e3acc8fcf3
Change-Id: Iaa56e7b98aad33eeb876edd7465c56c80fd1ac18 Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/35398 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Aaron Durbin <adurbin@chromium.org>
359 lines
8.3 KiB
C
359 lines
8.3 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2013 Google, Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <bootstate.h>
|
|
#include <bootmem.h>
|
|
#include <console/console.h>
|
|
#include <cbmem.h>
|
|
#include <imd.h>
|
|
#include <lib.h>
|
|
#include <stdlib.h>
|
|
#include <arch/early_variables.h>
|
|
|
|
/*
|
|
* We need special handling on x86 where CAR global migration is employed. One
|
|
* cannot use true globals in that circumstance because CAR is where the globals
|
|
* are backed -- creating a circular dependency. For non CAR platforms globals
|
|
* are free to be used as well as any stages that are purely executing out of
|
|
* RAM. For CAR platforms that don't migrate globals the as-linked globals can
|
|
* be used, but they need special decoration using CAR_GLOBAL. That ensures
|
|
* proper object placement in conjunction with the linker.
|
|
*
|
|
* For the CAR global migration platforms we have to always try to partially
|
|
* recover CBMEM from cbmem_top() whenever we try to access it. In other
|
|
* environments we're not so constrained and just keep the backing imd struct
|
|
* in a global. This also means that we can easily tell whether CBMEM has
|
|
* explicitly been initialized or recovered yet on those platforms, and don't
|
|
* need to put the burden on board or chipset code to tell us by returning
|
|
* NULL from cbmem_top() before that point.
|
|
*/
|
|
#define CAN_USE_GLOBALS \
|
|
(!CONFIG(ARCH_X86) || ENV_RAMSTAGE || ENV_POSTCAR || \
|
|
!CONFIG(CAR_GLOBAL_MIGRATION))
|
|
|
|
static inline struct imd *cbmem_get_imd(void)
|
|
{
|
|
if (CAN_USE_GLOBALS) {
|
|
static struct imd imd_cbmem CAR_GLOBAL;
|
|
return &imd_cbmem;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static inline const struct cbmem_entry *imd_to_cbmem(const struct imd_entry *e)
|
|
{
|
|
return (const struct cbmem_entry *)e;
|
|
}
|
|
|
|
static inline const struct imd_entry *cbmem_to_imd(const struct cbmem_entry *e)
|
|
{
|
|
return (const struct imd_entry *)e;
|
|
}
|
|
|
|
/* These are the different situations to handle:
|
|
*
|
|
* In ramstage cbmem_initialize() attempts a recovery of the
|
|
* cbmem region set up by romstage. It uses cbmem_top() as the
|
|
* starting point of recovery.
|
|
*
|
|
* In romstage, similar to ramstage, cbmem_initialize() needs to
|
|
* attempt recovery of the cbmem area using cbmem_top() as the limit.
|
|
* cbmem_initialize_empty() initializes an empty cbmem area from
|
|
* cbmem_top();
|
|
*
|
|
*/
|
|
static struct imd *imd_init_backing(struct imd *backing)
|
|
{
|
|
struct imd *imd;
|
|
|
|
imd = cbmem_get_imd();
|
|
|
|
if (imd != NULL)
|
|
return imd;
|
|
|
|
imd = backing;
|
|
|
|
return imd;
|
|
}
|
|
|
|
static struct imd *imd_init_backing_with_recover(struct imd *backing)
|
|
{
|
|
struct imd *imd;
|
|
|
|
imd = imd_init_backing(backing);
|
|
if (!CAN_USE_GLOBALS) {
|
|
