coreboot-kgpe-d16/util/sconfig/main.c
Angel Pons 437da71d0a SMBIOS/SCONFIG: Allow devtree-defined Type 41 entries
Introduce the `smbios_dev_info` devicetree keyword to specify the
instance ID and RefDes (Reference Designation) of onboard devices.

Example syntax:

 device pci 1c.0 on	# PCIe Port 
 	device pci 00.0 on
 		smbios_dev_info 6
 	end
 end
 device pci 1c.1 on	# PCIe Port 
 	device pci 00.0 on
 		smbios_dev_info 42 "PCIe-PCI Time Machine"
 	end
 end

The `SMBIOS_TYPE41_PROVIDED_BY_DEVTREE` Kconfig option enables using
this syntax to control the generated Type 41 entries. When this option
is enabled, Type 41 entries are only autogenerated for devices with a
defined instance ID. This avoids having to keep track of which instance
IDs have been used for every device class.

Using `smbios_dev_info` when `SMBIOS_TYPE41_PROVIDED_BY_DEVTREE` is not
enabled will result in a build-time error, as the syntax is meaningless
in this case. This is done with preprocessor guards around the Type 41
members in `struct device` and the code which uses the guarded members.
Although the preprocessor usage isn't particularly elegant, adjusting
the devicetree syntax and/or grammar depending on a Kconfig option is
probably even worse.

Change-Id: Iecca9ada6ee1000674cb5dd7afd5c309d8e1a64b
Signed-off-by: Angel Pons <th3fanbus@gmail.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/57370
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Tim Wawrzynczak <twawrzynczak@chromium.org>
Reviewed-by: Nico Huber <nico.h@gmx.de>
2021-11-04 10:25:09 +00:00

2131 lines
58 KiB
C

/* sconfig, coreboot device tree compiler */
/* SPDX-License-Identifier: GPL-2.0-only */
#include <assert.h>
#include <ctype.h>
#include <getopt.h>
#include <inttypes.h>
#include <libgen.h>
/* stat.h needs to be included before commonlib/helpers.h to avoid errors.*/
#include <sys/stat.h>
#include <commonlib/helpers.h>
#include <stdint.h>
#include "sconfig.h"
#include "sconfig.tab.h"
extern int linenum;
/*
* Maintains list of all the unique chip structures for the board.
* This is shared across base and override device trees since we need to
* generate headers for all chips added by both the trees.
*/
static struct chip chip_header;
typedef enum {
UNSLASH,
SPLIT_1ST,
TO_LOWER,
TO_UPPER,
} translate_t;
/*
* Mainboard is assumed to have a root device whose bus is the parent of all the
* devices that are added by parsing the devicetree file. This device has a
* mainboard chip instance associated with it.
*
*
*
* +------------------------+ +----------------------+
* | Root device | | Mainboard |
* +---------+ (base_root_dev) +--------------->+ instance +
* | | | chip_instance | (mainboard_instance)|
* | +------------------------+ | |
* | | +----------------------+
* | | bus |
* | parent v |
* | +-------------------+ |
* | | Root bus | |
* +----------->+ (base_root_bus) | |
* | | |
* +-------------------+ |
* | |
* | children | chip
* v |
* X |
* (new devices will |
* be added here as |
* children) |
* |
* |
* |
* +-------+----------+
* | |
* | Mainboard chip +----------->X (new chips will be
* | (mainboard_chip) | added here)
* | |
* +------------------+
*
*
*/
/* Root device of primary tree. */
static struct device base_root_dev;
/* Root device of chipset tree. */
static struct device chipset_root_dev;
/* Root device of override tree (if applicable). */
static struct device override_root_dev;
static struct chip_instance mainboard_instance;
static struct bus base_root_bus = {
.id = 0,
.dev = &base_root_dev,
};
static struct device base_root_dev = {
.name = "dev_root",
.chip_instance = &mainboard_instance,
.path = " .type = DEVICE_PATH_ROOT ",
.parent = &base_root_bus,
.enabled = 1,
.bus = &base_root_bus,
};
static struct bus chipset_root_bus = {
.id = 0,
.dev = &chipset_root_dev,
};
static struct device chipset_root_dev = {
.name = "chipset_root",
.chip_instance = &mainboard_instance,
.path = " .type = DEVICE_PATH_ROOT ",
.parent = &chipset_root_bus,
.enabled = 1,
.bus = &chipset_root_bus,
};
static struct bus override_root_bus = {
.id = 0,
.dev = &override_root_dev,
};
static struct device override_root_dev = {
.name = "override_root",
/*
* Override tree root device points to the same mainboard chip instance
* as the base tree root device. It should not cause any side-effects
* since the mainboard chip instance pointer in override tree will just
* be ignored.
*/
.chip_instance = &mainboard_instance,
.path = " .type = DEVICE_PATH_ROOT ",
.parent = &override_root_bus,
.enabled = 1,
.bus = &override_root_bus,
};
static struct chip mainboard_chip = {
.name = "mainboard",
.name_underscore = "mainboard",
.instance = &mainboard_instance,
};
static struct chip_instance mainboard_instance = {
.id = 0,
.chip = &mainboard_chip,
};
/* This is the parent of all devices added by parsing the devicetree file. */
struct bus *root_parent;
struct queue_entry {
void *data;
struct queue_entry *next;
struct queue_entry *prev;
};
#define S_ALLOC(_s) s_alloc(__func__, _s)
static void *s_alloc(const char *f, size_t s)
{
void *data = calloc(1, s);
if (!data) {
fprintf(stderr, "%s: Failed to alloc mem!\n", f);
exit(1);
}
return data;
}
static struct queue_entry *new_queue_entry(void *data)
{
struct queue_entry *e = S_ALLOC(sizeof(*e));
e->data = data;
e->next = e->prev = e;
return e;
}
static void enqueue_tail(struct queue_entry **q_head, void *data)
{
struct queue_entry *tmp = new_queue_entry(data);
struct queue_entry *q = *q_head;
if (!q) {
*q_head = tmp;
return;
}
q->prev->next = tmp;
tmp->prev = q->prev;
q->prev = tmp;
tmp->next = q;
}
static void *dequeue_tail(struct queue_entry **q_head)
{
struct queue_entry *q = *q_head;
struct queue_entry *tmp;
void *data;
if (!q)
return NULL;
tmp = q->prev;
if (tmp == q)
*q_head = NULL;
else {
tmp->prev->next = q;
q->prev = tmp->prev;
}
data = tmp->data;
free(tmp);
return data;
}
static void *dequeue_head(struct queue_entry **q_head)
{
struct queue_entry *q = *q_head;
struct queue_entry *tmp = q;
void *data;
if (!q)
return NULL;
if (q->next == q)
*q_head = NULL;
else {
q->next->prev = q->prev;
q->prev->next = q->next;
*q_head = q->next;
}
data = tmp->data;
free(tmp);
return data;
}
static void *peek_queue_head(struct queue_entry *q_head)
{
if (!q_head)
return NULL;
return q_head->data;
}
static struct queue_entry *chip_q_head;
void chip_enqueue_tail(void *data)
{
enqueue_tail(&chip_q_head, data);
}
void *chip_dequeue_tail(void)
{
return dequeue_tail(&chip_q_head);
}
int yywrap(void)
{
return 1;
}
void yyerror(char const *str)
{
extern char *yytext;
fprintf(stderr, "line %d: %s: %s\n", linenum + 1, yytext, str);
exit(1);
}
char *translate_name(const char *str, translate_t mode)
{
char *b, *c;
b = c = strdup(str);
while (c && *c) {
if ((mode == SPLIT_1ST) && (*c == '/')) {
*c = 0;
break;
}
if (*c == '/')
*c = '_';
if (*c == '-')
*c = '_';
if (mode == TO_UPPER)
*c = toupper(*c);
if (mode == TO_LOWER)
*c = tolower(*c);
c++;
}
return b;
}
static struct chip *get_chip(char *path)
{
struct chip *h = &chip_header;
while (h->next) {
int result = strcmp(path, h->next->name);
if (result == 0)
return h->next;
if (result < 0)
break;
h = h->next;
}
struct chip *new_chip = S_ALLOC(sizeof(struct chip));
new_chip->next = h->next;
h->next = new_chip;
new_chip->chiph_exists = 1;
new_chip->name = path;
new_chip->name_underscore = translate_name(path, UNSLASH);
struct stat st;
char *chip_h = S_ALLOC(strlen(path) + 18);
sprintf(chip_h, "src/%s", path);
if ((stat(chip_h, &st) == -1) && (errno == ENOENT)) {
/* root_complex gets away without a separate directory, but
* exists on on pretty much all AMD chipsets.
