a73b93157f
It encourages users from writing to the FSF without giving an address. Linux also prefers to drop that and their checkpatch.pl (that we imported) looks out for that. This is the result of util/scripts/no-fsf-addresses.sh with no further editing. Change-Id: Ie96faea295fe001911d77dbc51e9a6789558fbd6 Signed-off-by: Patrick Georgi <pgeorgi@chromium.org> Reviewed-on: http://review.coreboot.org/11888 Tested-by: build bot (Jenkins) Reviewed-by: Alexandru Gagniuc <mr.nuke.me@gmail.com> Reviewed-by: Ronald G. Minnich <rminnich@gmail.com>
435 lines
12 KiB
C
435 lines
12 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright (C) 2014 Google Inc.
|
|
* Copyright (C) 2015 Intel Corporation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <types.h>
|
|
#include <string.h>
|
|
#include <device/device.h>
|
|
#include <device/pci.h>
|
|
#include <cpu/cpu.h>
|
|
#include <cpu/x86/cache.h>
|
|
#include <cpu/x86/lapic.h>
|
|
#include <cpu/x86/mp.h>
|
|
#include <cpu/x86/msr.h>
|
|
#include <cpu/x86/mtrr.h>
|
|
#include <cpu/x86/smm.h>
|
|
#include <console/console.h>
|
|
#include <soc/cpu.h>
|
|
#include <soc/msr.h>
|
|
#include <soc/pci_devs.h>
|
|
#include <soc/smm.h>
|
|
#include <soc/systemagent.h>
|
|
#include "chip.h"
|
|
|
|
/* This gets filled in and used during relocation. */
|
|
static struct smm_relocation_params smm_reloc_params;
|
|
|
|
static inline void write_smrr(struct smm_relocation_params *relo_params)
|
|
{
|
|
printk(BIOS_DEBUG, "Writing SMRR. base = 0x%08x, mask=0x%08x\n",
|
|
relo_params->smrr_base.lo, relo_params->smrr_mask.lo);
|
|
wrmsr(SMRR_PHYS_BASE, relo_params->smrr_base);
|
|
wrmsr(SMRR_PHYS_MASK, relo_params->smrr_mask);
|
|
}
|
|
|
|
static inline void write_uncore_emrr(struct smm_relocation_params *relo_params)
|
|
{
|
|
printk(BIOS_DEBUG,
|
|
"Writing UNCORE_EMRR. base = 0x%08x, mask=0x%08x\n",
|
|
relo_params->uncore_emrr_base.lo,
|
|
relo_params->uncore_emrr_mask.lo);
|
|
wrmsr(UNCORE_PRMRR_PHYS_BASE_MSR, relo_params->uncore_emrr_base);
|
|
wrmsr(UNCORE_PRMRR_PHYS_MASK_MSR, relo_params->uncore_emrr_mask);
|
|
}
|
|
|
|
static void update_save_state(int cpu,
|
|
struct smm_relocation_params *relo_params,
|
|
const struct smm_runtime *runtime)
|
|
{
|
|
u32 smbase;
|
|
u32 iedbase;
|
|
|
|
/*
|
|
* The relocated handler runs with all CPUs concurrently. Therefore
|
|
* stagger the entry points adjusting SMBASE downwards by save state
|
|
* size * CPU num.
|
|
*/
|
|
smbase = relo_params->smram_base - cpu * runtime->save_state_size;
|
|
iedbase = relo_params->ied_base;
|
|
|
|
printk(BIOS_DEBUG, "New SMBASE=0x%08x IEDBASE=0x%08x\n",
|
|
smbase, iedbase);
|
|
|
|
/*
|
|
* All threads need to set IEDBASE and SMBASE to the relocated
|
|
* handler region. However, the save state location depends on the
|
|
* smm_save_state_in_msrs field in the relocation parameters. If
|
|
* smm_save_state_in_msrs is non-zero then the CPUs are relocating
|
|
* the SMM handler in parallel, and each CPUs save state area is
|
|
* located in their respective MSR space. If smm_save_state_in_msrs
|
|
* is zero then the SMM relocation is happening serially so the
|
|
* save state is at the same default location for all CPUs.
|
|
*/
|
|
if (relo_params->smm_save_state_in_msrs) {
|
|
msr_t smbase_msr;
|
|
msr_t iedbase_msr;
|
|
|
|
smbase_msr.lo = smbase;
|
|
smbase_msr.hi = 0;
|
|
|
|
/*
|
|
* According the BWG the IEDBASE MSR is in bits 63:32. It's
|
|
* not clear why it differs from the SMBASE MSR.
