582c2a7980
Some sensitive data may remain DMA buffer, we will want to zero out everything on the DMA buffer before we jump into the kernel to prevent leaking sensitive data into the kernel. To accomplish that, we will need this function to get the range of memory that can be allocated by the dma allocator. BUG=b:248610274 TEST=emerge-cherry libpayload BRANCH=none Signed-off-by: Yi Chou <yich@google.com> Change-Id: I8f3058dfd861ed44f716623967201b8cabe8d166 Reviewed-on: https://review.coreboot.org/c/coreboot/+/78407 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Yu-Ping Wu <yupingso@google.com>
625 lines
15 KiB
C
625 lines
15 KiB
C
/*
|
|
*
|
|
* Copyright (C) 2008 Advanced Micro Devices, Inc.
|
|
* Copyright (C) 2008-2010 coresystems GmbH
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* This is a classically weak malloc() implementation. We have a relatively
|
|
* small and static heap, so we take the easy route with an O(N) loop
|
|
* through the tree for every malloc() and free(). Obviously, this doesn't
|
|
* scale past a few hundred KB (if that).
|
|
*
|
|
* We're also susceptible to the usual buffer overrun poisoning, though the
|
|
* risk is within acceptable ranges for this implementation (don't overrun
|
|
* your buffers, kids!).
|
|
*/
|
|
|
|
#define IN_MALLOC_C
|
|
#include <libpayload.h>
|
|
#include <stdint.h>
|
|
|
|
struct memory_type {
|
|
void *start;
|
|
void *end;
|
|
struct align_region_t* align_regions;
|
|
#if CONFIG(LP_DEBUG_MALLOC)
|
|
int magic_initialized;
|
|
size_t minimal_free;
|
|
const char *name;
|
|
#endif
|
|
};
|
|
|
|
extern char _heap, _eheap; /* Defined in the ldscript. */
|
|
|
|
static struct memory_type default_type =
|
|
{ (void *)&_heap, (void *)&_eheap, NULL
|
|
#if CONFIG(LP_DEBUG_MALLOC)
|
|
, 0, 0, "HEAP"
|
|
#endif
|
|
};
|
|
static struct memory_type *const heap = &default_type;
|
|
static struct memory_type *dma = &default_type;
|
|
|
|
typedef u64 hdrtype_t;
|
|
#define HDRSIZE (sizeof(hdrtype_t))
|
|
|
|
#define SIZE_BITS ((HDRSIZE << 3) - 7)
|
|
#define MAGIC (((hdrtype_t)0x2a) << (SIZE_BITS + 1))
|
|
#define FLAG_FREE (((hdrtype_t)0x01) << (SIZE_BITS + 0))
|
|
#define MAX_SIZE ((((hdrtype_t)0x01) << SIZE_BITS) - 1)
|
|
|
|
#define SIZE(_h) ((_h) & MAX_SIZE)
|
|
|
|
#define _HEADER(_s, _f) ((hdrtype_t) (MAGIC | (_f) | ((_s) & MAX_SIZE)))
|
|
|
|
#define FREE_BLOCK(_s) _HEADER(_s, FLAG_FREE)
|
|
#define USED_BLOCK(_s) _HEADER(_s, 0)
|
|
|
|
#define IS_FREE(_h) (((_h) & (MAGIC | FLAG_FREE)) == (MAGIC | FLAG_FREE))
|
|
#define HAS_MAGIC(_h) (((_h) & MAGIC) == MAGIC)
|
|
|
|
static int free_aligned(void* addr, struct memory_type *type);
|
|
void print_malloc_map(void);
|
|
|
|
void init_dma_memory(void *start, u32 size)
|
|
{
|
|
if (dma_initialized()) {
|
|
printf("ERROR: %s called twice!\n", __func__);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* DMA memory might not be zeroed by coreboot on stage loading, so make
|
|
* sure we clear the magic cookie from last boot.