*/
if (!strstr(path, "/root_complex")) {
fprintf(stderr, "ERROR: Chip component %s does not exist.\n",
path);
exit(1);
}
}
sprintf(chip_h, "src/%s/chip.h", path);
if ((stat(chip_h, &st) == -1) && (errno == ENOENT))
new_chip->chiph_exists = 0;
free(chip_h);
return new_chip;
}
struct chip_instance *new_chip_instance(char *path)
{
struct chip *chip = get_chip(path);
struct chip_instance *instance = S_ALLOC(sizeof(*instance));
instance->chip = chip;
instance->next = chip->instance;
chip->instance = instance;
return instance;
}
/* List of fw_config fields added during parsing. */
static struct fw_config_field *fw_config_fields;
static struct fw_config_option *find_fw_config_option(struct fw_config_field *field,
const char *name)
{
struct fw_config_option *option = field->options;
while (option && option->name) {
if (!strcmp(option->name, name))
return option;
option = option->next;
}
return NULL;
}
static struct fw_config_field *find_fw_config_field(const char *name)
{
struct fw_config_field *field = fw_config_fields;
while (field && field->name) {
if (!strcmp(field->name, name))
return field;
field = field->next;
}
return NULL;
}
struct fw_config_field *get_fw_config_field(const char *name)
{
struct fw_config_field *field = find_fw_config_field(name);
/* Fail if the field does not exist, new fields must be added with a mask. */
if (!field) {
printf("ERROR: fw_config field not found: %s\n", name);
exit(1);
}
return field;
}
static void append_fw_config_field(struct fw_config_field *add)
{
struct fw_config_field *field = fw_config_fields;
if (!fw_config_fields) {
fw_config_fields = add;
} else {
while (field && field->next)
field = field->next;
field->next = add;
}
}
void append_fw_config_bits(struct fw_config_field_bits **bits,
unsigned int start_bit, unsigned int end_bit)
{
struct fw_config_field_bits *new_bits = S_ALLOC(sizeof(*new_bits));
new_bits->start_bit = start_bit;
new_bits->end_bit = end_bit;
new_bits->next = NULL;
if (*bits == NULL) {
*bits = new_bits;
return;
}
struct fw_config_field_bits *tmp = *bits;
while (tmp->next)
tmp = tmp->next;
tmp->next = new_bits;
}
int fw_config_masks_overlap(struct fw_config_field *existing,
unsigned int start_bit, unsigned int end_bit)
{
struct fw_config_field_bits *bits = existing->bits;
while (bits) {
if (start_bit <= bits->end_bit && end_bit >= bits->start_bit) {
printf("ERROR: fw_config field [%u-%u] overlaps %s[%u-%u]\n",
start_bit, end_bit,
existing->name, bits->start_bit, bits->end_bit);
return 1;
}
bits = bits->next;
}
return 0;
}
struct fw_config_field *new_fw_config_field(const char *name, struct fw_config_field_bits *bits)
{
struct fw_config_field *field = find_fw_config_field(name);
struct fw_config_field_bits *tmp;
/* Don't allow re-defining a field, only adding new fields. */
if (field) {
printf("ERROR: fw_config field %s already exists\n", name);
exit(1);
}
/* Check that each field is within 64 bits. */
tmp = bits;
while (tmp) {
if (tmp->start_bit > tmp->end_bit || tmp->end_bit > 63) {
printf("ERROR: fw_config field %s has invalid range %u-%u\n", name,
tmp->start_bit, tmp->end_bit);
exit(1);
}
/* Check for overlap with an existing field. */
struct fw_config_field *existing = fw_config_fields;
while (existing) {
if (fw_config_masks_overlap(existing, tmp->start_bit, tmp->end_bit))
exit(1);
existing = existing->next;
}
tmp = tmp->next;
}
field = S_ALLOC(sizeof(*field));
field->name = name;
field->bits = bits;
append_fw_config_field(field);
return field;
}
static void append_fw_config_option_to_field(struct fw_config_field *field,
struct fw_config_option *add)
{
struct fw_config_option *option = field->options;
if (!option) {
field->options = add;
} else {
while (option && option->next)
option = option->next;
option->next = add;
}
}
static uint64_t calc_max_field_value(const struct fw_config_field *field)
{
unsigned int bit_count = 0;
const struct fw_config_field_bits *bits = field->bits;
while (bits) {
bit_count += 1 + bits->end_bit - bits->start_bit;
bits = bits->next;
};
return (1ull << bit_count) - 1ull;
}
void add_fw_config_option(struct fw_config_field *field, const char *name, uint64_t value)
{
struct fw_config_option *option;
/* Check that option value fits within field mask. */
uint64_t field_max_value = calc_max_field_value(field);
if (value > field_max_value) {
printf("ERROR: fw_config option %s:%s value %" PRIx64 " larger than field max %"
PRIx64 "\n",
field->name, name, value, field_max_value);
exit(1);
}
/* Check for existing option with this name or value. */
option = field->options;
while (option) {
if (!strcmp(option->name, name)) {
printf("ERROR: fw_config option name %s:%s already exists\n",
field->name, name);
exit(1);
}
/* Compare values. */
if (value == option->value) {
printf("ERROR: fw_config option %s:%s[%" PRIx64 "] redefined as %s\n",
field->name, option->name, value, name);
exit(1);
}
option = option->next;
}
option = S_ALLOC(sizeof(*option));
option->name = name;
option->value = value;
/* Add option to the current field. */
append_fw_config_option_to_field(field, option);
}
static void append_fw_config_probe_to_dev(struct device *dev, struct fw_config_probe *add)
{
struct fw_config_probe *probe = dev->probe;
if (!probe) {
dev->probe = add;
} else {
while (probe && probe->next)
probe = probe->next;
