coreboot-kgpe-d16/payloads/libpayload/drivers/usb/dwc2.c

612 lines
15 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2014 Rockchip Electronics
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <libpayload.h>
#include <arch/cache.h>
#include "dwc2.h"
#include "dwc2_private.h"
static void dummy(hci_t *controller)
{
}
static void dwc2_reinit(hci_t *controller)
{
dwc2_reg_t *reg = DWC2_REG(controller);
gusbcfg_t gusbcfg = { .d32 = 0 };
grstctl_t grstctl = { .d32 = 0 };
gintsts_t gintsts = { .d32 = 0 };
gahbcfg_t gahbcfg = { .d32 = 0 };
grxfsiz_t grxfsiz = { .d32 = 0 };
ghwcfg3_t hwcfg3 = { .d32 = 0 };
hcintmsk_t hcintmsk = { .d32 = 0 };
gtxfsiz_t gnptxfsiz = { .d32 = 0 };
gtxfsiz_t hptxfsiz = { .d32 = 0 };
const int timeout = 10000;
int i, fifo_blocks, tx_blocks;
/* Wait for AHB idle */
for (i = 0; i < timeout; i++) {
udelay(1);
grstctl.d32 = readl(&reg->core.grstctl);
if (grstctl.ahbidle)
break;
}
if (i == timeout)
fatal("DWC2 Init error AHB Idle\n");
/* Restart the Phy Clock */
writel(0x0, &reg->pcgr.pcgcctl);
/* Core soft reset */
grstctl.csftrst = 1;
writel(grstctl.d32, &reg->core.grstctl);
for (i = 0; i < timeout; i++) {
udelay(1);
grstctl.d32 = readl(&reg->core.grstctl);
if (!grstctl.csftrst)
break;
}
if (i == timeout)
fatal("DWC2 Init error reset fail\n");
/* Set 16bit PHY if & Force host mode */
gusbcfg.d32 = readl(&reg->core.gusbcfg);
gusbcfg.phyif = 1;
gusbcfg.forcehstmode = 1;
gusbcfg.forcedevmode = 0;
writel(gusbcfg.d32, &reg->core.gusbcfg);
/* Wait for force host mode effect, it may takes 100ms */
for (i = 0; i < timeout; i++) {
udelay(10);
gintsts.d32 = readl(&reg->core.gintsts);
if (gintsts.curmod)
break;
}
if (i == timeout)
fatal("DWC2 Init error force host mode fail\n");
/*
* Config FIFO
* The non-periodic tx fifo and rx fifo share one continuous
* piece of IP-internal SRAM.
*/
/*
* Read total data FIFO depth from HWCFG3
* this value is in terms of 32-bit words
*/
hwcfg3.d32 = readl(&reg->core.ghwcfg3);
/*
* Reserve 2 spaces for the status entries of received packets
* and 2 spaces for bulk and control OUT endpoints. Calculate how
* many blocks can be alloted, assume largest packet size is 512.
* 16 locations reserved for periodic TX .
