coreboot-kgpe-d16/src/cpu/x86/pae/pgtbl.c
Kyösti Mälkki a165c07ed7 arch/x86: Simplify <arch/early_variables.h>
This enables the use of .bss section for ENV_BOOTBLOCK
and ENV_VERSTAGE even with CAR_GLOBAL_MIGRATION=y.

In practice, boards with CAR_GLOBAL_MIGRATION=y currently
build with romcc-bootblock so they will not be using .bss.

Change-Id: Ie9dc14f3e528d3e4f48304f4d7de50df448a8af6
Signed-off-by: Kyösti Mälkki <kyosti.malkki@gmail.com>
Reviewed-on: https://review.coreboot.org/c/coreboot/+/35016
Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
Reviewed-by: Julius Werner <jwerner@chromium.org>
2019-08-26 22:52:10 +00:00

556 lines
14 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2005 Yinghai Lu
* Copyright (C) 2019 9elements Agency GmbH
* Copyright (C) 2019 Facebook Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <cbfs.h>
#include <commonlib/helpers.h>
#include <console/console.h>
#include <arch/cpu.h>
#include <cpu/x86/cr.h>
#include <cpu/x86/msr.h>
#include <cpu/x86/pae.h>
#include <string.h>
#include <symbols.h>
#include <assert.h>
#define PDPTE_PRES (1ULL << 0)
#define PDPTE_ADDR_MASK (~((1ULL << 12) - 1))
#define PDE_PRES (1ULL << 0)
#define PDE_RW (1ULL << 1)
#define PDE_US (1ULL << 2)
#define PDE_PWT (1ULL << 3)
#define PDE_PCD (1ULL << 4)
#define PDE_A (1ULL << 5)
#define PDE_D (1ULL << 6) // only valid with PS=1
#define PDE_PS (1ULL << 7)
#define PDE_G (1ULL << 8) // only valid with PS=1
#define PDE_PAT (1ULL << 12) // only valid with PS=1
#define PDE_XD (1ULL << 63)
#define PDE_ADDR_MASK (~((1ULL << 12) - 1))
#define PTE_PRES (1ULL << 0)
#define PTE_RW (1ULL << 1)
#define PTE_US (1ULL << 2)
#define PTE_PWT (1ULL << 3)
#define PTE_PCD (1ULL << 4)
#define PTE_A (1ULL << 5)
#define PTE_D (1ULL << 6)
#define PTE_PAT (1ULL << 7)
#define PTE_G (1ULL << 8)
#define PTE_XD (1ULL << 63)
#define PDPTE_IDX_SHIFT 30
#define PDPTE_IDX_MASK 0x3
#define PDE_IDX_SHIFT 21
#define PDE_IDX_MASK 0x1ff
#define PTE_IDX_SHIFT 12
#define PTE_IDX_MASK 0x1ff
#define OVERLAP(a, b, s, e) ((b) > (s) && (a) < (e))
static const size_t s2MiB = 2 * MiB;
static const size_t s4KiB = 4 * KiB;
struct pde {
uint32_t addr_lo;
uint32_t addr_hi;
} __packed;
struct pg_table {
struct pde pd[2048];
struct pde pdp[512];
} __packed;
void paging_enable_pae_cr3(uintptr_t cr3)
{
/* Load the page table address */
write_cr3(cr3);
paging_enable_pae();
}
void paging_enable_pae(void)
{
CRx_TYPE cr0;
CRx_TYPE cr4;
/* Enable PAE */
cr4 = read_cr4();
cr4 |= CR4_PAE;
write_cr4(cr4);
/* Enable Paging */
cr0 = read_cr0();
cr0 |= CR0_PG;
write_cr0(cr0);
}
void paging_disable_pae(void)
{
CRx_TYPE cr0;
CRx_TYPE cr4;
/* Disable Paging */
cr0 = read_cr0();
cr0 &= ~(CRx_TYPE)CR0_PG;
write_cr0(cr0);
/* Disable PAE */
cr4 = read_cr4();
cr4 &= ~(CRx_TYPE)CR4_PAE;
write_cr4(cr4);
}
/*
* Use PAE to map a page and then memset it with the pattern specified.