/* Always partially recover if we can't keep track of whether
|
|
* we have already initialized CBMEM in this stage. */
|
|
imd_handle_init(imd, cbmem_top());
|
|
imd_handle_init_partial_recovery(imd);
|
|
}
|
|
|
|
return imd;
|
|
}
|
|
|
|
void cbmem_initialize_empty(void)
|
|
{
|
|
cbmem_initialize_empty_id_size(0, 0);
|
|
}
|
|
|
|
void __weak cbmem_top_init(void)
|
|
{
|
|
}
|
|
|
|
static void cbmem_top_init_once(void)
|
|
{
|
|
/* Call one-time hook on expected cbmem init during boot. This sequence
|
|
assumes first init call is in romstage. */
|
|
if (!ENV_ROMSTAGE)
|
|
return;
|
|
|
|
cbmem_top_init();
|
|
|
|
/* The test is only effective on X86 and when address hits UC memory. */
|
|
if (ENV_X86)
|
|
quick_ram_check_or_die((uintptr_t)cbmem_top() - sizeof(u32));
|
|
}
|
|
|
|
void cbmem_initialize_empty_id_size(u32 id, u64 size)
|
|
{
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
const int no_recovery = 0;
|
|
|
|
cbmem_top_init_once();
|
|
|
|
imd = imd_init_backing(&imd_backing);
|
|
imd_handle_init(imd, cbmem_top());
|
|
|
|
printk(BIOS_DEBUG, "CBMEM:\n");
|
|
|
|
if (imd_create_tiered_empty(imd, CBMEM_ROOT_MIN_SIZE, CBMEM_LG_ALIGN,
|
|
CBMEM_SM_ROOT_SIZE, CBMEM_SM_ALIGN)) {
|
|
printk(BIOS_DEBUG, "failed.\n");
|
|
return;
|
|
}
|
|
|
|
/* Add the specified range first */
|
|
if (size)
|
|
cbmem_add(id, size);
|
|
|
|
/* Complete migration to CBMEM. */
|
|
cbmem_run_init_hooks(no_recovery);
|
|
}
|
|
|
|
int cbmem_initialize(void)
|
|
{
|
|
return cbmem_initialize_id_size(0, 0);
|
|
}
|
|
|
|
int cbmem_initialize_id_size(u32 id, u64 size)
|
|
{
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
const int recovery = 1;
|
|
|
|
cbmem_top_init_once();
|
|
|
|
imd = imd_init_backing(&imd_backing);
|
|
imd_handle_init(imd, cbmem_top());
|
|
|
|
if (imd_recover(imd))
|
|
return 1;
|
|
|
|
/*
|
|
* Lock the imd in romstage on a recovery. The assumption is that
|
|
* if the imd area was recovered in romstage then S3 resume path
|
|
* is being taken.
|
|
*/
|
|
if (ENV_ROMSTAGE)
|
|
imd_lockdown(imd);
|
|
|
|
/* Add the specified range first */
|
|
if (size)
|
|
cbmem_add(id, size);
|
|
|
|
/* Complete migration to CBMEM. */
|
|
cbmem_run_init_hooks(recovery);
|
|
|
|
/* Recovery successful. */
|
|
return 0;
|
|
}
|
|
|
|
int cbmem_recovery(int is_wakeup)
|
|
{
|
|
int rv = 0;
|
|
if (!is_wakeup)
|
|
cbmem_initialize_empty();
|
|
else
|
|
rv = cbmem_initialize();
|
|
return rv;
|
|
}
|
|
|
|
const struct cbmem_entry *cbmem_entry_add(u32 id, u64 size64)
|
|
{
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
const struct imd_entry *e;
|
|
|
|
imd = imd_init_backing_with_recover(&imd_backing);
|
|
|
|
e = imd_entry_find_or_add(imd, id, size64);
|
|
|
|
return imd_to_cbmem(e);
|
|
}
|
|
|
|
void *cbmem_add(u32 id, u64 size)
|
|
{
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
const struct imd_entry *e;
|
|
|
|
imd = imd_init_backing_with_recover(&imd_backing);
|
|
|
|
e = imd_entry_find_or_add(imd, id, size);
|
|
|
|
if (e == NULL)
|
|
return NULL;
|
|
|
|
return imd_entry_at(imd, e);
|
|
}
|
|
|
|
/* Retrieve a region provided a given id. */
|
|