*/
fifo_blocks = (hwcfg3.dfifodepth - 4 - 16) / (512 / 4);
tx_blocks = fifo_blocks / 2;
grxfsiz.rxfdep = (fifo_blocks - tx_blocks) * (512 / 4) + 4;
writel(grxfsiz.d32, &reg->core.grxfsiz);
gnptxfsiz.txfstaddr = grxfsiz.rxfdep;
gnptxfsiz.txfdep = tx_blocks * (512 / 4);
writel(gnptxfsiz.d32, &reg->core.gnptxfsiz);
hptxfsiz.txfstaddr = gnptxfsiz.txfstaddr + gnptxfsiz.txfdep;
hptxfsiz.txfdep = 16;
writel(hptxfsiz.d32, &reg->core.hptxfsiz);
/* Init host channels */
hcintmsk.xfercomp = 1;
hcintmsk.xacterr = 1;
hcintmsk.stall = 1;
hcintmsk.chhltd = 1;
hcintmsk.bblerr = 1;
for (i = 0; i < MAX_EPS_CHANNELS; i++)
writel(hcintmsk.d32, &reg->host.hchn[i].hcintmaskn);
/* Unmask interrupt and configure DMA mode */
gahbcfg.glblintrmsk = 1;
gahbcfg.hbstlen = DMA_BURST_INCR8;
gahbcfg.dmaen = 1;
writel(gahbcfg.d32, &reg->core.gahbcfg);
DWC2_INST(controller)->hprt0 = &reg->host.hprt;
usb_debug("DWC2 init finished!\n");
}
static void dwc2_shutdown(hci_t *controller)
{
detach_controller(controller);
free(DWC2_INST(controller)->dma_buffer);
free(DWC2_INST(controller));
free(controller);
}
/* Test root port device connect status */
static int dwc2_disconnected(hci_t *controller)
{
dwc2_reg_t *reg = DWC2_REG(controller);
hprt_t hprt;
hprt.d32 = readl(&reg->host.hprt);
return !(hprt.prtena && hprt.prtconnsts);
}
#define DWC2_SLEEP_TIME_US 5
/*
* This function returns the actual transfer length when the transfer succeeded
* or an error code if the transfer failed
*/
static int
wait_for_complete(endpoint_t *ep, uint32_t ch_num)
{
hcint_t hcint;
hcchar_t hcchar;
hctsiz_t hctsiz;
dwc2_reg_t *reg = DWC2_REG(ep->dev->controller);
int timeout = USB_MAX_PROCESSING_TIME_US / DWC_SLEEP_TIME_US;
/*
* TODO: We should take care of up to three times of transfer error
* retry here, according to the USB 2.0 spec 4.5.2
*/
do {
udelay(DWC_SLEEP_TIME_US);
hcint.d32 = readl(&reg->host.hchn[ch_num].hcintn);
hctsiz.d32 = readl(&reg->host.hchn[ch_num].hctsizn);
if (hcint.chhltd) {
writel(hcint.d32, &reg->host.hchn[ch_num].hcintn);
if (hcint.xfercomp || hcint.ack)
return hctsiz.xfersize;
else if (hcint.nak || hcint.frmovrun)
return -HCSTAT_NAK;
else if (hcint.xacterr)
return -HCSTAT_XFERERR;
else if (hcint.bblerr)
return -HCSTAT_BABBLE;
else if (hcint.stall)
return -HCSTAT_STALL;
else if (hcint.nyet)
return -HCSTAT_NYET;
else
return -HCSTAT_UNKNOW;
}
if (dwc2_disconnected(ep->dev->controller))
return -HCSTAT_DISCONNECTED;
} while (timeout--);
/* Release the channel when hit timeout condition */
hcchar.d32 = readl(&reg->host.hchn[ch_num].hccharn);
if (hcchar.chen) {
/*
* Programming the HCCHARn register with the chdis and
* chena bits set to 1 at the same time to disable the
* channel and the core will generate a channel halted
* interrupt.
*/
hcchar.chdis = 1;
writel(hcchar.d32, &reg->host.hchn[ch_num].hccharn);
do {
hcchar.d32 = readl(&reg->host.hchn[ch_num].hccharn);
} while (hcchar.chen);
}
/* Clear all pending interrupt flags */
hcint.d32 = ~0;
writel(hcint.d32, &reg->host.hchn[ch_num].hcintn);
return -HCSTAT_TIMEOUT;
}
static int
dwc2_do_xfer(endpoint_t *ep, int size, int pid, ep_dir_t dir,
uint32_t ch_num, u8 *data_buf, int *short_pkt)
{
uint32_t do_copy;
int ret;
uint32_t packet_cnt;
uint32_t packet_size;
uint32_t transferred = 0;
uint32_t inpkt_length;
hctsiz_t hctsiz = { .d32 = 0 };
hcchar_t hcchar = { .d32 = 0 };
void *aligned_buf;
dwc2_reg_t *reg = DWC2_REG(ep->dev->controller);
packet_size = ep->maxpacketsize;
packet_cnt = ALIGN_UP(size, packet_size) / packet_size;
inpkt_length = packet_cnt * packet_size;
/* At least 1 packet should be programed */
packet_cnt = (packet_cnt == 0) ? 1 : packet_cnt;
/*
* For an IN, this field is the buffer size that the application has
* reserved for the transfer. The application should program this field
* as integer multiple of the maximum packet size for IN transactions.