* In order to use PAE pagetables for virtual addressing are set up and reloaded
* on a 2MiB boundary. After the function is done, virtual addressing mode is
* disabled again. The PAT are set to all cachable, but MTRRs still apply.
*
* Requires a scratch memory for pagetables and a virtual address for
* non identity mapped memory.
*
* The scratch memory area containing pagetables must not overlap with the
* memory range to be cleared.
* The scratch memory area containing pagetables must not overlap with the
* virtual address for non identity mapped memory.
*
* @param vmem_addr Where the virtual non identity mapped page resides, must
* be 2 aligned MiB and at least 2 MiB in size.
* Content at physical address is preserved.
* @param pgtbl Where pagetables reside, must be 4 KiB aligned and 20 KiB in
* size.
* Must not overlap memory range pointed to by dest.
* Must not overlap memory range pointed to by vmem_addr.
* Content at physical address isn't preserved.
* @param length The length of the memory segment to memset
* @param dest Physical memory address to memset
* @param pat The pattern to write to the pyhsical memory
* @return 0 on success, 1 on error
*/
int memset_pae(uint64_t dest, unsigned char pat, uint64_t length, void *pgtbl,
void *vmem_addr)
{
struct pg_table *pgtbl_buf = (struct pg_table *)pgtbl;
ssize_t offset;
printk(BIOS_DEBUG, "%s: Using virtual address %p as scratchpad\n",
__func__, vmem_addr);
printk(BIOS_DEBUG, "%s: Using address %p for page tables\n",
__func__, pgtbl_buf);
/* Cover some basic error conditions */
if (!IS_ALIGNED((uintptr_t)pgtbl_buf, s4KiB) ||
!IS_ALIGNED((uintptr_t)vmem_addr, s2MiB)) {
printk(BIOS_ERR, "%s: Invalid alignment\n", __func__);
return 1;
}
const uintptr_t pgtbl_s = (uintptr_t)pgtbl_buf;
const uintptr_t pgtbl_e = pgtbl_s + sizeof(struct pg_table);
if (OVERLAP(dest, dest + length, pgtbl_s, pgtbl_e)) {
printk(BIOS_ERR, "%s: destination overlaps page tables\n",
__func__);
return 1;
}
if (OVERLAP((uintptr_t)vmem_addr, (uintptr_t)vmem_addr + s2MiB,
pgtbl_s, pgtbl_e)) {
printk(BIOS_ERR, "%s: vmem address overlaps page tables\n",
__func__);
return 1;
}
paging_disable_pae();
struct pde *pd = pgtbl_buf->pd, *pdp = pgtbl_buf->pdp;
/* Point the page directory pointers at the page directories. */
memset(pgtbl_buf->pdp, 0, sizeof(pgtbl_buf->pdp));
pdp[0].addr_lo = ((uintptr_t)&pd[512*0]) | PDPTE_PRES;
pdp[1].addr_lo = ((uintptr_t)&pd[512*1]) | PDPTE_PRES;
pdp[2].addr_lo = ((uintptr_t)&pd[512*2]) | PDPTE_PRES;
pdp[3].addr_lo = ((uintptr_t)&pd[512*3]) | PDPTE_PRES;
offset = dest - ALIGN_DOWN(dest, s2MiB);
dest = ALIGN_DOWN(dest, s2MiB);
/* Identity map the whole 32-bit address space */
for (size_t i = 0; i < 2048; i++) {
pd[i].addr_lo = (i << PDE_IDX_SHIFT) | PDE_PS | PDE_PRES | PDE_RW;
pd[i].addr_hi = 0;
}
/* Get pointer to PD that's not identity mapped */
pd = &pgtbl_buf->pd[((uintptr_t)vmem_addr) >> PDE_IDX_SHIFT];
paging_enable_pae_cr3((uintptr_t)pdp);
do {
const size_t len = MIN(length, s2MiB - offset);
/*
* Map a page using PAE at virtual address vmem_addr.
* dest is already 2 MiB aligned.