|
|
*/
|
|
iedbase_msr.lo = 0;
|
|
iedbase_msr.hi = iedbase;
|
|
|
|
wrmsr(SMBASE_MSR, smbase_msr);
|
|
wrmsr(IEDBASE_MSR, iedbase_msr);
|
|
} else {
|
|
em64t101_smm_state_save_area_t *save_state;
|
|
|
|
save_state = (void *)(runtime->smbase + SMM_DEFAULT_SIZE -
|
|
runtime->save_state_size);
|
|
|
|
save_state->smbase = smbase;
|
|
save_state->iedbase = iedbase;
|
|
}
|
|
}
|
|
|
|
/* Returns 1 if SMM MSR save state was set. */
|
|
static int bsp_setup_msr_save_state(struct smm_relocation_params *relo_params)
|
|
{
|
|
msr_t smm_mca_cap;
|
|
|
|
smm_mca_cap = rdmsr(SMM_MCA_CAP_MSR);
|
|
if (smm_mca_cap.hi & SMM_CPU_SVRSTR_MASK) {
|
|
msr_t smm_feature_control;
|
|
|
|
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
|
smm_feature_control.hi = 0;
|
|
smm_feature_control.lo |= SMM_CPU_SAVE_EN;
|
|
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
|
relo_params->smm_save_state_in_msrs = 1;
|
|
}
|
|
return relo_params->smm_save_state_in_msrs;
|
|
}
|
|
|
|
/*
|
|
* The relocation work is actually performed in SMM context, but the code
|
|
* resides in the ramstage module. This occurs by trampolining from the default
|
|
* SMRAM entry point to here.
|
|
*/
|
|
static void asmlinkage cpu_smm_do_relocation(void *arg)
|
|
{
|
|
msr_t mtrr_cap;
|
|
struct smm_relocation_params *relo_params;
|
|
const struct smm_module_params *p;
|
|
const struct smm_runtime *runtime;
|
|
int cpu;
|
|
|
|
p = arg;
|
|
runtime = p->runtime;
|
|
relo_params = p->arg;
|
|
cpu = p->cpu;
|
|
|
|
if (cpu >= CONFIG_MAX_CPUS) {
|
|
printk(BIOS_CRIT,
|
|
"Invalid CPU number assigned in SMM stub: %d\n", cpu);
|
|
return;
|
|
}
|
|
|
|
printk(BIOS_DEBUG, "In relocation handler: cpu %d\n", cpu);
|
|
|
|
/*
|
|
* Determine if the processor supports saving state in MSRs. If so,
|
|
* enable it before the non-BSPs run so that SMM relocation can occur
|
|
* in parallel in the non-BSP CPUs.
|
|
*/
|
|
if (cpu == 0) {
|
|
/*
|
|
* If smm_save_state_in_msrs is 1 then that means this is the
|
|
* 2nd time through the relocation handler for the BSP.
|
|
* Parallel SMM handler relocation is taking place. However,
|
|
* it is desired to access other CPUs save state in the real
|
|
* SMM handler. Therefore, disable the SMM save state in MSRs
|
|
* feature.
|
|
*/
|
|
if (relo_params->smm_save_state_in_msrs) {
|
|
msr_t smm_feature_control;
|
|
|
|
smm_feature_control = rdmsr(SMM_FEATURE_CONTROL_MSR);
|
|
smm_feature_control.lo &= ~SMM_CPU_SAVE_EN;
|
|
wrmsr(SMM_FEATURE_CONTROL_MSR, smm_feature_control);
|
|
} else if (bsp_setup_msr_save_state(relo_params))
|
|
/*
|
|
* Just return from relocation handler if MSR save
|
|
* state is enabled. In that case the BSP will come
|
|
* back into the relocation handler to setup the new
|
|
* SMBASE as well disabling SMM save state in MSRs.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/* Make appropriate changes to the save state map. */
|
|
update_save_state(cpu, relo_params, runtime);
|
|
|
|
/* Write EMRR and SMRR MSRs based on indicated support. */
|
|
mtrr_cap = rdmsr(MTRR_CAP_MSR);
|
|
if (mtrr_cap.lo & SMRR_SUPPORTED)
|
|
write_smrr(relo_params);
|
|
}
|
|
|
|
static void fill_in_relocation_params(device_t dev,
|
|
struct smm_relocation_params *params)
|
|
{
|
|
void *handler_base;
|
|
size_t handler_size;
|
|
void *ied_base;
|
|
size_t ied_size;
|
|
void *tseg_base;
|
|
size_t tseg_size;
|
|
u32 emrr_base;
|
|
u32 emrr_size;
|
|
int phys_bits;
|
|
/* All range registers are aligned to 4KiB */
|
|
const u32 rmask = ~((1 << 12) - 1);
|
|
|
|
/*
|
|
* Some of the range registers are dependent on the number of physical
|
|
* address bits supported.
