coreboot-kgpe-d16/src/cpu/x86/tsc/delay_tsc.c
Aaron Durbin 1f04e94b79 x86: expose tsc's timer_monotonic_get() in SMM
The implementation of timer_monotonic_get() for the tsc
module was being guarded from SMM. Allow this to be
linked into SMM as the generic spi flash driver now needs
this support which can be included in SMM.

Change-Id: I3909edecac8de117922c4ea6c53e6e561f6f435b
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/10187
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
Tested-by: build bot (Jenkins)
2015-05-13 00:23:53 +02:00

228 lines
5.6 KiB
C

#include <console/console.h>
#include <arch/io.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/tsc.h>
#include <smp/spinlock.h>
#include <delay.h>
#include <thread.h>
#if !defined(__PRE_RAM__)
static unsigned long clocks_per_usec;
#if CONFIG_TSC_CONSTANT_RATE
static unsigned long calibrate_tsc(void)
{
return tsc_freq_mhz();
}
#else /* CONFIG_TSC_CONSTANT_RATE */
#if !CONFIG_TSC_CALIBRATE_WITH_IO
#define CLOCK_TICK_RATE 1193180U /* Underlying HZ */
/* ------ Calibrate the TSC -------
* Too much 64-bit arithmetic here to do this cleanly in C, and for
* accuracy's sake we want to keep the overhead on the CTC speaker (channel 2)
* output busy loop as low as possible. We avoid reading the CTC registers
* directly because of the awkward 8-bit access mechanism of the 82C54
* device.
*/
#define CALIBRATE_INTERVAL ((2*CLOCK_TICK_RATE)/1000) /* 2ms */
#define CALIBRATE_DIVISOR (2*1000) /* 2ms / 2000 == 1usec */
static unsigned long long calibrate_tsc(void)
{
/* Set the Gate high, disable speaker */
outb((inb(0x61) & ~0x02) | 0x01, 0x61);
/*
* Now let's take care of CTC channel 2
*
* Set the Gate high, program CTC channel 2 for mode 0,
* (interrupt on terminal count mode), binary count,
* load 5 * LATCH count, (LSB and MSB) to begin countdown.
*/
outb(0xb0, 0x43); /* binary, mode 0, LSB/MSB, Ch 2 */
outb(CALIBRATE_INTERVAL & 0xff, 0x42); /* LSB of count */
outb(CALIBRATE_INTERVAL >> 8, 0x42); /* MSB of count */
{
tsc_t start;
tsc_t end;
unsigned long count;
start = rdtsc();
count = 0;
do {
count++;
} while ((inb(0x61) & 0x20) == 0);
end = rdtsc();
/* Error: ECTCNEVERSET */
if (count <= 1)
goto bad_ctc;
/* 64-bit subtract - gcc just messes up with long longs */
__asm__("subl %2,%0\n\t"
"sbbl %3,%1"
:"=a" (end.lo), "=d" (end.hi)
:"g" (start.lo), "g" (start.hi),
"0" (end.lo), "1" (end.hi));
/* Error: ECPUTOOFAST */
if (end.hi)
goto bad_ctc;
/* Error: ECPUTOOSLOW */
if (end.lo <= CALIBRATE_DIVISOR)
goto bad_ctc;
return CEIL_DIV(end.lo, CALIBRATE_DIVISOR);
}
/*
* The CTC wasn't reliable: we got a hit on the very first read,
* or the CPU was so fast/slow that the quotient wouldn't fit in
* 32 bits..
*/
bad_ctc:
printk(BIOS_ERR, "bad_ctc\n");
return 0;
}
#else /* CONFIG_TSC_CALIBRATE_WITH_IO */
/*
* this is the "no timer2" version.
* to calibrate tsc, we get a TSC reading, then do 1,000,000 outbs to port 0x80
* then we read TSC again, and divide the difference by 1,000,000
* we have found on a wide range of machines that this gives us a a
* good microsecond value
* to +- 10%. On a dual AMD 1.6 Ghz box, it gives us .97 microseconds, and on a
* 267 Mhz. p5, it gives us 1.1 microseconds.
* also, since gcc now supports long long, we use that.
* also no unsigned long long / operator, so we play games.
* about the only thing you can do with long longs, it seems,
*is return them and assign them.
* (and do asm on them, yuck)
* so avoid all ops on long longs.
*/
static unsigned long long calibrate_tsc(void)
{
unsigned long long start, end, delta;
unsigned long result, count;
printk(BIOS_SPEW, "Calibrating delay loop...\n");
start = rdtscll();
// no udivdi3 because we don't like libgcc. (only in x86emu)
// so we count to 1<< 20 and then right shift 20
for(count = 0; count < (1<<20); count ++)
inb(0x80);
end = rdtscll();
#if 0
// make delta be (endhigh - starthigh) + (endlow - startlow)
// but >> 20
// do it this way to avoid gcc warnings.
start = tsc_start.hi;
start <<= 32;
start |= start.lo;
end = tsc_end.hi;
end <<= 32;
end |= tsc_end.lo;
#endif
delta = end - start;
// at this point we have a delta for 1,000,000 outbs. Now rescale for one microsecond.
delta >>= 20;
// save this for microsecond timing.
result = delta;
printk(BIOS_SPEW, "end %llx, start %llx\n", end, start);
printk(BIOS_SPEW, "32-bit delta %ld\n", (unsigned long) delta);
printk(BIOS_SPEW, "%s 32-bit result is %ld\n",
__func__,
result);
return delta;
}
#endif /* CONFIG_TSC_CALIBRATE_WITH_IO */
#endif /* CONFIG_TSC_CONSTANT_RATE */
void init_timer(void)
{
if (!clocks_per_usec) {
clocks_per_usec = calibrate_tsc();
printk(BIOS_INFO, "clocks_per_usec: %lu\n", clocks_per_usec);
}
}
static inline unsigned long get_clocks_per_usec(void)
{
init_timer();
return clocks_per_usec;
}
#else /* !defined(__PRE_RAM__) */
/* romstage calls into cpu/board specific function every time. */
static inline unsigned long get_clocks_per_usec(void)
{
return tsc_freq_mhz();
}
#endif /* !defined(__PRE_RAM__) */
void udelay(unsigned us)
{
unsigned long long start;
unsigned long long current;
unsigned long long clocks;
if (!thread_yield_microseconds(us))
return;
start = rdtscll();
clocks = us;
clocks *= get_clocks_per_usec();
current = rdtscll();
while((current - start) < clocks) {
cpu_relax();
current = rdtscll();
}
}
#if CONFIG_TSC_MONOTONIC_TIMER && !defined(__PRE_RAM__)
#include <timer.h>
static struct monotonic_counter {
int initialized;
struct mono_time time;
uint64_t last_value;
} mono_counter;
void timer_monotonic_get(struct mono_time *mt)
{
uint64_t current_tick;
uint64_t ticks_elapsed;
if (!mono_counter.initialized) {
init_timer();
mono_counter.last_value = rdtscll();
mono_counter.initialized = 1;
}
current_tick = rdtscll();
ticks_elapsed = current_tick - mono_counter.last_value;
/* Update current time and tick values only if a full tick occurred. */
if (ticks_elapsed >= clocks_per_usec) {
uint64_t usecs_elapsed;
usecs_elapsed = ticks_elapsed / clocks_per_usec;
mono_time_add_usecs(&mono_counter.time, (long)usecs_elapsed);
mono_counter.last_value = current_tick;
}
/* Save result. */
*mt = mono_counter.time;
}
#endif