probe->next = add;
}
}
static int check_probe_exists(struct fw_config_probe *probe, const char *field,
const char *option)
{
while (probe) {
if (!strcmp(probe->field, field) && !strcmp(probe->option, option)) {
return 1;
}
probe = probe->next;
}
return 0;
}
void add_fw_config_probe(struct bus *bus, const char *field, const char *option)
{
struct fw_config_probe *probe;
if (check_probe_exists(bus->dev->probe, field, option)) {
printf("ERROR: fw_config probe %s:%s already exists\n", field, option);
exit(1);
}
probe = S_ALLOC(sizeof(*probe));
probe->field = field;
probe->option = option;
append_fw_config_probe_to_dev(bus->dev, probe);
}
static uint64_t compute_fw_config_mask(const struct fw_config_field_bits *bits)
{
uint64_t mask = 0;
while (bits) {
/* Compute mask from start and end bit. */
uint64_t tmp = ((1ull << (1ull + bits->end_bit - bits->start_bit)) - 1ull);
tmp <<= bits->start_bit;
mask |= tmp;
bits = bits->next;
}
return mask;
}
static unsigned int bits_width(const struct fw_config_field_bits *bits)
{
return 1 + bits->end_bit - bits->start_bit;
}
static uint64_t calc_option_value(const struct fw_config_field *field,
const struct fw_config_option *option)
{
uint64_t value = 0;
uint64_t original = option->value;
struct fw_config_field_bits *bits = field->bits;
while (bits) {
const unsigned int width = bits_width(bits);
const uint64_t orig_mask = (1ull << width) - 1ull;
const uint64_t orig = (original & orig_mask);
value |= (orig << bits->start_bit);
original >>= width;
bits = bits->next;
}
return value;
}
static void emit_fw_config(FILE *fil)
{
struct fw_config_field *field = fw_config_fields;
if (!field)
return;
while (field) {
struct fw_config_option *option = field->options;
uint64_t mask;
fprintf(fil, "#define FW_CONFIG_FIELD_%s_NAME \"%s\"\n",
field->name, field->name);
mask = compute_fw_config_mask(field->bits);
fprintf(fil, "#define FW_CONFIG_FIELD_%s_MASK 0x%" PRIx64 "\n",
field->name, mask);
while (option) {
const uint64_t value = calc_option_value(field, option);
fprintf(fil, "#define FW_CONFIG_FIELD_%s_OPTION_%s_NAME \"%s\"\n",
field->name, option->name, option->name);
fprintf(fil, "#define FW_CONFIG_FIELD_%s_OPTION_%s_VALUE 0x%"
PRIx64 "\n", field->name, option->name, value);
option = option->next;
}
field = field->next;
}
fprintf(fil, "\n");
}
static int emit_fw_config_probe(FILE *fil, struct device *dev)
{
struct fw_config_probe *probe = dev->probe;
fprintf(fil, "STORAGE struct fw_config %s_probe_list[] = {\n", dev->name);
while (probe) {
/* Find matching field. */
struct fw_config_field *field;
struct fw_config_option *option;
uint64_t mask, value;
field = find_fw_config_field(probe->field);
if (!field) {
printf("ERROR: fw_config_probe field %s not found\n", probe->field);
return -1;
}
option = find_fw_config_option(field, probe->option);
if (!option) {
printf("ERROR: fw_config_probe field %s option %s not found\n",
probe->field, probe->option);
return -1;
}
/* Fill out the probe structure with values from emit_fw_config(). */
fprintf(fil, "\t{\n");
fprintf(fil, "\t\t.field_name = FW_CONFIG_FIELD_%s_NAME,\n", probe->field);
fprintf(fil, "\t\t.option_name = FW_CONFIG_FIELD_%s_OPTION_%s_NAME,\n",
probe->field, probe->option);
fprintf(fil, "\t\t.mask = FW_CONFIG_FIELD_%s_MASK,\n", probe->field);
fprintf(fil, "\t\t.value = FW_CONFIG_FIELD_%s_OPTION_%s_VALUE,\n",
probe->field, probe->option);
fprintf(fil, "\t},\n");
probe = probe->next;
}
/* Add empty entry to mark end of list. */
fprintf(fil, "\t{ }\n};\n");
return 0;
}
/*
* Allocate a new bus for the provided device.
* - If this is the first bus being allocated under this device, then its id
* is set to 0 and bus and last_bus are pointed to the newly allocated bus.
* - If this is not the first bus under this device, then its id is set to 1
* plus the id of last bus and newly allocated bus is added to the list of
* buses under the device. last_bus is updated to point to the newly
* allocated bus.
*/
static void alloc_bus(struct device *dev)
{
struct bus *bus = S_ALLOC(sizeof(*bus));
bus->dev = dev;
if (dev->last_bus == NULL) {
bus->id = 0;
dev->bus = bus;
} else {
bus->id = dev->last_bus->id + 1;
dev->last_bus->next_bus = bus;
}
dev->last_bus = bus;
}
/*
* Allocate a new device under the given parent. This function allocates a new
* device structure under the provided parent bus and allocates a bus structure
* under the newly allocated device.
*/
static struct device *alloc_dev(struct bus *parent)
{
struct device *dev = S_ALLOC(sizeof(*dev));
dev->parent = parent;
dev->subsystem_vendor = -1;
dev->subsystem_device = -1;
alloc_bus(dev);
return dev;
}
/*
* This function scans the children of given bus to see if any device matches
* the new device that is requested.
*
* Returns pointer to the node if found, else NULL.
*/
static struct device *get_dev(struct bus *parent, int path_a, int path_b,
int bustype, struct chip_instance *chip_instance)
{
struct device *child = parent->children;
while (child) {
if ((child->path_a == path_a) && (child->path_b == path_b) &&
(child->bustype == bustype) &&
(child->chip_instance == chip_instance))
return child;
child = child->sibling;
}
return NULL;
}
/*
* Add given node as child of the provided parent. If this is the first child of
* the parent, update parent->children pointer as well.