|
|
*/
|
|
phys_bits = cpuid_eax(0x80000008) & 0xff;
|
|
|
|
smm_region(&tseg_base, &tseg_size);
|
|
smm_subregion(SMM_SUBREGION_HANDLER, &handler_base, &handler_size);
|
|
smm_subregion(SMM_SUBREGION_CHIPSET, &ied_base, &ied_size);
|
|
|
|
params->smram_size = handler_size;
|
|
params->smram_base = (uintptr_t)handler_base;
|
|
|
|
params->ied_base = (uintptr_t)ied_base;
|
|
params->ied_size = ied_size;
|
|
|
|
/* SMRR has 32-bits of valid address aligned to 4KiB. */
|
|
params->smrr_base.lo = (params->smram_base & rmask) | MTRR_TYPE_WRBACK;
|
|
params->smrr_base.hi = 0;
|
|
params->smrr_mask.lo = (~(tseg_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
|
|
params->smrr_mask.hi = 0;
|
|
|
|
/* The EMRR and UNCORE_EMRR are at IEDBASE + 2MiB */
|
|
emrr_base = (params->ied_base + (2 << 20)) & rmask;
|
|
emrr_size = params->ied_size - (2 << 20);
|
|
|
|
/*
|
|
* EMRR has 46 bits of valid address aligned to 4KiB. It's dependent
|
|
* on the number of physical address bits supported.
|
|
*/
|
|
params->emrr_base.lo = emrr_base | MTRR_TYPE_WRBACK;
|
|
params->emrr_base.hi = 0;
|
|
params->emrr_mask.lo = (~(emrr_size - 1) & rmask) | MTRR_PHYS_MASK_VALID;
|
|
params->emrr_mask.hi = (1 << (phys_bits - 32)) - 1;
|
|
|
|
/* UNCORE_EMRR has 39 bits of valid address aligned to 4KiB. */
|
|
params->uncore_emrr_base.lo = emrr_base;
|
|
params->uncore_emrr_base.hi = 0;
|
|
params->uncore_emrr_mask.lo = (~(emrr_size - 1) & rmask) |
|
|
MTRR_PHYS_MASK_VALID;
|
|
params->uncore_emrr_mask.hi = (1 << (39 - 32)) - 1;
|
|
}
|
|
|
|
static void adjust_apic_id_map(struct smm_loader_params *smm_params)
|
|
{
|
|
struct smm_runtime *runtime;
|
|
int i;
|
|
|
|
/* Adjust the APIC id map if HT is disabled. */
|
|
if (!ht_disabled)
|
|
return;
|
|
|
|
runtime = smm_params->runtime;
|
|
|
|
/* The APIC ids increment by 2 when HT is disabled. */
|
|
for (i = 0; i < CONFIG_MAX_CPUS; i++)
|
|
runtime->apic_id_to_cpu[i] = runtime->apic_id_to_cpu[i] * 2;
|
|
}
|
|
|
|
static int install_relocation_handler(int num_cpus,
|
|
struct smm_relocation_params *relo_params)
|
|
{
|
|
/*
|
|
* The default SMM entry can happen in parallel or serially. If the
|
|
* default SMM entry is done in parallel the BSP has already setup
|
|
* the saving state to each CPU's MSRs. At least one save state size
|
|
* is required for the initial SMM entry for the BSP to determine if
|
|
* parallel SMM relocation is even feasible. Set the stack size to
|
|
* the save state size, and call into the do_relocation handler.
|
|
*/
|
|
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
|
|
struct smm_loader_params smm_params = {
|
|
.per_cpu_stack_size = save_state_size,
|
|
.num_concurrent_stacks = num_cpus,
|
|
.per_cpu_save_state_size = save_state_size,
|
|
.num_concurrent_save_states = 1,
|
|
.handler = (smm_handler_t)&cpu_smm_do_relocation,
|
|
.handler_arg = (void *)relo_params,
|
|
};
|
|
|
|
if (smm_setup_relocation_handler(&smm_params))
|
|
return -1;
|
|
|
|
adjust_apic_id_map(&smm_params);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void setup_ied_area(struct smm_relocation_params *params)
|
|
{
|
|
char *ied_base;
|
|
|
|
struct ied_header ied = {
|
|
.signature = "INTEL RSVD",
|
|
.size = params->ied_size,
|
|
.reserved = {0},
|
|
};
|
|
|
|
ied_base = (void *)params->ied_base;
|
|
|
|
printk(BIOS_DEBUG, "IED base = 0x%08x\n", params->ied_base);
|
|
printk(BIOS_DEBUG, "IED size = 0x%08x\n", params->ied_size);
|
|
|
|
/* Place IED header at IEDBASE. */
|
|
memcpy(ied_base, &ied, sizeof(ied));
|
|
|
|
/* Zero out 32KiB at IEDBASE + 1MiB */
|
|
memset(ied_base + (1 << 20), 0, (32 << 10));
|
|
}
|
|
|
|
static int install_permanent_handler(int num_cpus,
|
|
struct smm_relocation_params *relo_params)
|
|
{
|
|
/*
|
|
* There are num_cpus concurrent stacks and num_cpus concurrent save
|
|
* state areas. Lastly, set the stack size to the save state size.