*/
hctsiz.xfersize = (dir == EPDIR_OUT) ? size : inpkt_length;
hctsiz.pktcnt = packet_cnt;
hctsiz.pid = pid;
hcchar.mps = packet_size;
hcchar.epnum = ep->endpoint & 0xf;
hcchar.epdir = dir;
hcchar.eptype = ep->type;
hcchar.multicnt = 1;
hcchar.devaddr = ep->dev->address;
hcchar.chdis = 0;
hcchar.chen = 1;
if (ep->dev->speed == LOW_SPEED)
hcchar.lspddev = 1;
if (size > DMA_SIZE) {
usb_debug("Transfer too large: %d\n", size);
return -1;
}
/*
* Check the buffer address which should be 4-byte aligned and DMA
* coherent
*/
do_copy = !dma_coherent(data_buf) || ((uintptr_t)data_buf & 0x3);
aligned_buf = do_copy ? DWC2_INST(ep->dev->controller)->dma_buffer :
data_buf;
if (do_copy && (dir == EPDIR_OUT))
memcpy(aligned_buf, data_buf, size);
if (dwc2_disconnected(ep->dev->controller))
return -HCSTAT_DISCONNECTED;
writel(hctsiz.d32, &reg->host.hchn[ch_num].hctsizn);
writel((uint32_t)virt_to_bus(aligned_buf),
&reg->host.hchn[ch_num].hcdman);
writel(hcchar.d32, &reg->host.hchn[ch_num].hccharn);
ret = wait_for_complete(ep, ch_num);
if (ret >= 0) {
/* Calculate actual transferred length */
transferred = (dir == EPDIR_IN) ? inpkt_length - ret : size;
if (do_copy && (dir == EPDIR_IN))
memcpy(data_buf, aligned_buf, transferred);
if ((short_pkt != NULL) && (dir == EPDIR_IN))
*short_pkt = (ret > 0) ? 1 : 0;
}
/* Save data toggle */
hctsiz.d32 = readl(&reg->host.hchn[ch_num].hctsizn);
ep->toggle = hctsiz.pid;
if (ret < 0) {
usb_debug("%s Transfer stop code: %x\n", __func__, ret);
return ret;
}
return transferred;
}
static int
dwc2_split_transfer(endpoint_t *ep, int size, int pid, ep_dir_t dir,
uint32_t ch_num, u8 *data_buf, split_info_t *split,
int *short_pkt)
{
dwc2_reg_t *reg = DWC2_REG(ep->dev->controller);
hfnum_t hfnum;
hcsplit_t hcsplit = { .d32 = 0 };
int ret, transferred = 0;
hcsplit.hubaddr = split->hubaddr;
hcsplit.prtaddr = split->hubport;
hcsplit.spltena = 1;
writel(hcsplit.d32, &reg->host.hchn[ch_num].hcspltn);
/* Wait for next frame boundary */
do {
hfnum.d32 = readl(&reg->host.hfnum);
if (dwc2_disconnected(ep->dev->controller)) {
ret = -HCSTAT_DISCONNECTED;
goto out;
}
} while (hfnum.frnum % 8 != 0);
/* Handle Start-Split */
ret = dwc2_do_xfer(ep, dir == EPDIR_IN ? 0 : size, pid, dir, ch_num,
data_buf, NULL);
if (ret < 0)
goto out;
hcsplit.spltena = 1;
hcsplit.compsplt = 1;
writel(hcsplit.d32, &reg->host.hchn[ch_num].hcspltn);
ep->toggle = pid;
if (dir == EPDIR_OUT)
transferred += ret;
/* Handle Complete-Split */
do {
ret = dwc2_do_xfer(ep, dir == EPDIR_OUT ? 0 : size, ep->toggle,
dir, ch_num, data_buf, short_pkt);
} while (ret == -HCSTAT_NYET);
if (dir == EPDIR_IN)
transferred += ret;
out:
/* Clear hcsplit reg */
hcsplit.spltena = 0;