*/
static void set_new_child(struct bus *parent, struct device *child)
{
struct device *c = parent->children;
if (c) {
while (c->sibling)
c = c->sibling;
c->sibling = child;
} else
parent->children = child;
child->sibling = NULL;
child->parent = parent;
}
static const struct device *find_alias(const struct device *const parent,
const char *const alias)
{
if (parent->alias && !strcmp(parent->alias, alias))
return parent;
const struct bus *bus;
for (bus = parent->bus; bus; bus = bus->next_bus) {
const struct device *child;
for (child = bus->children; child; child = child->sibling) {
const struct device *const ret = find_alias(child, alias);
if (ret)
return ret;
}
}
return NULL;
}
static struct device *new_device_with_path(struct bus *parent,
struct chip_instance *chip_instance,
const int bustype, int path_a, int path_b,
char *alias, int status)
{
struct device *new_d;
/* If device is found under parent, no need to allocate new device. */
new_d = get_dev(parent, path_a, path_b, bustype, chip_instance);
if (new_d) {
alloc_bus(new_d);
return new_d;
}
new_d = alloc_dev(parent);
new_d->bustype = bustype;
new_d->path_a = path_a;
new_d->path_b = path_b;
new_d->alias = alias;
new_d->enabled = status & 0x01;
new_d->hidden = (status >> 1) & 0x01;
new_d->mandatory = (status >> 2) & 0x01;
new_d->chip_instance = chip_instance;
set_new_child(parent, new_d);
switch (bustype) {
case PCI:
new_d->path = ".type=DEVICE_PATH_PCI,{.pci={ .devfn = PCI_DEVFN(0x%x,%d)}}";
break;
case PNP:
new_d->path = ".type=DEVICE_PATH_PNP,{.pnp={ .port = 0x%x, .device = 0x%x }}";
break;
case I2C:
new_d->path = ".type=DEVICE_PATH_I2C,{.i2c={ .device = 0x%x, .mode_10bit = %d }}";
break;
case APIC:
new_d->path = ".type=DEVICE_PATH_APIC,{.apic={ .apic_id = 0x%x }}";
break;
case CPU_CLUSTER:
new_d->path = ".type=DEVICE_PATH_CPU_CLUSTER,{.cpu_cluster={ .cluster = 0x%x }}";
break;
case CPU:
new_d->path = ".type=DEVICE_PATH_CPU,{.cpu={ .id = 0x%x }}";
break;
case DOMAIN:
new_d->path = ".type=DEVICE_PATH_DOMAIN,{.domain={ .domain = 0x%x }}";
break;
case IOAPIC:
new_d->path = ".type=DEVICE_PATH_IOAPIC,{.ioapic={ .ioapic_id = 0x%x }}";
break;
case GENERIC:
new_d->path = ".type=DEVICE_PATH_GENERIC,{.generic={ .id = 0x%x, .subid = 0x%x }}";
break;
case SPI:
new_d->path = ".type=DEVICE_PATH_SPI,{.spi={ .cs = 0x%x }}";
break;
case USB:
new_d->path = ".type=DEVICE_PATH_USB,{.usb={ .port_type = %d, .port_id = %d }}";
break;
case MMIO:
new_d->path = ".type=DEVICE_PATH_MMIO,{.mmio={ .addr = 0x%x }}";
break;
case GPIO:
new_d->path = ".type=DEVICE_PATH_GPIO,{.gpio={ .id = 0x%x }}";
break;
}
return new_d;
}
struct device *new_device_reference(struct bus *parent,
struct chip_instance *chip_instance,
const char *reference, int status)
{
const struct device *dev = find_alias(&base_root_dev, reference);
if (!dev) {
printf("ERROR: Unable to find device reference %s\n", reference);
exit(1);
}
return new_device_with_path(parent, chip_instance, dev->bustype, dev->path_a,
dev->path_b, NULL, status);
}
struct device *new_device_raw(struct bus *parent,
struct chip_instance *chip_instance,
const int bustype, const char *devnum,
char *alias, int status)
{
char *tmp;
int path_a;
int path_b = 0;
/* Check for alias name conflicts. */
if (alias && find_alias(root_parent->dev, alias)) {
printf("ERROR: Alias already exists: %s\n", alias);
exit(1);
}
path_a = strtol(devnum, &tmp, 16);
if (*tmp == '.') {
tmp++;
path_b = strtol(tmp, NULL, 16);
}
return new_device_with_path(parent, chip_instance, bustype, path_a, path_b, alias,
status);
}
static void new_resource(struct device *dev, int type, int index, int base)
{
struct resource *r = S_ALLOC(sizeof(struct resource));
r->type = type;
r->index = index;
r->base = base;
if (dev->res) {
struct resource *head = dev->res;
while (head->next)
head = head->next;
head->next = r;
} else {
dev->res = r;
}
}
void add_resource(struct bus *bus, int type, int index, int base)
{
new_resource(bus->dev, type, index, base);
}
static void add_reg(struct reg **const head, char *const name, char *const val)
{
struct reg *const r = S_ALLOC(sizeof(struct reg));
struct reg *prev = NULL;
struct reg *cur;
r->key = name;
r->value = val;
for (cur = *head; cur != NULL; prev = cur, cur = cur->next) {
const int sort = strcmp(r->key, cur->key);
if (sort == 0) {
printf("ERROR: duplicate 'register' key '%s'.\n", r->key);
exit(1);
}
if (sort < 0)
break;
}
r->next = cur;
if (prev)
prev->next = r;
else
*head = r;
}
void add_register(struct chip_instance *chip_instance, char *name, char *val)
{
add_reg(&chip_instance->reg, name, val);
}
void add_reference(struct chip_instance *const chip_instance,
char *const name, char *const alias)
{
add_reg(&chip_instance->ref, name, alias);
}
static void set_reference(struct chip_instance *const chip_instance,
char *const name, char *const alias)
{
const struct device *const dev = find_alias(&base_root_dev, alias);
if (!dev) {
printf("ERROR: Cannot find device alias '%s'.\n", alias);
exit(1);
}
char *const ref_name = S_ALLOC(strlen(dev->name) + 2);
sprintf(ref_name, "&%s", dev->name);
add_register(chip_instance, name, ref_name);
}
static void update_references(FILE *file, FILE *head, struct device *dev,
struct device *next)
{
struct reg *ref;
for (ref = dev->chip_instance->ref; ref; ref = ref->next)
set_reference(dev->chip_instance, ref->key, ref->value);
}
void add_slot_desc(struct bus *bus, char *type, char *length, char *designation,
char *data_width)
{
struct device *dev = bus->dev;
if (dev->bustype != PCI && dev->bustype != DOMAIN) {
printf("ERROR: 'slot_type' only allowed for PCI devices\n");
exit(1);
}
dev->smbios_slot_type = type;
dev->smbios_slot_length = length;
dev->smbios_slot_data_width = data_width;
dev->smbios_slot_designation = designation;
}
void add_smbios_dev_info(struct bus *bus, long instance_id, const char *refdes)
{
struct device *dev = bus->dev;
if (dev->bustype != PCI && dev->bustype != DOMAIN) {
printf("ERROR: 'dev_info' only allowed for PCI devices\n");
exit(1);
}
if (instance_id < 0 || instance_id > UINT8_MAX) {
printf("ERROR: SMBIOS dev info instance ID '%ld' out of range\n", instance_id);
exit(1);
}
dev->smbios_instance_id_valid = 1;
dev->smbios_instance_id = (unsigned int)instance_id;
dev->smbios_refdes = refdes;
}
void add_pci_subsystem_ids(struct bus *bus, int vendor, int device,
int inherit)
{
struct device *dev = bus->dev;
if (dev->bustype != PCI && dev->bustype != DOMAIN) {
printf("ERROR: 'subsystem' only allowed for PCI devices\n");
exit(1);
}
dev->subsystem_vendor = vendor;
dev->subsystem_device = device;
dev->inherit_subsystem = inherit;
}