const struct cbmem_entry *cbmem_entry_find(u32 id)
|
|
{
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
const struct imd_entry *e;
|
|
|
|
imd = imd_init_backing_with_recover(&imd_backing);
|
|
|
|
e = imd_entry_find(imd, id);
|
|
|
|
return imd_to_cbmem(e);
|
|
}
|
|
|
|
void *cbmem_find(u32 id)
|
|
{
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
const struct imd_entry *e;
|
|
|
|
imd = imd_init_backing_with_recover(&imd_backing);
|
|
|
|
e = imd_entry_find(imd, id);
|
|
|
|
if (e == NULL)
|
|
return NULL;
|
|
|
|
return imd_entry_at(imd, e);
|
|
}
|
|
|
|
/* Remove a reserved region. Returns 0 on success, < 0 on error. Note: A region
|
|
* cannot be removed unless it was the last one added. */
|
|
int cbmem_entry_remove(const struct cbmem_entry *entry)
|
|
{
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
|
|
imd = imd_init_backing_with_recover(&imd_backing);
|
|
|
|
return imd_entry_remove(imd, cbmem_to_imd(entry));
|
|
}
|
|
|
|
u64 cbmem_entry_size(const struct cbmem_entry *entry)
|
|
{
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
|
|
imd = imd_init_backing_with_recover(&imd_backing);
|
|
|
|
return imd_entry_size(imd, cbmem_to_imd(entry));
|
|
}
|
|
|
|
void *cbmem_entry_start(const struct cbmem_entry *entry)
|
|
{
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
|
|
imd = imd_init_backing_with_recover(&imd_backing);
|
|
|
|
return imd_entry_at(imd, cbmem_to_imd(entry));
|
|
}
|
|
|
|
void cbmem_add_bootmem(void)
|
|
{
|
|
void *baseptr = NULL;
|
|
size_t size = 0;
|
|
|
|
cbmem_get_region(&baseptr, &size);
|
|
bootmem_add_range((uintptr_t)baseptr, size, BM_MEM_TABLE);
|
|
}
|
|
|
|
void cbmem_get_region(void **baseptr, size_t *size)
|
|
{
|
|
imd_region_used(cbmem_get_imd(), baseptr, size);
|
|
}
|
|
|
|
#if ENV_PAYLOAD_LOADER || (CONFIG(EARLY_CBMEM_LIST) \
|
|
&& (ENV_POSTCAR || ENV_ROMSTAGE))
|
|
/*
|
|
* -fdata-sections doesn't work so well on read only strings. They all
|
|
* get put in the same section even though those strings may never be
|
|
* referenced in the final binary.
|
|
*/
|
|
void cbmem_list(void)
|
|
{
|
|
static const struct imd_lookup lookup[] = { CBMEM_ID_TO_NAME_TABLE };
|
|
struct imd *imd;
|
|
struct imd imd_backing;
|
|
|
|
imd = imd_init_backing_with_recover(&imd_backing);
|
|
imd_print_entries(imd, lookup, ARRAY_SIZE(lookup));
|
|
}
|
|
#endif
|
|
|
|
void cbmem_add_records_to_cbtable(struct lb_header *header)
|
|
{
|
|
struct imd_cursor cursor;
|
|
struct imd *imd;
|
|
|
|
imd = cbmem_get_imd();
|
|
|
|
if (imd_cursor_init(imd, &cursor))
|
|
return;
|
|
|
|
while (1) {
|
|
const struct imd_entry *e;
|
|
struct lb_cbmem_entry *lbe;
|
|
uint32_t id;
|
|
|
|
e = imd_cursor_next(&cursor);
|
|
|
|
if (e == NULL)
|
|
break;
|
|
|
|
id = imd_entry_id(imd, e);
|
|
/* Don't add these metadata entries. */
|
|
if (id == CBMEM_ID_IMD_ROOT || id == CBMEM_ID_IMD_SMALL)
|
|
continue;
|
|
|
|
lbe = (struct lb_cbmem_entry *)lb_new_record(header);
|
|
lbe->tag = LB_TAG_CBMEM_ENTRY;
|
|
lbe->size = sizeof(*lbe);
|
|
lbe->address = (uintptr_t)imd_entry_at(imd, e);
|
|
lbe->entry_size = imd_entry_size(imd, e);
|
|
lbe->id = id;
|
|
}
|
|
}
|