*/
pd->addr_lo = dest | PDE_PS | PDE_PRES | PDE_RW;
pd->addr_hi = dest >> 32;
/* Update page tables */
asm volatile ("invlpg (%0)" :: "b"(vmem_addr) : "memory");
printk(BIOS_SPEW, "%s: Clearing %llx[%lx] - %zx\n", __func__,
dest + offset, (uintptr_t)vmem_addr + offset, len);
memset(vmem_addr + offset, pat, len);
dest += s2MiB;
length -= len;
offset = 0;
} while (length > 0);
paging_disable_pae();
return 0;
}
#if ENV_RAMSTAGE
void *map_2M_page(unsigned long page)
{
struct pde {
uint32_t addr_lo;
uint32_t addr_hi;
} __packed;
struct pg_table {
struct pde pd[2048];
struct pde pdp[512];
} __packed;
static struct pg_table pgtbl[CONFIG_MAX_CPUS]
__attribute__((aligned(4096)));
static unsigned long mapped_window[CONFIG_MAX_CPUS];
int index;
unsigned long window;
void *result;
int i;
index = cpu_index();
if (index < 0)
return MAPPING_ERROR;
window = page >> 10;
if (window != mapped_window[index]) {
paging_disable_pae();
if (window > 1) {
struct pde *pd, *pdp;
/* Point the page directory pointers at the page
* directories
*/
memset(&pgtbl[index].pdp, 0, sizeof(pgtbl[index].pdp));
pd = pgtbl[index].pd;
pdp = pgtbl[index].pdp;
pdp[0].addr_lo = ((uintptr_t)&pd[512*0])|1;
pdp[1].addr_lo = ((uintptr_t)&pd[512*1])|1;
pdp[2].addr_lo = ((uintptr_t)&pd[512*2])|1;
pdp[3].addr_lo = ((uintptr_t)&pd[512*3])|1;
/* The first half of the page table is identity mapped
*/
for (i = 0; i < 1024; i++) {
pd[i].addr_lo = ((i & 0x3ff) << 21) | 0xE3;
pd[i].addr_hi = 0;
}
/* The second half of the page table holds the mapped
* page
*/
for (i = 1024; i < 2048; i++) {
pd[i].addr_lo = ((window & 1) << 31)
| ((i & 0x3ff) << 21) | 0xE3;
pd[i].addr_hi = (window >> 1);
}
paging_enable_pae_cr3((uintptr_t)pdp);
}
mapped_window[index] = window;
}
if (window == 0)
result = (void *)(page << 21);
else
result = (void *)(0x80000000 | ((page & 0x3ff) << 21));
return result;
}
#endif
void paging_set_nxe(int enable)
{
msr_t msr = rdmsr(IA32_EFER);
if (enable)
msr.lo |= EFER_NXE;
else
msr.lo &= ~EFER_NXE;
wrmsr(IA32_EFER, msr);
}
void paging_set_pat(uint64_t pat)
{
msr_t msr;
msr.lo = pat;
msr.hi = pat >> 32;
wrmsr(IA32_PAT, msr);
}
/* PAT encoding used in util/x86/x86_page_tables.go. It matches the linux
* kernel settings:
* PTE encoding:
* PAT
* |PCD
* ||PWT PAT
* ||| slot
* 000 0 WB : _PAGE_CACHE_MODE_WB
* 001 1 WC : _PAGE_CACHE_MODE_WC
* 010 2 UC-: _PAGE_CACHE_MODE_UC_MINUS
* 011 3 UC : _PAGE_CACHE_MODE_UC
* 100 4 WB : Reserved
* 101 5 WP : _PAGE_CACHE_MODE_WP
* 110 6 UC-: Reserved
* 111 7 WT : _PAGE_CACHE_MODE_WT
*/
void paging_set_default_pat(void)
{
uint64_t pat = PAT_ENCODE(WB, 0) | PAT_ENCODE(WC, 1) |
PAT_ENCODE(UC_MINUS, 2) | PAT_ENCODE(UC, 3) |
PAT_ENCODE(WB, 4) | PAT_ENCODE(WP, 5) |
PAT_ENCODE(UC_MINUS, 6) | PAT_ENCODE(WT, 7);
paging_set_pat(pat);
}