void add_ioapic_info(struct bus *bus, int apicid, const char *_srcpin,
int irqpin)
{
int srcpin;
struct device *dev = bus->dev;
if (!_srcpin || strlen(_srcpin) < 4 || strncasecmp(_srcpin, "INT", 3) ||
_srcpin[3] < 'A' || _srcpin[3] > 'D') {
printf("ERROR: malformed ioapic_irq args: %s\n", _srcpin);
exit(1);
}
srcpin = _srcpin[3] - 'A';
if (dev->bustype != PCI && dev->bustype != DOMAIN) {
printf("ERROR: ioapic config only allowed for PCI devices\n");
exit(1);
}
if (srcpin > 3) {
printf("ERROR: srcpin '%d' invalid\n", srcpin);
exit(1);
}
dev->pci_irq_info[srcpin].ioapic_irq_pin = irqpin;
dev->pci_irq_info[srcpin].ioapic_dst_id = apicid;
}
static int dev_has_children(struct device *dev)
{
struct bus *bus = dev->bus;
while (bus) {
if (bus->children)
return 1;
bus = bus->next_bus;
}
return 0;
}
static void pass0(FILE *fil, FILE *head, struct device *ptr, struct device *next)
{
static int dev_id;
if (ptr == &base_root_dev) {
fprintf(fil, "STORAGE struct bus %s_links[];\n",
ptr->name);
return;
}
char *name;
if (ptr->alias) {
name = S_ALLOC(6 + strlen(ptr->alias));
sprintf(name, "_dev_%s", ptr->alias);
} else {
name = S_ALLOC(11);
sprintf(name, "_dev_%d", dev_id++);
}
ptr->name = name;
fprintf(fil, "STORAGE struct device %s;\n", ptr->name);
if (ptr->res)
fprintf(fil, "STORAGE struct resource %s_res[];\n",
ptr->name);
if (dev_has_children(ptr))
fprintf(fil, "STORAGE struct bus %s_links[];\n",
ptr->name);
if (next)
return;
fprintf(fil,
"DEVTREE_CONST struct device * DEVTREE_CONST last_dev = &%s;\n",
ptr->name);
}
static void emit_smbios_data(FILE *fil, struct device *ptr)
{
fprintf(fil, "#if !DEVTREE_EARLY\n");
fprintf(fil, "#if CONFIG(GENERATE_SMBIOS_TABLES)\n");
/* SMBIOS types start at 1, if zero it hasn't been set */
if (ptr->smbios_slot_type)
fprintf(fil, "\t.smbios_slot_type = %s,\n",
ptr->smbios_slot_type);
if (ptr->smbios_slot_data_width)
fprintf(fil, "\t.smbios_slot_data_width = %s,\n",
ptr->smbios_slot_data_width);
if (ptr->smbios_slot_designation)
fprintf(fil, "\t.smbios_slot_designation = \"%s\",\n",
ptr->smbios_slot_designation);
if (ptr->smbios_slot_length)
fprintf(fil, "\t.smbios_slot_length = %s,\n",
ptr->smbios_slot_length);
/* Fill in SMBIOS type41 fields */
if (ptr->smbios_instance_id_valid) {
fprintf(fil, "\t.smbios_instance_id_valid = true,\n");
fprintf(fil, "\t.smbios_instance_id = %u,\n", ptr->smbios_instance_id);
if (ptr->smbios_refdes)
fprintf(fil, "\t.smbios_refdes = \"%s\",\n", ptr->smbios_refdes);
}
fprintf(fil, "#endif\n");
fprintf(fil, "#endif\n");
}
static void emit_resources(FILE *fil, struct device *ptr)
{
if (ptr->res == NULL)
return;
int i = 1;
fprintf(fil, "STORAGE struct resource %s_res[] = {\n", ptr->name);
struct resource *r = ptr->res;
while (r) {
fprintf(fil,
"\t\t{ .flags=IORESOURCE_FIXED | IORESOURCE_ASSIGNED | IORESOURCE_");
if (r->type == IRQ)
fprintf(fil, "IRQ");
if (r->type == DRQ)
fprintf(fil, "DRQ");
if (r->type == IO)
fprintf(fil, "IO");
fprintf(fil, ", .index=0x%x, .base=0x%x,", r->index,
r->base);
if (r->next)
fprintf(fil, ".next=&%s_res[%d]},\n", ptr->name,
i++);
else
fprintf(fil, ".next=NULL },\n");
r = r->next;
}
fprintf(fil, "\t };\n");
}
static void emit_bus(FILE *fil, struct bus *bus)
{
fprintf(fil, "\t\t[%d] = {\n", bus->id);
fprintf(fil, "\t\t\t.link_num = %d,\n", bus->id);
fprintf(fil, "\t\t\t.dev = &%s,\n", bus->dev->name);
if (bus->children)
fprintf(fil, "\t\t\t.children = &%s,\n", bus->children->name);
if (bus->next_bus)
fprintf(fil, "\t\t\t.next=&%s_links[%d],\n", bus->dev->name,
bus->id + 1);
else
fprintf(fil, "\t\t\t.next = NULL,\n");
fprintf(fil, "\t\t},\n");
}
static void emit_dev_links(FILE *fil, struct device *ptr)
{
fprintf(fil, "STORAGE struct bus %s_links[] = {\n",
ptr->name);
struct bus *bus = ptr->bus;
while (bus) {
emit_bus(fil, bus);
bus = bus->next_bus;
}
fprintf(fil, "\t};\n");
}
static struct chip_instance *get_chip_instance(const struct device *dev)
{
struct chip_instance *chip_ins = dev->chip_instance;
/*
* If the chip instance of device has base_chip_instance pointer set, then follow that
* to update the chip instance for current device.
*/
if (chip_ins->base_chip_instance)
chip_ins = chip_ins->base_chip_instance;
return chip_ins;
}
static void pass1(FILE *fil, FILE *head, struct device *ptr, struct device *next)
{
int pin;
struct chip_instance *chip_ins = get_chip_instance(ptr);
int has_children = dev_has_children(ptr);
/* Emit probe structures. */
if (ptr->probe && (emit_fw_config_probe(fil, ptr) < 0)) {
if (head)
fclose(head);
fclose(fil);
exit(1);
}
if (ptr == &base_root_dev)
fprintf(fil, "DEVTREE_CONST struct device %s = {\n", ptr->name);
else
fprintf(fil, "STORAGE struct device %s = {\n", ptr->name);
fprintf(fil, "#if !DEVTREE_EARLY\n");
/*
* ops field is set to default_dev_ops_root only for the root
* device. For all other devices, it is set by the driver at runtime.
*/
if (ptr == &base_root_dev)
fprintf(fil, "\t.ops = &default_dev_ops_root,\n");
else
fprintf(fil, "\t.ops = NULL,\n");
fprintf(fil, "#endif\n");
fprintf(fil, "\t.bus = &%s_links[%d],\n", ptr->parent->dev->name,
ptr->parent->id);
fprintf(fil, "\t.path = {");
fprintf(fil, ptr->path, ptr->path_a, ptr->path_b);
fprintf(fil, "},\n");
fprintf(fil, "\t.enabled = %d,\n", ptr->enabled);
fprintf(fil, "\t.hidden = %d,\n", ptr->hidden);
fprintf(fil, "\t.mandatory = %d,\n", ptr->mandatory);
fprintf(fil, "\t.on_mainboard = 1,\n");
if (ptr->subsystem_vendor > 0)
fprintf(fil, "\t.subsystem_vendor = 0x%04x,\n",
ptr->subsystem_vendor);
if (ptr->subsystem_device > 0)
fprintf(fil, "\t.subsystem_device = 0x%04x,\n",
ptr->subsystem_device);
if (ptr->res) {
fprintf(fil, "\t.resource_list = &%s_res[0],\n",
ptr->name);
}
if (has_children)
fprintf(fil, "\t.link_list = &%s_links[0],\n",
ptr->name);
else
fprintf(fil, "\t.link_list = NULL,\n");
if (ptr->sibling)
fprintf(fil, "\t.sibling = &%s,\n", ptr->sibling->name);
else
fprintf(fil, "\t.sibling = NULL,\n");
if (ptr->probe)
fprintf(fil, "\t.probe_list = %s_probe_list,\n", ptr->name);
fprintf(fil, "#if !DEVTREE_EARLY\n");
for (pin = 0; pin < 4; pin++) {
if (ptr->pci_irq_info[pin].ioapic_irq_pin > 0)
fprintf(fil,
"\t.pci_irq_info[%d].ioapic_irq_pin = %d,\n",
pin, ptr->pci_irq_info[pin].ioapic_irq_pin);
if (ptr->pci_irq_info[pin].ioapic_dst_id > 0)
fprintf(fil,
"\t.pci_irq_info[%d].ioapic_dst_id = %d,\n",
pin, ptr->pci_irq_info[pin].ioapic_dst_id);
}
fprintf(fil, "\t.chip_ops = &%s_ops,\n",
chip_ins->chip->name_underscore);
if (chip_ins == &mainboard_instance)
fprintf(fil, "\t.name = mainboard_name,\n");
fprintf(fil, "#endif\n");
if (chip_ins->chip->chiph_exists)