|
|
*/
|
|
*(hdrtype_t *)start = 0;
|
|
|
|
dma = malloc(sizeof(*dma));
|
|
dma->start = start;
|
|
dma->end = start + size;
|
|
dma->align_regions = NULL;
|
|
|
|
#if CONFIG(LP_DEBUG_MALLOC)
|
|
dma->minimal_free = 0;
|
|
dma->magic_initialized = 0;
|
|
dma->name = "DMA";
|
|
|
|
printf("Initialized cache-coherent DMA memory at [%p:%p]\n", start, start + size);
|
|
#endif
|
|
}
|
|
|
|
int dma_initialized(void)
|
|
{
|
|
return dma != heap;
|
|
}
|
|
|
|
/* For boards that don't initialize DMA we assume all locations are coherent */
|
|
int dma_coherent(const void *ptr)
|
|
{
|
|
return !dma_initialized() || (dma->start <= ptr && dma->end > ptr);
|
|
}
|
|
|
|
/* Get the range of memory that can be allocated by the dma allocator. */
|
|
void dma_allocator_range(void **start_out, size_t *size_out)
|
|
{
|
|
if (dma_initialized()) {
|
|
*start_out = dma->start;
|
|
*size_out = dma->end - dma->start;
|
|
} else {
|
|
*start_out = NULL;
|
|
*size_out = 0;
|
|
}
|
|
}
|
|
|
|
/* Find free block of size >= len */
|
|
static hdrtype_t volatile *find_free_block(int len, struct memory_type *type)
|
|
{
|
|
hdrtype_t header;
|
|
hdrtype_t volatile *ptr = (hdrtype_t volatile *)type->start;
|
|
|
|
/* Align the size. */
|
|
len = ALIGN_UP(len, HDRSIZE);
|
|
|
|
if (!len || len > MAX_SIZE)
|
|
return (void *)NULL;
|
|
|
|
/* Make sure the region is setup correctly. */
|
|
if (!HAS_MAGIC(*ptr)) {
|
|
size_t size = (type->end - type->start) - HDRSIZE;
|
|
*ptr = FREE_BLOCK(size);
|
|
#if CONFIG(LP_DEBUG_MALLOC)
|
|
type->magic_initialized = 1;
|
|
type->minimal_free = size;
|
|
#endif
|
|
}
|
|
|
|
/* Find some free space. */
|
|
do {
|
|
header = *ptr;
|
|
int size = SIZE(header);
|
|
|
|
if (!HAS_MAGIC(header) || size == 0) {
|
|
printf("memory allocator panic. (%s%s)\n",
|
|
!HAS_MAGIC(header) ? " no magic " : "",
|
|
size == 0 ? " size=0 " : "");
|
|
halt();
|
|
}
|
|
|
|
if ((header & FLAG_FREE) && len <= size)
|
|
return ptr;
|
|
|
|
ptr = (hdrtype_t volatile *)((uintptr_t)ptr + HDRSIZE + size);
|
|
|
|
} while (ptr < (hdrtype_t *) type->end);
|
|
|
|
/* Nothing available. */
|
|
return NULL;
|
|
}
|
|
|
|
/* Mark the block with length 'len' as used */
|
|
static void use_block(hdrtype_t volatile *ptr, int len)
|
|
{
|
|
/* Align the size. */
|
|
len = ALIGN_UP(len, HDRSIZE);
|
|
|
|
hdrtype_t volatile *nptr = (hdrtype_t volatile *)
|
|
((uintptr_t)ptr + HDRSIZE + len);
|
|
int size = SIZE(*ptr);
|
|
int nsize = size - (HDRSIZE + len);
|
|
|
|
/*
|
|
* If there is still room in this block, then mark it as such otherwise
|
|
* account the whole space for that block.
