coreboot-kgpe-d16/src/cpu/x86/pae/pgtbl.c
Martin Roth d57ace259a AUTHORS: Move src/cpu copyrights into AUTHORS file
As discussed on the mailing list and voted upon, the coreboot project
is going to move the majority of copyrights out of the headers and into
an AUTHORS file.  This will happen a bit at a time, as we'll be unifying
license headers at the same time.

Signed-off-by: Martin Roth <martin@coreboot.org>
Change-Id: Id6070fb586896653a1e44951a6af8f42f93b5a7b
Reviewed-on: https://review.coreboot.org/c/coreboot/+/35184
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Patrick Georgi <pgeorgi@google.com>
2019-09-10 12:51:22 +00:00

552 lines
13 KiB
C

/*
* This file is part of the coreboot project.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <cbfs.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <arch/cpu.h>
#include <cpu/x86/cr.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/pae.h>
#include <string.h>
#include <symbols.h>
#include <assert.h>
#define PDPTE_PRES (1ULL << 0)
#define PDPTE_ADDR_MASK (~((1ULL << 12) - 1))
#define PDE_PRES (1ULL << 0)
#define PDE_RW (1ULL << 1)
#define PDE_US (1ULL << 2)
#define PDE_PWT (1ULL << 3)
#define PDE_PCD (1ULL << 4)
#define PDE_A (1ULL << 5)
#define PDE_D (1ULL << 6) // only valid with PS=1
#define PDE_PS (1ULL << 7)
#define PDE_G (1ULL << 8) // only valid with PS=1
#define PDE_PAT (1ULL << 12) // only valid with PS=1
#define PDE_XD (1ULL << 63)
#define PDE_ADDR_MASK (~((1ULL << 12) - 1))
#define PTE_PRES (1ULL << 0)
#define PTE_RW (1ULL << 1)
#define PTE_US (1ULL << 2)
#define PTE_PWT (1ULL << 3)
#define PTE_PCD (1ULL << 4)
#define PTE_A (1ULL << 5)
#define PTE_D (1ULL << 6)
#define PTE_PAT (1ULL << 7)
#define PTE_G (1ULL << 8)
#define PTE_XD (1ULL << 63)
#define PDPTE_IDX_SHIFT 30
#define PDPTE_IDX_MASK 0x3
#define PDE_IDX_SHIFT 21
#define PDE_IDX_MASK 0x1ff
#define PTE_IDX_SHIFT 12
#define PTE_IDX_MASK 0x1ff
#define OVERLAP(a, b, s, e) ((b) > (s) && (a) < (e))
static const size_t s2MiB = 2 * MiB;
static const size_t s4KiB = 4 * KiB;
struct pde {
uint32_t addr_lo;
uint32_t addr_hi;
} __packed;
struct pg_table {
struct pde pd[2048];
struct pde pdp[512];
} __packed;
void paging_enable_pae_cr3(uintptr_t cr3)
{
/* Load the page table address */
write_cr3(cr3);
paging_enable_pae();
}
void paging_enable_pae(void)
{
CRx_TYPE cr0;
CRx_TYPE cr4;
/* Enable PAE */
cr4 = read_cr4();
cr4 |= CR4_PAE;
write_cr4(cr4);
/* Enable Paging */
cr0 = read_cr0();
cr0 |= CR0_PG;
write_cr0(cr0);
}
void paging_disable_pae(void)
{
CRx_TYPE cr0;
CRx_TYPE cr4;
/* Disable Paging */
cr0 = read_cr0();
cr0 &= ~(CRx_TYPE)CR0_PG;
write_cr0(cr0);
/* Disable PAE */
cr4 = read_cr4();
cr4 &= ~(CRx_TYPE)CR4_PAE;
write_cr4(cr4);
}
/*
* Use PAE to map a page and then memset it with the pattern specified.
* In order to use PAE pagetables for virtual addressing are set up and reloaded
* on a 2MiB boundary. After the function is done, virtual addressing mode is
* disabled again. The PAT are set to all cachable, but MTRRs still apply.
*
* Requires a scratch memory for pagetables and a virtual address for
* non identity mapped memory.
*
* The scratch memory area containing pagetables must not overlap with the
* memory range to be cleared.
* The scratch memory area containing pagetables must not overlap with the
* virtual address for non identity mapped memory.
*
* @param vmem_addr Where the virtual non identity mapped page resides, must
* be 2 aligned MiB and at least 2 MiB in size.
* Content at physical address is preserved.
* @param pgtbl Where pagetables reside, must be 4 KiB aligned and 20 KiB in
* size.