fprintf(fil, "\t.chip_info = &%s_info_%d,\n",
chip_ins->chip->name_underscore, chip_ins->id);
if (next)
fprintf(fil, "\t.next=&%s,\n", next->name);
emit_smbios_data(fil, ptr);
fprintf(fil, "};\n");
emit_resources(fil, ptr);
if (has_children)
emit_dev_links(fil, ptr);
}
static void expose_device_names(FILE *fil, FILE *head, struct device *ptr, struct device *next)
{
struct chip_instance *chip_ins = get_chip_instance(ptr);
/* Only devices on root bus here. */
if (ptr->bustype == PCI && ptr->parent->dev->bustype == DOMAIN) {
fprintf(head, "extern DEVTREE_CONST struct device *const __pci_0_%02x_%d;\n",
ptr->path_a, ptr->path_b);
fprintf(fil, "DEVTREE_CONST struct device *const __pci_0_%02x_%d = &%s;\n",
ptr->path_a, ptr->path_b, ptr->name);
if (chip_ins->chip->chiph_exists) {
fprintf(head, "extern DEVTREE_CONST void *const __pci_0_%02x_%d_config;\n",
ptr->path_a, ptr->path_b);
fprintf(fil, "DEVTREE_CONST void *const __pci_0_%02x_%d_config = &%s_info_%d;\n",
ptr->path_a, ptr->path_b, chip_ins->chip->name_underscore, chip_ins->id);
}
}
if (ptr->bustype == PNP) {
fprintf(head, "extern DEVTREE_CONST struct device *const __pnp_%04x_%02x;\n",
ptr->path_a, ptr->path_b);
fprintf(fil, "DEVTREE_CONST struct device *const __pnp_%04x_%02x = &%s;\n",
ptr->path_a, ptr->path_b, ptr->name);
}
if (ptr->alias) {
fprintf(head, "extern DEVTREE_CONST struct device *const %s_ptr;\n", ptr->name);
fprintf(fil, "DEVTREE_CONST struct device *const %s_ptr = &%s;\n",
ptr->name, ptr->name);
}
}
static void add_siblings_to_queue(struct queue_entry **bfs_q_head,
struct device *d)
{
while (d) {
enqueue_tail(bfs_q_head, d);
d = d->sibling;
}
}
static void add_children_to_queue(struct queue_entry **bfs_q_head,
struct device *d)
{
struct bus *bus = d->bus;
while (bus) {
if (bus->children)
add_siblings_to_queue(bfs_q_head, bus->children);
bus = bus->next_bus;
}
}
static void walk_device_tree(FILE *fil, FILE *head, struct device *ptr,
void (*func)(FILE *, FILE *, struct device *,
struct device *))
{
struct queue_entry *bfs_q_head = NULL;
enqueue_tail(&bfs_q_head, ptr);
while ((ptr = dequeue_head(&bfs_q_head))) {
add_children_to_queue(&bfs_q_head, ptr);
func(fil, head, ptr, peek_queue_head(bfs_q_head));
}
}
static void emit_chip_headers(FILE *fil, struct chip *chip)
{
struct chip *tmp = chip;
while (chip) {
if (chip->chiph_exists)
fprintf(fil, "#include \"%s/chip.h\"\n", chip->name);
chip = chip->next;
}
fprintf(fil, "\n#if !DEVTREE_EARLY\n");
fprintf(fil,
"__attribute__((weak)) struct chip_operations mainboard_ops = {};\n");
chip = tmp;
while (chip) {
/* A lot of cpus do not define chip_operations at all, and the ones
that do only initialise .name. */
if (strstr(chip->name_underscore, "cpu_") == chip->name_underscore) {
fprintf(fil,
"__attribute__((weak)) struct chip_operations %s_ops = {};\n",
chip->name_underscore);
} else {
fprintf(fil, "extern struct chip_operations %s_ops;\n",
chip->name_underscore);
}
chip = chip->next;
}
fprintf(fil, "#endif\n");
}
static void emit_chip_instance(FILE *fil, struct chip_instance *instance)
{
fprintf(fil, "STORAGE struct %s_config %s_info_%d = {",
instance->chip->name_underscore,
instance->chip->name_underscore,
instance->id);
if (instance->reg) {
fprintf(fil, "\n");
struct reg *r = instance->reg;
while (r) {
fprintf(fil, "\t.%s = %s,\n", r->key, r->value);
r = r->next;
}
}
fprintf(fil, "};\n\n");
}
static void emit_chip_configs(FILE *fil)
{
struct chip *chip = chip_header.next;
struct chip_instance *instance;
int chip_id;
for (; chip; chip = chip->next) {
if (!chip->chiph_exists)
continue;
chip_id = 1;
instance = chip->instance;
while (instance) {
/*
* Emit this chip instance only if there is no forwarding pointer to the
* base tree chip instance.
*/
if (instance->base_chip_instance == NULL) {
instance->id = chip_id++;
emit_chip_instance(fil, instance);
}
instance = instance->next;
}
}
}
static void inherit_subsystem_ids(FILE *file, FILE *head, struct device *dev,
struct device *next)
{
struct device *p;
if (dev->subsystem_vendor != -1 && dev->subsystem_device != -1) {
/* user already gave us a subsystem vendor/device */
return;
}
for (p = dev; p && p->parent->dev != p; p = p->parent->dev) {
if (p->bustype != PCI && p->bustype != DOMAIN)
continue;
if (p->inherit_subsystem) {
dev->subsystem_vendor = p->subsystem_vendor;
dev->subsystem_device = p->subsystem_device;
break;
}
}
}
static void usage(void)
{
printf("usage: sconfig <options>\n");
printf(" -c | --output_c : Path to output static.c file (required)\n");
printf(" -r | --output_h : Path to header static.h file (required)\n");
printf(" -d | --output_d : Path to header static_devices.h file (required)\n");
printf(" -f | --output_f : Path to header static_fw_config.h file (required)\n");
printf(" -m | --mainboard_devtree : Path to mainboard devicetree file (required)\n");
printf(" -o | --override_devtree : Path to override devicetree file (optional)\n");
printf(" -p | --chipset_devtree : Path to chipset/SOC devicetree file (optional)\n");
exit(1);
}
static void parse_devicetree(const char *file, struct bus *parent)
{
FILE *filec = fopen(file, "r");
if (!filec) {
perror(NULL);
exit(1);
}
yyrestart(filec);
root_parent = parent;
linenum = 0;
yyparse();
fclose(filec);
}
static int device_probe_count(struct fw_config_probe *probe)
{
int count = 0;
while (probe) {
probe = probe->next;
count++;
}
return count;
}
/*
* When overriding devices, use the following rules:
* 1. If probe count matches and:
* a. Entire probe list matches for both devices -> Same device, override.
* b. No probe entries match -> Different devices, do not override.
* c. Partial list matches -> Bad device tree entries, fail build.
*
* 2. If probe counts do not match and:
* a. No probe entries match -> Different devices, do not override.
* b. Partial list matches -> Bad device tree entries, fail build.
*/
static int device_probes_match(struct device *a, struct device *b)
{
struct fw_config_probe *a_probe = a->probe;
struct fw_config_probe *b_probe = b->probe;
int a_probe_count = device_probe_count(a_probe);
int b_probe_count = device_probe_count(b_probe);
int match_count = 0;
while (a_probe) {
if (check_probe_exists(b_probe, a_probe->field, a_probe->option))
match_count++;
a_probe = a_probe->next;
}
if ((a_probe_count == b_probe_count) && (a_probe_count == match_count))
return 1;
if (match_count) {
printf("ERROR: devices with overlapping probes: ");
printf(a->path, a->path_a, a->path_b);
printf(b->path, b->path_a, b->path_b);
printf("\n");
exit(1);
}
return 0;
}
/*
* Match device nodes from base and override tree to see if they are the same
* node.