|
|
*/
|
|
if (nsize > 0) {
|
|
/* Mark the block as used. */
|
|
*ptr = USED_BLOCK(len);
|
|
|
|
/* Create a new free block. */
|
|
*nptr = FREE_BLOCK(nsize);
|
|
} else {
|
|
/* Mark the block as used. */
|
|
*ptr = USED_BLOCK(size);
|
|
}
|
|
}
|
|
|
|
static void *alloc(int len, struct memory_type *type)
|
|
{
|
|
hdrtype_t volatile *ptr = find_free_block(len, type);
|
|
|
|
if (ptr == NULL)
|
|
return NULL;
|
|
|
|
use_block(ptr, len);
|
|
return (void *)((uintptr_t)ptr + HDRSIZE);
|
|
}
|
|
|
|
static void _consolidate(struct memory_type *type)
|
|
{
|
|
void *ptr = type->start;
|
|
|
|
while (ptr < type->end) {
|
|
void *nptr;
|
|
hdrtype_t hdr = *((hdrtype_t *) ptr);
|
|
unsigned int size = 0;
|
|
|
|
if (!IS_FREE(hdr)) {
|
|
ptr += HDRSIZE + SIZE(hdr);
|
|
continue;
|
|
}
|
|
|
|
size = SIZE(hdr);
|
|
nptr = ptr + HDRSIZE + SIZE(hdr);
|
|
|
|
while (nptr < type->end) {
|
|
hdrtype_t nhdr = *((hdrtype_t *) nptr);
|
|
|
|
if (!(IS_FREE(nhdr)))
|
|
break;
|
|
|
|
size += SIZE(nhdr) + HDRSIZE;
|
|
|
|
*((hdrtype_t *) nptr) = 0;
|
|
|
|
nptr += (HDRSIZE + SIZE(nhdr));
|
|
}
|
|
|
|
*((hdrtype_t *) ptr) = FREE_BLOCK(size);
|
|
ptr = nptr;
|
|
}
|
|
}
|
|
|
|
void free(void *ptr)
|
|
{
|
|
hdrtype_t hdr;
|
|
struct memory_type *type = heap;
|
|
|
|
/* No action occurs on NULL. */
|
|
if (ptr == NULL)
|
|
return;
|
|
|
|
/* Sanity check. */
|
|
if (ptr < type->start || ptr >= type->end) {
|
|
type = dma;
|
|
if (ptr < type->start || ptr >= type->end)
|
|
return;
|
|
}
|
|
|
|
if (free_aligned(ptr, type)) return;
|
|
|
|
ptr -= HDRSIZE;
|
|
hdr = *((hdrtype_t *) ptr);
|
|
|
|
/* Not our header (we're probably poisoned). */
|
|
if (!HAS_MAGIC(hdr))
|
|
return;
|
|
|
|
/* Double free. */
|
|
if (hdr & FLAG_FREE)
|
|
return;
|
|
|
|
*((hdrtype_t *) ptr) = FREE_BLOCK(SIZE(hdr));
|
|
_consolidate(type);
|
|
}
|
|
|
|
void *malloc(size_t size)
|
|
{
|
|
return alloc(size, heap);
|
|
}
|
|
|
|
void *dma_malloc(size_t size)
|
|
{
|
|
return alloc(size, dma);
|
|
}
|
|
|
|
void *calloc(size_t nmemb, size_t size)
|
|
{
|
|
size_t total = nmemb * size;
|
|
void *ptr = alloc(total, heap);
|
|
|
|
if (ptr)
|
|
memset(ptr, 0, total);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
void *realloc(void *ptr, size_t size)
|
|
{
|
|
void *ret, *pptr;
|
|
hdrtype_t volatile *block;
|
|
unsigned int osize;
|
|
struct memory_type *type = heap;
|
|
|
|
if (ptr == NULL)
|
|
return alloc(size, type);
|
|
|
|
pptr = ptr - HDRSIZE;
|
|
|
|
if (!HAS_MAGIC(*((hdrtype_t *) pptr)))
|
|
return NULL;
|
|
|
|
if (ptr < type->start || ptr >= type->end)
|
|
type = dma;
|
|
|
|
/* Get the original size of the block. */
|
|
osize = SIZE(*((hdrtype_t *) pptr));
|
|
|
|
/*
|
|
* Free the memory to update the tables - this won't touch the actual
|
|
* memory, so we can still use it for the copy after we have
|
|
* reallocated the new space.
|
|
*/
|
|
free(ptr);
|
|
|
|
block = find_free_block(size, type);
|
|
if (block == NULL)
|
|
return NULL;
|
|
|
|
ret = (void *)((uintptr_t)block + HDRSIZE);
|
|
|
|
/*
|
|
* If ret == ptr, then no copy is needed. Otherwise, move the memory to
|
|
* the new location, which might be before the old one and overlap since
|
|
* the free() above includes a _consolidate().
