: No more CBMEM entries available.\n");
|
|
return NULL;
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "Adding CBMEM entry as no. %d\n", i);
|
|
|
|
cbmem_toc[i] = (struct cbmem_entry) {
|
|
.magic = CBMEM_MAGIC,
|
|
.id = id,
|
|
.base = cbmem_toc[0].base,
|
|
.size = size
|
|
};
|
|
|
|
cbmem_toc[0].base += size;
|
|
cbmem_toc[0].size -= size;
|
|
|
|
return (void *)(u32)cbmem_toc[i].base;
|
|
}
|
|
|
|
void *cbmem_find(u32 id)
|
|
{
|
|
struct cbmem_entry *cbmem_toc;
|
|
int i;
|
|
cbmem_toc = get_cbmem_toc();
|
|
|
|
if (cbmem_toc == NULL)
|
|
return NULL;
|
|
|
|
for (i = 0; i < MAX_CBMEM_ENTRIES; i++) {
|
|
if (cbmem_toc[i].id == id)
|
|
return (void *)(unsigned long)cbmem_toc[i].base;
|
|
}
|
|
|
|
return (void *)NULL;
|
|
}
|
|
|
|
#if CONFIG_EARLY_CBMEM_INIT || !defined(__PRE_RAM__)
|
|
/* Returns True if it was not intialized before. */
|
|
int cbmem_initialize(void)
|
|
{
|
|
int rv = 0;
|
|
|
|
#ifdef __PRE_RAM__
|
|
extern unsigned long get_top_of_ram(void);
|
|
uint64_t high_tables_base = get_top_of_ram() - HIGH_MEMORY_SIZE;
|
|
uint64_t high_tables_size = HIGH_MEMORY_SIZE;
|
|
#endif
|
|
|
|
/* We expect the romstage to always initialize it. */
|
|
if (!cbmem_reinit(high_tables_base)) {
|
|
#if CONFIG_HAVE_ACPI_RESUME && !defined(__PRE_RAM__)
|
|
/* Something went wrong, our high memory area got wiped */
|
|
if (acpi_slp_type == 3 || acpi_slp_type == 2)
|
|
acpi_slp_type = 0;
|
|
#endif
|
|
cbmem_init(high_tables_base, high_tables_size);
|
|
rv = 1;
|
|
}
|
|
#ifndef __PRE_RAM__
|
|
cbmem_arch_init();
|
|
#endif
|
|
return rv;
|
|
}
|
|
#endif
|
|
|
|
#ifndef __PRE_RAM__
|
|
void cbmem_list(void)
|
|
{
|
|
struct cbmem_entry *cbmem_toc;
|
|
int i;
|
|
cbmem_toc = get_cbmem_toc();
|
|
|
|
if (cbmem_toc == NULL)
|
|
return;
|
|
|
|
for (i = 0; i < MAX_CBMEM_ENTRIES; i++) {
|
|
|
|
if (cbmem_toc[i].magic != CBMEM_MAGIC)
|
|
continue;
|
|
printk(BIOS_DEBUG, "%2d. ", i);
|
|
switch (cbmem_toc[i].id) {
|
|
case CBMEM_ID_FREESPACE: printk(BIOS_DEBUG, "FREE SPACE "); break;
|
|
case CBMEM_ID_GDT: printk(BIOS_DEBUG, "GDT "); break;
|
|
case CBMEM_ID_ACPI: printk(BIOS_DEBUG, "ACPI "); break;
|
|
case CBMEM_ID_CBTABLE: printk(BIOS_DEBUG, "COREBOOT "); break;
|
|
case CBMEM_ID_PIRQ: printk(BIOS_DEBUG, "IRQ TABLE "); break;
|
|
case CBMEM_ID_MPTABLE: printk(BIOS_DEBUG, "SMP TABLE "); break;
|
|
case CBMEM_ID_RESUME: printk(BIOS_DEBUG, "ACPI RESUME"); break;
|
|
case CBMEM_ID_RESUME_SCRATCH: printk(BIOS_DEBUG, "ACPISCRATCH"); break;
|
|
case CBMEM_ID_ACPI_GNVS: printk(BIOS_DEBUG, "ACPI GNVS "); break;
|
|
case CBMEM_ID_SMBIOS: printk(BIOS_DEBUG, "SMBIOS "); break;
|
|
case CBMEM_ID_TIMESTAMP: printk(BIOS_DEBUG, "TIME STAMP "); break;
|
|
case CBMEM_ID_MRCDATA: printk(BIOS_DEBUG, "MRC DATA "); break;
|
|
case CBMEM_ID_CONSOLE: printk(BIOS_DEBUG, "CONSOLE "); break;
|
|
case CBMEM_ID_ELOG: printk(BIOS_DEBUG, "ELOG "); break;
|
|
case CBMEM_ID_COVERAGE: printk(BIOS_DEBUG, "COVERAGE "); break;
|
|
default: printk(BIOS_DEBUG, "%08x ", cbmem_toc[i].id);
|
|
}
|
|
printk(BIOS_DEBUG, "%08llx ", cbmem_toc[i].base);
|
|
printk(BIOS_DEBUG, "%08llx\n", cbmem_toc[i].size);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|