*/
static int device_match(struct device *a, struct device *b)
{
return ((a->path_a == b->path_a) &&
(a->path_b == b->path_b) &&
(a->bustype == b->bustype) &&
(a->chip_instance->chip ==
b->chip_instance->chip));
}
/*
* Match resource nodes from base and override tree to see if they are the same
* node.
*/
static int res_match(struct resource *a, struct resource *b)
{
return ((a->type == b->type) &&
(a->index == b->index));
}
/*
* Add resource to device. If resource is already present, then update its base
* and index. If not, then add a new resource to the device.
*/
static void update_resource(struct device *dev, struct resource *res)
{
struct resource *base_res = dev->res;
while (base_res) {
if (res_match(base_res, res)) {
base_res->base = res->base;
return;
}
base_res = base_res->next;
}
new_resource(dev, res->type, res->index, res->base);
}
/*
* Add register to chip instance. If register is already present, then update
* its value. If not, then add a new register to the chip instance.
*/
static void update_register(struct reg **const head, struct reg *reg)
{
struct reg *base_reg = *head;
while (base_reg) {
if (!strcmp(base_reg->key, reg->key)) {
base_reg->value = reg->value;
return;
}
base_reg = base_reg->next;
}
add_reg(head, reg->key, reg->value);
}
static void override_devicetree(struct bus *base_parent,
struct bus *override_parent);
/*
* Update the base device properties using the properties of override device. In
* addition to that, call override_devicetree for all the buses under the
* override device.
*
* Override Rules:
* +--------------------+--------------------------------------------+
* | | |
* |struct device member| Rule |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | id | Unchanged. This is used to generate device |
* | | structure name in static.c. So, no need to |
* | | override. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | enabled | Copy enabled state from override device. |
* | | This allows variants to override device |
* | | state. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | subsystem_vendor | Copy from override device only if any one |
* | subsystem_device | of the ids is non-zero. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | inherit_subsystem | Copy from override device only if it is |
* | | non-zero. This allows variant to only |
* | | enable inherit flag for a device. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | path | Unchanged since these are same for both |
* | path_a | base and override device (Used for |
* | path_b | matching devices). |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | bustype | Unchanged since this is same for both base |
* | | and override device (User for matching |
* | | devices). |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | pci_irq_info | Unchanged. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | parent | Unchanged. This is meaningful only within |
* | sibling | the parse tree, hence not being copied. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | res | Each resource that is present in override |
* | | device is copied over to base device: |
* | | 1. If resource of same type and index is |
* | | present in base device, then base of |
* | | the resource is copied. |
* | | 2. If not, then a new resource is allocated|
* | | under the base device using type, index |
* | | and base from override res. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | ref | Each reference that is present in override |
* | | device is copied over to base device with |
* | | the same rules as registers. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | alias | Base device alias is copied to override. |
* | | Override devices cannot change/remove an |
* | | existing alias, but they can add an alias |
* | | if one does not exist. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | smbios_slot info | Copy SMBIOS slot information from override.|
* | | This allows variants to override PCI(e) |
* | | slot information in SMBIOS tables. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | chip_instance | Each register of chip_instance is copied |
* | | over from override device to base device: |
* | | 1. If register with same key is present in |
* | | base device, then value of the register |
* | | is copied. |
* | | 2. If not, then a new register is allocated|
* | | under the base chip_instance using key |
* | | and value from override register. |
* | | |
* +-----------------------------------------------------------------+
* | | |
* | bus | Recursively call override_devicetree on |
* | last_bus | each bus of override device. It is assumed |
* | | that bus with id X under base device |
* | | to bus with id X under override device. If |
* | | override device has more buses than base |
* | | device, then new buses are allocated under |
* | | base device. |
* | | |
* +-----------------------------------------------------------------+
*/
static void update_device(struct device *base_dev, struct device *override_dev)
{
/*
* Copy the enabled state of override device to base device. This allows
* override tree to enable or disable a particular device.
*/
base_dev->enabled = override_dev->enabled;
/*
* Copy the hidden state of override device to base device. This allows
* override tree to hide or unhide a particular device.
*/
base_dev->hidden = override_dev->hidden;
/*
* Copy subsystem vendor and device ids from override device to base
* device only if the ids are non-zero in override device. Else, honor
* the values in base device.
*/
if (override_dev->subsystem_vendor ||
override_dev->subsystem_device) {
base_dev->subsystem_vendor = override_dev->subsystem_vendor;
base_dev->subsystem_device = override_dev->subsystem_device;
}
/*
* Copy value of inherity_subsystem from override device to base device
* only if it is non-zero in override device. This allows override
* tree to only enable inhert flag for a device.
*/
if (override_dev->inherit_subsystem)
base_dev->inherit_subsystem = override_dev->inherit_subsystem;
/*
* Copy resources of override device to base device.
* 1. If resource is already present in base device, then index and base
* of the resource will be copied over.
* 2. If resource is not already present in base device, a new resource
* will be allocated.
*/
struct resource *res = override_dev->res;
while (res) {
update_resource(base_dev, res);
res = res->next;
}
/*
* Copy registers of override chip instance to base chip instance.
* 1. If register key is already present in base chip instance, then
* value for the register is copied over.
* 2. If register key is not already present in base chip instance, then
* a new register will be allocated.
*/
struct reg *reg = override_dev->chip_instance->reg;
while (reg) {
update_register(&base_dev->chip_instance->reg, reg);
reg = reg->next;
}
/* Copy references just as with registers. */
reg = override_dev->chip_instance->ref;
while (reg) {
update_register(&base_dev->chip_instance->ref, reg);
reg = reg->next;
}
/* Check for alias name conflicts. */
if (override_dev->alias && find_alias(&base_root_dev, override_dev->alias)) {
printf("ERROR: alias already exists: %s\n", override_dev->alias);
exit(1);
}
/*
* Copy alias from base device.
*
* Override devices cannot change/remove an existing alias,
* but they can add an alias to a device if one does not exist yet.
*/
if (base_dev->alias)
override_dev->alias = base_dev->alias;
else
base_dev->alias = override_dev->alias;
/*
* Use probe list from override device in place of base device, in order
* to allow an override to remove a probe from the base device.
*/
base_dev->probe = override_dev->probe;
/* Copy SMBIOS slot information from base device */
base_dev->smbios_slot_type = override_dev->smbios_slot_type;
base_dev->smbios_slot_length = override_dev->smbios_slot_length;
base_dev->smbios_slot_data_width = override_dev->smbios_slot_data_width;
base_dev->smbios_slot_designation = override_dev->smbios_slot_designation;
/*
* Update base_chip_instance member in chip instance of override tree to forward it to
* the chip instance in base tree.
*/
override_dev->chip_instance->base_chip_instance = get_chip_instance(base_dev);
/*
* Now that the device properties are all copied over, look at each bus
* of the override device and run override_devicetree in a recursive
* manner. The assumption here is that first bus of override device
* corresponds to first bus of base device and so on. If base device has
* lesser buses than override tree, then new buses are allocated for it.
*/
struct bus *override_bus = override_dev->bus;
struct bus *base_bus = base_dev->bus;
while (override_bus) {
/*
* If we have more buses in override tree device, then allocate
* a new bus for the base tree device as well.
