coreboot-kgpe-d16/util/kconfig/list.h
Patrick Georgi 53ea1d44f0 util/kconfig: Uprev to Linux 5.13's kconfig
This was originally several commits that had to be squashed into one
because the intermediate states weren't able to build coreboot:

 - one to remove everything that wasn't our own code, leaving only
   regex.[ch], toada.c, description.md and Makefile.inc.
 - one to copy in Linux 5.13's scripts/kconfig and adapt Makefile.inc
   to make the original Makefile work again.
 - adapt abuild to use olddefconfig, simplifying matters.
 - apply patches in util/kconfig/patches.
 - Some more adaptations to the libpayload build system.

The patches are now in util/kconfig/patches/, reverse applying them
should lead to a util/kconfig/ tree that contains exactly the Linux
version + our own 5 files.

Change-Id: Ia0e8fe4e9022b278f34ab113a433ef4d45e5c355
Signed-off-by: Patrick Georgi <pgeorgi@google.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/37152
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Raul Rangel <rrangel@chromium.org>
2021-07-13 20:28:14 +00:00

132 lines
3.7 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef LIST_H
#define LIST_H
/*
* Copied from include/linux/...
*/
#undef offsetof
#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)
/**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
struct list_head {
struct list_head *next, *prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_head within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop cursor.
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
/**
* list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
* @pos: the type * to use as a loop cursor.
* @n: another type * to use as temporary storage
* @head: the head for your list.
* @member: the name of the list_head within the struct.
*/
#define list_for_each_entry_safe(pos, n, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member), \
n = list_entry(pos->member.next, typeof(*pos), member); \
&pos->member != (head); \
pos = n, n = list_entry(n->member.next, typeof(*n), member))
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head *_new,
struct list_head *prev,
struct list_head *next)
{
next->prev = _new;
_new->next = next;
_new->prev = prev;
prev->next = _new;
}
/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *_new, struct list_head *head)
{
__list_add(_new, head->prev, head);
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head *prev, struct list_head *next)
{
next->prev = prev;
prev->next = next;
}
#define LIST_POISON1 ((void *) 0x00100100)
#define LIST_POISON2 ((void *) 0x00200200)
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty() on entry does not return true after this, the entry is
* in an undefined state.
*/
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = (struct list_head*)LIST_POISON1;
entry->prev = (struct list_head*)LIST_POISON2;
}
#endif