* Must not overlap memory range pointed to by dest.
* Must not overlap memory range pointed to by vmem_addr.
* Content at physical address isn't preserved.
* @param length The length of the memory segment to memset
* @param dest Physical memory address to memset
* @param pat The pattern to write to the pyhsical memory
* @return 0 on success, 1 on error
*/
int memset_pae(uint64_t dest, unsigned char pat, uint64_t length, void *pgtbl,
void *vmem_addr)
{
struct pg_table *pgtbl_buf = (struct pg_table *)pgtbl;
ssize_t offset;
printk(BIOS_DEBUG, "%s: Using virtual address %p as scratchpad\n",
__func__, vmem_addr);
printk(BIOS_DEBUG, "%s: Using address %p for page tables\n",
__func__, pgtbl_buf);
/* Cover some basic error conditions */
if (!IS_ALIGNED((uintptr_t)pgtbl_buf, s4KiB) ||
!IS_ALIGNED((uintptr_t)vmem_addr, s2MiB)) {
printk(BIOS_ERR, "%s: Invalid alignment\n", __func__);
return 1;
}
const uintptr_t pgtbl_s = (uintptr_t)pgtbl_buf;
const uintptr_t pgtbl_e = pgtbl_s + sizeof(struct pg_table);
if (OVERLAP(dest, dest + length, pgtbl_s, pgtbl_e)) {
printk(BIOS_ERR, "%s: destination overlaps page tables\n",
__func__);
return 1;
}
if (OVERLAP((uintptr_t)vmem_addr, (uintptr_t)vmem_addr + s2MiB,
pgtbl_s, pgtbl_e)) {
printk(BIOS_ERR, "%s: vmem address overlaps page tables\n",
__func__);
return 1;
}
paging_disable_pae();
struct pde *pd = pgtbl_buf->pd, *pdp = pgtbl_buf->pdp;
/* Point the page directory pointers at the page directories. */
memset(pgtbl_buf->pdp, 0, sizeof(pgtbl_buf->pdp));
pdp[0].addr_lo = ((uintptr_t)&pd[512*0]) | PDPTE_PRES;
pdp[1].addr_lo = ((uintptr_t)&pd[512*1]) | PDPTE_PRES;
pdp[2].addr_lo = ((uintptr_t)&pd[512*2]) | PDPTE_PRES;
pdp[3].addr_lo = ((uintptr_t)&pd[512*3]) | PDPTE_PRES;
offset = dest - ALIGN_DOWN(dest, s2MiB);
dest = ALIGN_DOWN(dest, s2MiB);
/* Identity map the whole 32-bit address space */
for (size_t i = 0; i < 2048; i++) {
pd[i].addr_lo = (i << PDE_IDX_SHIFT) | PDE_PS | PDE_PRES | PDE_RW;
pd[i].addr_hi = 0;
}
/* Get pointer to PD that's not identity mapped */
pd = &pgtbl_buf->pd[((uintptr_t)vmem_addr) >> PDE_IDX_SHIFT];
paging_enable_pae_cr3((uintptr_t)pdp);
do {
const size_t len = MIN(length, s2MiB - offset);
/*
* Map a page using PAE at virtual address vmem_addr.
* dest is already 2 MiB aligned.