*/
if (!base_bus) {
alloc_bus(base_dev);
base_bus = base_dev->last_bus;
}
override_devicetree(base_dev->bus, override_dev->bus);
override_bus = override_bus->next_bus;
base_bus = base_bus->next_bus;
}
}
/*
* Perform copy of device and properties from override parent to base parent.
* This function walks through the override tree in a depth-first manner
* performing following actions:
* 1. If matching device is found in base tree, then copy the properties of
* override device to base tree device. Call override_devicetree recursively on
* the bus of override device.
* 2. If matching device is not found in base tree, then set override tree
* device as new child of base_parent and update the chip pointers in override
* device subtree to ensure the nodes do not point to override tree chip
* instance.
*/
static void override_devicetree(struct bus *base_parent,
struct bus *override_parent)
{
struct device *base_child;
struct device *override_child = override_parent->children;
struct device *next_child;
while (override_child) {
/* Look for a matching device in base tree. */
for (base_child = base_parent->children;
base_child; base_child = base_child->sibling) {
if (!device_match(base_child, override_child))
continue;
/* If base device has no probe statement, nothing else to compare. */
if (base_child->probe == NULL)
break;
/*
* If base device has probe statements, ensure that all probe conditions
* match for base and override device.
*/
if (device_probes_match(base_child, override_child))
break;
}
next_child = override_child->sibling;
/*
* If matching device is found, copy properties of
* override_child to base_child.
*/
if (base_child)
update_device(base_child, override_child);
else {
/*
* If matching device is not found, set override_child
* as a new child of base_parent.
*/
set_new_child(base_parent, override_child);
}
override_child = next_child;
}
}
static void parse_override_devicetree(const char *file, struct device *dev)
{
parse_devicetree(file, dev->bus);
if (!dev_has_children(dev)) {
fprintf(stderr, "ERROR: Override tree needs at least one device!\n");
exit(1);
}
override_devicetree(&base_root_bus, dev->bus);
}
static void generate_outputh(FILE *f, const char *fw_conf_header, const char *device_header)
{
fprintf(f, "#ifndef __STATIC_DEVICE_TREE_H\n");
fprintf(f, "#define __STATIC_DEVICE_TREE_H\n\n");
fprintf(f, "#include <%s>\n", fw_conf_header);
fprintf(f, "#include <%s>\n\n", device_header);
fprintf(f, "\n#endif /* __STATIC_DEVICE_TREE_H */\n");
}
static void generate_outputc(FILE *f, const char *static_header)
{
fprintf(f, "#include <boot/coreboot_tables.h>\n");
fprintf(f, "#include <device/device.h>\n");
fprintf(f, "#include <device/pci.h>\n");
fprintf(f, "#include <fw_config.h>\n");
fprintf(f, "#include <%s>\n", static_header);
emit_chip_headers(f, chip_header.next);
fprintf(f, "\n#define STORAGE static __unused DEVTREE_CONST\n\n");
walk_device_tree(NULL, NULL, &base_root_dev, inherit_subsystem_ids);
fprintf(f, "\n/* pass 0 */\n");
walk_device_tree(f, NULL, &base_root_dev, pass0);
walk_device_tree(NULL, NULL, &base_root_dev, update_references);
fprintf(f, "\n/* chip configs */\n");
emit_chip_configs(f);
fprintf(f, "\n/* pass 1 */\n");
walk_device_tree(f, NULL, &base_root_dev, pass1);
}
static void generate_outputd(FILE *gen, FILE *dev)
{
fprintf(dev, "#ifndef __STATIC_DEVICES_H\n");
fprintf(dev, "#define __STATIC_DEVICES_H\n\n");
fprintf(dev, "#include <device/device.h>\n\n");
fprintf(dev, "/* expose_device_names */\n");
walk_device_tree(gen, dev, &base_root_dev, expose_device_names);
fprintf(dev, "\n#endif /* __STATIC_DEVICE_NAMES_H */\n");
}
static void generate_outputf(FILE *f)
{
fprintf(f, "#ifndef __STATIC_FW_CONFIG_H\n");
fprintf(f, "#define __STATIC_FW_CONFIG_H\n\n");
emit_fw_config(f);
fprintf(f, "\n#endif /* __STATIC_FW_CONFIG_H */\n");
}
int main(int argc, char **argv)
{
static const struct option long_options[] = {
{ "mainboard_devtree", 1, NULL, 'm' },
{ "override_devtree", 1, NULL, 'o' },
{ "chipset_devtree", 1, NULL, 'p' },
{ "output_c", 1, NULL, 'c' },
{ "output_h", 1, NULL, 'r' },
{ "output_d", 1, NULL, 'd' },
{ "output_f", 1, NULL, 'f' },
{ "help", 1, NULL, 'h' },
{ }
};
const char *override_devtree = NULL;
const char *base_devtree = NULL;
const char *chipset_devtree = NULL;
const char *outputc = NULL;
const char *outputh = NULL;
const char *outputd = NULL;
const char *outputf = NULL;
int opt, option_index;
while ((opt = getopt_long(argc, argv, "m:o:p:c:r:d:f:h", long_options,
&option_index)) != EOF) {
switch (opt) {
case 'm':
base_devtree = strdup(optarg);
break;
case 'o':
override_devtree = strdup(optarg);
break;
case 'p':
chipset_devtree = strdup(optarg);
break;
case 'c':
outputc = strdup(optarg);
break;
case 'r':
outputh = strdup(optarg);
break;
case 'd':
outputd = strdup(optarg);
break;
case 'f':
outputf = strdup(optarg);
break;
case 'h':
default:
usage();
}
}
if (!base_devtree || !outputc || !outputh || !outputd || !outputf)
usage();
if (chipset_devtree) {
/* Use the chipset devicetree as the base, then override
with the mainboard "base" devicetree. */
parse_devicetree(chipset_devtree, &base_root_bus);
parse_override_devicetree(base_devtree, &chipset_root_dev);
} else {
parse_devicetree(base_devtree, &base_root_bus);
}
if (override_devtree)
parse_override_devicetree(override_devtree, &override_root_dev);
FILE *autogen = fopen(outputc, "w");
if (!autogen) {
fprintf(stderr, "Could not open file '%s' for writing: ",
outputc);
perror(NULL);
exit(1);
}
FILE *autohead = fopen(outputh, "w");
if (!autohead) {
fprintf(stderr, "Could not open file '%s' for writing: ", outputh);
perror(NULL);
fclose(autogen);
exit(1);
}
FILE *autodev = fopen(outputd, "w");
if (!autodev) {
fprintf(stderr, "Could not open file '%s' for writing: ", outputd);
perror(NULL);
fclose(autogen);
fclose(autohead);
exit(1);
}
FILE *autofwconf = fopen(outputf, "w");
if (!autofwconf) {
fprintf(stderr, "Could not open file '%s' for writing: ", outputf);
perror(NULL);
fclose(autogen);
fclose(autohead);
fclose(autodev);
exit(1);
}
char *f = strdup(outputf);
assert(f);
char *d = strdup(outputd);
assert(d);
char *h = strdup(outputh);
assert(h);
const char *fw_conf_header = basename(f);
const char *device_header = basename(d);
const char *static_header = basename(h);
generate_outputh(autohead, fw_conf_header, device_header);
generate_outputc(autogen, static_header);
generate_outputd(autogen, autodev);
generate_outputf(autofwconf);
fclose(autohead);
fclose(autogen);
fclose(autodev);
fclose(autofwconf);
free(f);
free(d);
free(h);
return 0;
}