|
|
*/
|
|
if (ret != ptr)
|
|
memmove(ret, ptr, osize > size ? size : osize);
|
|
|
|
/* Mark the block as used. */
|
|
use_block(block, size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct align_region_t
|
|
{
|
|
/* If alignment is 0 then the region represents a large region which
|
|
* has no metadata for tracking subelements. */
|
|
int alignment;
|
|
/* start in memory, and size in bytes */
|
|
void* start;
|
|
int size;
|
|
/* layout within a region:
|
|
- num_elements bytes, 0: free, 1: used, 2: used, combines with next
|
|
- padding to alignment
|
|
- data section
|
|
- waste space
|
|
|
|
start_data points to the start of the data section
|
|
*/
|
|
void* start_data;
|
|
/* number of free blocks sized "alignment" */
|
|
int free;
|
|
struct align_region_t *next;
|
|
};
|
|
|
|
static inline int region_is_large(const struct align_region_t *r)
|
|
{
|
|
return r->alignment == 0;
|
|
}
|
|
|
|
static inline int addr_in_region(const struct align_region_t *r, void *addr)
|
|
{
|
|
return ((addr >= r->start_data) && (addr < r->start_data + r->size));
|
|
}
|
|
|
|
/* num_elements == 0 indicates a large aligned region instead of a smaller
|
|
* region comprised of alignment-sized chunks. */
|
|
static struct align_region_t *allocate_region(int alignment, int num_elements,
|
|
size_t size, struct memory_type *type)
|
|
{
|
|
struct align_region_t *r;
|
|
size_t extra_space;
|
|
|
|
#if CONFIG(LP_DEBUG_MALLOC)
|
|
printf("%s(old align_regions=%p, alignment=%u, num_elements=%u, size=%zu)\n",
|
|
__func__, type->align_regions, alignment, num_elements, size);
|
|
#endif
|
|
|
|
r = malloc(sizeof(*r));
|
|
|
|
if (r == NULL)
|
|
return NULL;
|
|
|
|
memset(r, 0, sizeof(*r));
|
|
|
|
if (num_elements != 0) {
|
|
r->alignment = alignment;
|
|
r->size = num_elements * alignment;
|
|
r->free = num_elements;
|
|
/* Allocate enough memory for alignment requirements and
|
|
* metadata for each chunk. */
|
|
extra_space = num_elements;
|
|
} else {
|
|
/* Large aligned allocation. Set alignment = 0. */
|
|
r->alignment = 0;
|
|
r->size = size;
|
|
extra_space = 0;
|
|
}
|
|
|
|
r->start = alloc(r->size + alignment + extra_space, type);
|
|
|
|
if (r->start == NULL) {
|
|
free(r);
|
|
return NULL;
|
|
}
|
|
|
|
r->start_data = (void *)ALIGN_UP((uintptr_t)r->start + extra_space,
|
|
alignment);
|
|
|
|
/* Clear any (if requested) metadata. */
|
|
memset(r->start, 0, extra_space);
|
|
|
|
/* Link the region with the rest. */
|
|
r->next = type->align_regions;
|
|
type->align_regions = r;
|
|
|
|
return r;
|
|
}
|
|
|
|
static void try_free_region(struct align_region_t **prev_link)
|
|
{
|
|
struct align_region_t *r = *prev_link;
|
|
|
|
/* All large regions are immediately free-able. Non-large regions
|
|
* need to be checked for the fully freed state. */
|
|
if (!region_is_large(r)) {
|
|
if (r->free != r->size / r->alignment)
|
|
return;
|
|
}
|
|
|
|
/* Unlink region from link list. */
|
|
*prev_link = r->next;
|
|
|
|
/* Free the data and metadata. */
|
|
free(r->start);
|
|
free(r);
|
|
}
|
|
|
|
static int free_aligned(void* addr, struct memory_type *type)
|
|
{
|
|
struct align_region_t **prev_link = &type->align_regions;
|
|
|
|
while (*prev_link != NULL)
|
|
{
|
|
if (!addr_in_region(*prev_link, addr)) {
|
|
prev_link = &((*prev_link)->next);
|
|
continue;
|
|
}
|
|
|
|
if (region_is_large(*prev_link)) {
|
|
try_free_region(prev_link);
|
|
return 1;
|
|
}
|
|
|
|
int i = (addr-(*prev_link)->start_data)/(*prev_link)->alignment;
|
|
u8 *meta = (*prev_link)->start;
|
|
while (meta[i] == 2)
|
|
{
|
|
meta[i++] = 0;
|
|
(*prev_link)->free++;