*/
pd->addr_lo = dest | PDE_PS | PDE_PRES | PDE_RW;
pd->addr_hi = dest >> 32;
/* Update page tables */
asm volatile ("invlpg (%0)" :: "b"(vmem_addr) : "memory");
printk(BIOS_SPEW, "%s: Clearing %llx[%lx] - %zx\n", __func__,
dest + offset, (uintptr_t)vmem_addr + offset, len);
memset(vmem_addr + offset, pat, len);
dest += s2MiB;
length -= len;
offset = 0;
} while (length > 0);
paging_disable_pae();
return 0;
}
#if ENV_RAMSTAGE
void *map_2M_page(unsigned long page)
{
struct pde {
uint32_t addr_lo;
uint32_t addr_hi;
} __packed;
struct pg_table {
struct pde pd[2048];
struct pde pdp[512];
} __packed;
static struct pg_table pgtbl[CONFIG_MAX_CPUS]
__attribute__((aligned(4096)));
static unsigned long mapped_window[CONFIG_MAX_CPUS];
int index;
unsigned long window;
void *result;
int i;
index = cpu_index();
if (index < 0)
return MAPPING_ERROR;
window = page >> 10;
if (window != mapped_window[index]) {
paging_disable_pae();
if (window > 1) {
struct pde *pd, *pdp;
/* Point the page directory pointers at the page
* directories
*/
memset(&pgtbl[index].pdp, 0, sizeof(pgtbl[index].pdp));
pd = pgtbl[index].pd;
pdp = pgtbl[index].pdp;
pdp[0].addr_lo = ((uintptr_t)&pd[512*0])|1;
pdp[1].addr_lo = ((uintptr_t)&pd[512*1])|1;
pdp[2].addr_lo = ((uintptr_t)&pd[512*2])|1;
pdp[3].addr_lo = ((uintptr_t)&pd[512*3])|1;
/* The first half of the page table is identity mapped
*/
for (i = 0; i < 1024; i++) {
pd[i].addr_lo = ((i & 0x3ff) << 21) | 0xE3;
pd[i].addr_hi = 0;
}
/* The second half of the page table holds the mapped
* page
*/
for (i = 1024; i < 2048; i++) {
pd[i].addr_lo = ((window & 1) << 31)
| ((i & 0x3ff) << 21) | 0xE3;
pd[i].addr_hi = (window >> 1);
}
paging_enable_pae_cr3((uintptr_t)pdp);
}
mapped_window[index] = window;
}
if (window == 0)
result = (void *)(page << 21);
else
result = (void *)(0x80000000 | ((page & 0x3ff) << 21));
return result;
}
#endif
void paging_set_nxe(int enable)
{
msr_t msr = rdmsr(IA32_EFER);
if (enable)
msr.lo |= EFER_NXE;
else
msr.lo &= ~EFER_NXE;
wrmsr(IA32_EFER, msr);
}
void paging_set_pat(uint64_t pat)
{
msr_t msr;
msr.lo = pat;
msr.hi = pat >> 32;
wrmsr(IA32_PAT, msr);
}
/* PAT encoding used in util/x86/x86_page_tables.go. It matches the linux
* kernel settings:
* PTE encoding:
* PAT
* |PCD
* ||PWT PAT
* ||| slot
* 000 0 WB : _PAGE_CACHE_MODE_WB
* 001 1 WC : _PAGE_CACHE_MODE_WC
* 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
* 011 3 UC : _PAGE_CACHE_MODE_UC
* 100 4 WB : Reserved
* 101 5 WP : _PAGE_CACHE_MODE_WP
* 110 6 UC-: Reserved
* 111 7 WT : _PAGE_CACHE_MODE_WT
*/
void paging_set_default_pat(void)
{
uint64_t pat = PAT_ENCODE(WB, 0) | PAT_ENCODE(WC, 1) |
PAT_ENCODE(UC_MINUS, 2) | PAT_ENCODE(UC, 3) |
PAT_ENCODE(WB, 4) | PAT_ENCODE(WP, 5) |
PAT_ENCODE(UC_MINUS, 6) | PAT_ENCODE(WT, 7);
paging_set_pat(pat);
}
static int read_from_cbfs(const char *name, void *buf, size_t size)
{
struct cbfsf fh;
struct region_device rdev;
size_t rdev_sz;
if (cbfs_boot_locate(&fh, name, NULL))
return -1;
cbfs_file_data(&rdev, &fh);
rdev_sz = region_device_sz(&rdev);
if (size < rdev_sz) {
printk(BIOS_ERR, "%s region too small to load: %zx < %zx\n",
name, size, rdev_sz);
return -1;
}
if (rdev_readat(&rdev, buf, 0, rdev_sz) != rdev_sz)
return -1;
return 0;
}
int paging_enable_for_car(const char *pdpt_name, const char *pt_name)
{
if (!preram_symbols_available())
return -1;
if (read_from_cbfs(pdpt_name, _pdpt, REGION_SIZE(pdpt))) {
printk(BIOS_ERR, "Couldn't load pdpt\n");
return -1;
}
if (read_from_cbfs(pt_name, _pagetables, REGION_SIZE(pagetables))) {
printk(BIOS_ERR, "Couldn't load page tables\n");