hcsplit.compsplt = 0;
writel(hcsplit.d32, &reg->host.hchn[ch_num].hcspltn);
if (ret < 0)
return ret;
return transferred;
}
static int dwc2_need_split(usbdev_t *dev, split_info_t *split)
{
if (dev->speed == HIGH_SPEED)
return 0;
if (closest_usb2_hub(dev, &split->hubaddr, &split->hubport))
return 0;
return 1;
}
#define USB_FULL_LOW_SPEED_FRAME_US 1000
static int
dwc2_transfer(endpoint_t *ep, int size, int pid, ep_dir_t dir, uint32_t ch_num,
u8 *src, uint8_t skip_nak)
{
split_info_t split;
int ret, short_pkt, transferred = 0;
int timeout = USB_MAX_PROCESSING_TIME_US / USB_FULL_LOW_SPEED_FRAME_US;
ep->toggle = pid;
do {
short_pkt = 0;
if (dwc2_need_split(ep->dev, &split)) {
nak_retry:
ret = dwc2_split_transfer(ep, MIN(ep->maxpacketsize,
size), ep->toggle, dir, 0, src, &split,
&short_pkt);
/*
* dwc2_split_transfer() waits for the next FullSpeed
* frame boundary, so we only need to delay 500 us
* here to have one try per millisecond.
*/
if (ret == -HCSTAT_NAK && !skip_nak && --timeout) {
udelay(USB_FULL_LOW_SPEED_FRAME_US / 2);
goto nak_retry;
}
} else {
ret = dwc2_do_xfer(ep, MIN(DMA_SIZE, size), pid, dir, 0,
src, &short_pkt);
}
if (ret < 0)
return ret;
size -= ret;
src += ret;
transferred += ret;
} while (size > 0 && !short_pkt);
return transferred;
}
static int
dwc2_bulk(endpoint_t *ep, int size, u8 *src, int finalize)
{
ep_dir_t data_dir;
if (ep->direction == IN)
data_dir = EPDIR_IN;
else if (ep->direction == OUT)
data_dir = EPDIR_OUT;
else
return -1;
return dwc2_transfer(ep, size, ep->toggle, data_dir, 0, src, 0);
}
static int
dwc2_control(usbdev_t *dev, direction_t dir, int drlen, void *setup,
int dalen, u8 *src)
{
int ret = 0;
ep_dir_t data_dir;
endpoint_t *ep = &dev->endpoints[0];
if (dir == IN)
data_dir = EPDIR_IN;
else if (dir == OUT)
data_dir = EPDIR_OUT;
else
return -1;
/* Setup Phase */
if (dwc2_transfer(ep, drlen, PID_SETUP, EPDIR_OUT, 0, setup, 0) < 0)
return -1;
/* Data Phase */
ep->toggle = PID_DATA1;
if (dalen > 0) {
ret = dwc2_transfer(ep, dalen, ep->toggle, data_dir, 0, src, 0);
if (ret < 0)
return -1;
}
/* Status Phase */
if (dwc2_transfer(ep, 0, PID_DATA1, !data_dir, 0, NULL, 0) < 0)
return -1;
return ret;
}
static int
dwc2_intr(endpoint_t *ep, int size, u8 *src)
{
ep_dir_t data_dir;
if (ep->direction == IN)
data_dir = EPDIR_IN;
else if (ep->direction == OUT)
data_dir = EPDIR_OUT;
else
return -1;
return dwc2_transfer(ep, size, ep->toggle, data_dir, 0, src, 1);
}
static u32 dwc2_intr_get_timestamp(intr_queue_t *q)
{
hprt_t hprt;
hfnum_t hfnum;
hci_t *controller = q->endp->dev->controller;
dwc_ctrl_t *dwc2 = DWC2_INST(controller);
dwc2_reg_t *reg = DWC2_REG(controller);
hfnum.d32 = readl(&reg->host.hfnum);
hprt.d32 = readl(dwc2->hprt0);