|
|
*/
|
|
int save_state_size = sizeof(em64t101_smm_state_save_area_t);
|
|
struct smm_loader_params smm_params = {
|
|
.per_cpu_stack_size = save_state_size,
|
|
.num_concurrent_stacks = num_cpus,
|
|
.per_cpu_save_state_size = save_state_size,
|
|
.num_concurrent_save_states = num_cpus,
|
|
};
|
|
|
|
printk(BIOS_DEBUG, "Installing SMM handler to 0x%08x\n",
|
|
relo_params->smram_base);
|
|
if (smm_load_module((void *)relo_params->smram_base,
|
|
relo_params->smram_size, &smm_params))
|
|
return -1;
|
|
|
|
adjust_apic_id_map(&smm_params);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_smm_setup(void)
|
|
{
|
|
device_t dev = SA_DEV_ROOT;
|
|
int num_cpus;
|
|
msr_t msr;
|
|
|
|
printk(BIOS_DEBUG, "Setting up SMI for CPU\n");
|
|
|
|
fill_in_relocation_params(dev, &smm_reloc_params);
|
|
|
|
if (smm_reloc_params.ied_size)
|
|
setup_ied_area(&smm_reloc_params);
|
|
|
|
msr = rdmsr(CORE_THREAD_COUNT_MSR);
|
|
num_cpus = msr.lo & 0xffff;
|
|
if (num_cpus > CONFIG_MAX_CPUS) {
|
|
printk(BIOS_CRIT,
|
|
"Error: Hardware CPUs (%d) > MAX_CPUS (%d)\n",
|
|
num_cpus, CONFIG_MAX_CPUS);
|
|
}
|
|
|
|
if (install_relocation_handler(num_cpus, &smm_reloc_params)) {
|
|
printk(BIOS_CRIT, "SMM Relocation handler install failed.\n");
|
|
return -1;
|
|
}
|
|
|
|
if (install_permanent_handler(num_cpus, &smm_reloc_params)) {
|
|
printk(BIOS_CRIT, "SMM Permanent handler install failed.\n");
|
|
return -1;
|
|
}
|
|
|
|
/* Ensure the SMM handlers hit DRAM before performing first SMI. */
|
|
wbinvd();
|
|
|
|
return 0;
|
|
}
|
|
|
|
int smm_initialize(void)
|
|
{
|
|
/* Return early if CPU SMM setup failed. */
|
|
if (cpu_smm_setup())
|
|
return -1;
|
|
|
|
/* Clear the SMM state in the southbridge. */
|
|
southbridge_smm_clear_state();
|
|
|
|
/* Run the relocation handler. */
|
|
smm_initiate_relocation();
|
|
|
|
if (smm_reloc_params.smm_save_state_in_msrs)
|
|
printk(BIOS_DEBUG, "Doing parallel SMM relocation.\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
void smm_relocate(void)
|
|
{
|
|
/*
|
|
* If smm_save_state_in_msrs is non-zero then parallel SMM relocation
|
|
* shall take place. Run the relocation handler a second time on the
|
|
* BSP to do * the final move. For APs, a relocation handler always
|
|
* needs to be run.
|
|
*/
|
|
if (smm_reloc_params.smm_save_state_in_msrs)
|
|
smm_initiate_relocation_parallel();
|
|
else if (!boot_cpu())
|
|
smm_initiate_relocation();
|
|
}
|
|
|
|
void smm_init(void)
|
|
{
|
|
/*
|
|
* smm_init() is normally called from initialize_cpus() in
|
|
* lapic_cpu_init.c. However, that path is no longer used. Don't reuse
|
|
* the function name because that would cause confusion.
|
|
* The smm_initialize() function above is used to setup SMM at the
|
|
* appropriate time.
|
|
*/
|
|
}
|
|
|
|
void smm_lock(void)
|
|
{
|
|
/*
|
|
* LOCK the SMM memory window and enable normal SMM.
|
|
* After running this function, only a full reset can
|
|
* make the SMM registers writable again.
|
|
*/
|
|
printk(BIOS_DEBUG, "Locking SMM.\n");
|
|
pci_write_config8(SA_DEV_ROOT, SMRAM, D_LCK | G_SMRAME | C_BASE_SEG);
|
|
}
|