return -1;
}
paging_enable_pae_cr3((uintptr_t)_pdpt);
return 0;
}
static void *get_pdpt_addr(void)
{
if (preram_symbols_available())
return _pdpt;
return (void *)(uintptr_t)read_cr3();
}
static uint64_t pde_pat_flags(int pat)
{
switch (pat) {
case PAT_UC:
return 0 | PDE_PCD | PDE_PWT;
case PAT_WC:
return 0 | 0 | PDE_PWT;
case PAT_WT:
return PDE_PAT | PDE_PCD | PDE_PWT;
case PAT_WP:
return PDE_PAT | 0 | PDE_PWT;
case PAT_WB:
return 0 | 0 | 0;
case PAT_UC_MINUS:
return 0 | PDE_PCD | 0;
default:
printk(BIOS_ERR, "PDE PAT defaulting to WB: %x\n", pat);
return pde_pat_flags(PAT_WB);
}
}
static uint64_t pde_page_flags(int pat)
{
uint64_t flags = PDE_PS | PDE_PRES | PDE_RW | PDE_A | PDE_D;
return flags | pde_pat_flags(pat);
}
static uint64_t pte_pat_flags(int pat)
{
switch (pat) {
case PAT_UC:
return 0 | PTE_PCD | PTE_PWT;
case PAT_WC:
return 0 | 0 | PTE_PWT;
case PAT_WT:
return PTE_PAT | PTE_PCD | PTE_PWT;
case PAT_WP:
return PTE_PAT | 0 | PTE_PWT;
case PAT_WB:
return 0 | 0 | 0;
case PAT_UC_MINUS:
return 0 | PTE_PCD | 0;
default:
printk(BIOS_ERR, "PTE PAT defaulting to WB: %x\n", pat);
return pte_pat_flags(PAT_WB);
}
}
static uint64_t pte_page_flags(int pat)
{
uint64_t flags = PTE_PRES | PTE_RW | PTE_A | PTE_D;
return flags | pte_pat_flags(pat);
}
/* Identity map an address. This function does not handle splitting or adding
* new pages to the page tables. It's assumed all the page tables are already
* seeded with the correct amount and topology. */
static int identity_map_one_page(uintptr_t base, size_t size, int pat,
int commit)
{
uint64_t (*pdpt)[4];
uint64_t pdpte;
uint64_t (*pd)[512];
uint64_t pde;
pdpt = get_pdpt_addr();
pdpte = (*pdpt)[(base >> PDPTE_IDX_SHIFT) & PDPTE_IDX_MASK];
/* No page table page allocation. */
if (!(pdpte & PDPTE_PRES))
return -1;
pd = (void *)(uintptr_t)(pdpte & PDPTE_ADDR_MASK);
/* Map in a 2MiB page. */
if (size == s2MiB) {
if (!commit)
return 0;
pde = base;
pde |= pde_page_flags(pat);
(*pd)[(base >> PDE_IDX_SHIFT) & PDE_IDX_MASK] = pde;
return 0;
}
if (size == s4KiB) {
uint64_t (*pt)[512];
uint64_t pte;
pde = (*pd)[(base >> PDE_IDX_SHIFT) & PDE_IDX_MASK];
/* No page table page allocation. */
if (!(pde & PDE_PRES)) {
printk(BIOS_ERR, "Cannot allocate page table for pde %p\n",
(void *)base);
return -1;
}
/* No splitting pages */
if (pde & PDE_PS) {
printk(BIOS_ERR, "Cannot split pde %p\n", (void *)base);
return -1;
}
if (!commit)
return 0;
pt = (void *)(uintptr_t)(pde & PDE_ADDR_MASK);
pte = base;
pte |= pte_page_flags(pat);
(*pt)[(base >> PTE_IDX_SHIFT) & PTE_IDX_MASK] = pte;
return 0;
}
return -1;
}
static int _paging_identity_map_addr(uintptr_t base, size_t size, int pat,
int commit)
{
while (size != 0) {
size_t map_size;
map_size = IS_ALIGNED(base, s2MiB) ? s2MiB : s4KiB;
map_size = MIN(size, map_size);
if (identity_map_one_page(base, map_size, pat, commit) < 0)
return -1;
base += map_size;
size -= map_size;
}
return 0;
}
static int paging_is_enabled(void)
{
return !!(read_cr0() & CR0_PG);
}
int paging_identity_map_addr(uintptr_t base, size_t size, int pat)
{
if (!paging_is_enabled()) {
printk(BIOS_ERR, "Paging is not enabled.\n");
return -1;
}
if (!IS_ALIGNED(base, s2MiB) && !IS_ALIGNED(base, s4KiB)) {
printk(BIOS_ERR, "base %p is not aligned.\n", (void *)base);
return -1;
}
if (!IS_ALIGNED(size, s2MiB) && !IS_ALIGNED(size, s4KiB)) {
printk(BIOS_ERR, "size %zx is not aligned.\n", size);
return -1;
}
/* First try without committing. If success commit. */
if (_paging_identity_map_addr(base, size, pat, 0))
return -1;
return _paging_identity_map_addr(base, size, pat, 1);
}