/*
* hfnum.frnum increments when a new SOF is transmitted on
* the USB, and is reset to 0 when it reaches 16'h3FFF
*/
switch (hprt.prtspd) {
case PRTSPD_HIGH:
/* 8 micro-frame per ms for high-speed */
return hfnum.frnum / 8;
case PRTSPD_FULL:
case PRTSPD_LOW:
default:
/* 1 micro-frame per ms for high-speed */
return hfnum.frnum / 1;
}
}
/* create and hook-up an intr queue into device schedule */
static void *
dwc2_create_intr_queue(endpoint_t *ep, const int reqsize,
const int reqcount, const int reqtiming)
{
intr_queue_t *q = (intr_queue_t *)xzalloc(sizeof(intr_queue_t));
q->data = dma_memalign(4, reqsize);
q->endp = ep;
q->reqsize = reqsize;
q->reqtiming = reqtiming;
return q;
}
static void
dwc2_destroy_intr_queue(endpoint_t *ep, void *_q)
{
intr_queue_t *q = (intr_queue_t *)_q;
free(q->data);
free(q);
}
/*
* read one intr-packet from queue, if available. extend the queue for
* new input. Return NULL if nothing new available.
* Recommended use: while (data=poll_intr_queue(q)) process(data);
*/
static u8 *
dwc2_poll_intr_queue(void *_q)
{
intr_queue_t *q = (intr_queue_t *)_q;
int ret = 0;
u32 timestamp = dwc2_intr_get_timestamp(q);
/*
* If hfnum.frnum run overflow it will schedule
* an interrupt transfer immediately
*/
if (timestamp - q->timestamp < q->reqtiming)
return NULL;
q->timestamp = timestamp;
ret = dwc2_intr(q->endp, q->reqsize, q->data);
if (ret > 0)
return q->data;
else
return NULL;
}
hci_t *dwc2_init(void *bar)
{
hci_t *controller = new_controller();
controller->instance = xzalloc(sizeof(dwc_ctrl_t));
DWC2_INST(controller)->dma_buffer = dma_malloc(DMA_SIZE);
if (!DWC2_INST(controller)->dma_buffer) {
usb_debug("Not enough DMA memory for DWC2 bounce buffer\n");
goto free_dwc2;
}
controller->type = DWC2;
controller->start = dummy;
controller->stop = dummy;
controller->reset = dummy;
controller->init = dwc2_reinit;
controller->shutdown = dwc2_shutdown;
controller->bulk = dwc2_bulk;
controller->control = dwc2_control;
controller->set_address = generic_set_address;
controller->finish_device_config = NULL;
controller->destroy_device = NULL;
controller->create_intr_queue = dwc2_create_intr_queue;
controller->destroy_intr_queue = dwc2_destroy_intr_queue;
controller->poll_intr_queue = dwc2_poll_intr_queue;
controller->reg_base = (uintptr_t)bar;
init_device_entry(controller, 0);
/* Init controller */
controller->init(controller);
/* Setup up root hub */
controller->devices[0]->controller = controller;
controller->devices[0]->init = dwc2_rh_init;
controller->devices[0]->init(controller->devices[0]);
return controller;
free_dwc2:
detach_controller(controller);
free(DWC2_INST(controller));
free(controller);
return NULL;
}