|
|
}
|
|
meta[i] = 0;
|
|
(*prev_link)->free++;
|
|
try_free_region(prev_link);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void *alloc_aligned(size_t align, size_t size, struct memory_type *type)
|
|
{
|
|
/* Define a large request to be 1024 bytes for either alignment or
|
|
* size of allocation. */
|
|
const size_t large_request = 1024;
|
|
|
|
if (size == 0) return 0;
|
|
if (type->align_regions == 0) {
|
|
type->align_regions = malloc(sizeof(struct align_region_t));
|
|
if (type->align_regions == NULL)
|
|
return NULL;
|
|
memset(type->align_regions, 0, sizeof(struct align_region_t));
|
|
}
|
|
struct align_region_t *reg = type->align_regions;
|
|
|
|
if (size >= large_request || align >= large_request) {
|
|
reg = allocate_region(align, 0, size, type);
|
|
if (reg == NULL)
|
|
return NULL;
|
|
return reg->start_data;
|
|
}
|
|
|
|
look_further:
|
|
while (reg != 0)
|
|
{
|
|
if ((reg->alignment == align) && (reg->free >= (size + align - 1)/align))
|
|
{
|
|
#if CONFIG(LP_DEBUG_MALLOC)
|
|
printf(" found memalign region. %u free, %zu required\n", reg->free, (size + align - 1)/align);
|
|
#endif
|
|
break;
|
|
}
|
|
reg = reg->next;
|
|
}
|
|
if (reg == 0)
|
|
{
|
|
#if CONFIG(LP_DEBUG_MALLOC)
|
|
printf(" need to allocate a new memalign region\n");
|
|
#endif
|
|
/* get align regions */
|
|
reg = allocate_region(align, large_request/align, size, type);
|
|
#if CONFIG(LP_DEBUG_MALLOC)
|
|
printf(" ... returned %p\n", reg);
|
|
#endif
|
|
}
|
|
if (reg == 0) {
|
|
/* Nothing available. */
|
|
return (void *)NULL;
|
|
}
|
|
|
|
int i, count = 0, target = (size+align-1)/align;
|
|
for (i = 0; i < (reg->size/align); i++)
|
|
{
|
|
if (((u8*)reg->start)[i] == 0)
|
|
{
|
|
count++;
|
|
if (count == target) {
|
|
count = i+1-count;
|
|
for (i=0; i<target-1; i++)
|
|
{
|
|
((u8*)reg->start)[count+i]=2;
|
|
}
|
|
((u8*)reg->start)[count+target-1]=1;
|
|
reg->free -= target;
|
|
return reg->start_data+(align*count);
|
|
}
|
|
} else {
|
|
count = 0;
|
|
}
|
|
}
|
|
/* The free space in this region is fragmented,
|
|
so we will move on and try the next one: */
|
|
reg = reg->next;
|
|
goto look_further; // end condition is once a new region is allocated - it always has enough space
|
|
}
|
|
|
|
void *memalign(size_t align, size_t size)
|
|
{
|
|
return alloc_aligned(align, size, heap);
|
|
}
|
|
|
|
void *dma_memalign(size_t align, size_t size)
|
|
{
|
|
return alloc_aligned(align, size, dma);
|
|
}
|
|
|
|
/* This is for debugging purposes. */
|
|
#if CONFIG(LP_DEBUG_MALLOC)
|
|
void print_malloc_map(void)
|
|
{
|
|
struct memory_type *type = heap;
|
|
void *ptr;
|
|
int free_memory;
|
|
|
|
again:
|
|
ptr = type->start;
|
|
free_memory = 0;
|
|
|
|
while (ptr < type->end) {
|
|
hdrtype_t hdr = *((hdrtype_t *) ptr);
|
|
|
|
if (!HAS_MAGIC(hdr)) {
|
|
if (type->magic_initialized)
|
|
printf("%s: Poisoned magic - we're toast\n", type->name);
|
|
else
|
|
printf("%s: No magic yet - going to initialize\n", type->name);
|
|
break;
|
|
}
|
|
|
|
/* FIXME: Verify the size of the block. */
|
|
|
|
printf("%s %x: %s (%llx bytes)\n", type->name,
|
|
(unsigned int)(ptr - type->start),
|
|
hdr & FLAG_FREE ? "FREE" : "USED", SIZE(hdr));
|
|
|
|
if (hdr & FLAG_FREE)
|
|
free_memory += SIZE(hdr);
|
|
|
|
ptr += HDRSIZE + SIZE(hdr);
|
|
}
|
|
|
|
if (free_memory && (type->minimal_free > free_memory))
|
|
type->minimal_free = free_memory;
|
|
printf("%s: Maximum memory consumption: %zu bytes\n", type->name,
|
|
(type->end - type->start) - HDRSIZE - type->minimal_free);
|
|
|
|
if (type != dma) {
|
|
type = dma;
|
|
goto again;
|
|
}
|
|
}
|
|
#endif
|