static int read_from_cbfs(const char *name, void *buf, size_t size)
{
struct cbfsf fh;
struct region_device rdev;
size_t rdev_sz;
if (cbfs_boot_locate(&fh, name, NULL))
return -1;
cbfs_file_data(&rdev, &fh);
rdev_sz = region_device_sz(&rdev);
if (size < rdev_sz) {
printk(BIOS_ERR, "%s region too small to load: %zx < %zx\n",
name, size, rdev_sz);
return -1;
}
if (rdev_readat(&rdev, buf, 0, rdev_sz) != rdev_sz)
return -1;
return 0;
}
int paging_enable_for_car(const char *pdpt_name, const char *pt_name)
{
if (!preram_symbols_available())
return -1;
if (read_from_cbfs(pdpt_name, _pdpt, REGION_SIZE(pdpt))) {
printk(BIOS_ERR, "Couldn't load pdpt\n");
return -1;
}
if (read_from_cbfs(pt_name, _pagetables, REGION_SIZE(pagetables))) {
printk(BIOS_ERR, "Couldn't load page tables\n");
return -1;
}
paging_enable_pae_cr3((uintptr_t)_pdpt);
return 0;
}
static void *get_pdpt_addr(void)
{
if (preram_symbols_available())
return _pdpt;
return (void *)(uintptr_t)read_cr3();
}
static uint64_t pde_pat_flags(int pat)
{
switch (pat) {
case PAT_UC:
return 0 | PDE_PCD | PDE_PWT;
case PAT_WC:
return 0 | 0 | PDE_PWT;
case PAT_WT:
return PDE_PAT | PDE_PCD | PDE_PWT;
case PAT_WP:
return PDE_PAT | 0 | PDE_PWT;
case PAT_WB:
return 0 | 0 | 0;
case PAT_UC_MINUS:
return 0 | PDE_PCD | 0;
default:
printk(BIOS_ERR, "PDE PAT defaulting to WB: %x\n", pat);
return pde_pat_flags(PAT_WB);
}
}
static uint64_t pde_page_flags(int pat)
{
uint64_t flags = PDE_PS | PDE_PRES | PDE_RW | PDE_A | PDE_D;
return flags | pde_pat_flags(pat);
}
static uint64_t pte_pat_flags(int pat)
{
switch (pat) {
case PAT_UC:
return 0 | PTE_PCD | PTE_PWT;
case PAT_WC:
return 0 | 0 | PTE_PWT;
case PAT_WT:
return PTE_PAT | PTE_PCD | PTE_PWT;
case PAT_WP:
return PTE_PAT | 0 | PTE_PWT;
case PAT_WB:
return 0 | 0 | 0;
case PAT_UC_MINUS:
return 0 | PTE_PCD | 0;
default:
printk(BIOS_ERR, "PTE PAT defaulting to WB: %x\n", pat);
return pte_pat_flags(PAT_WB);
}
}
static uint64_t pte_page_flags(int pat)
{
uint64_t flags = PTE_PRES | PTE_RW | PTE_A | PTE_D;
return flags | pte_pat_flags(pat);
}
/* Identity map an address. This function does not handle splitting or adding
* new pages to the page tables. It's assumed all the page tables are already
* seeded with the correct amount and topology. */
static int identity_map_one_page(uintptr_t base, size_t size, int pat,
int commit)
{
uint64_t (*pdpt)[4];
uint64_t pdpte;
uint64_t (*pd)[512];
uint64_t pde;
pdpt = get_pdpt_addr();
pdpte = (*pdpt)[(base >> PDPTE_IDX_SHIFT) & PDPTE_IDX_MASK];
/* No page table page allocation. */
if (!(pdpte & PDPTE_PRES))
return -1;
pd = (void *)(uintptr_t)(pdpte & PDPTE_ADDR_MASK);
/* Map in a 2MiB page. */
if (size == s2MiB) {
if (!commit)
return 0;
pde = base;
pde |= pde_page_flags(pat);
(*pd)[(base >> PDE_IDX_SHIFT) & PDE_IDX_MASK] = pde;
return 0;
}
if (size == s4KiB) {
uint64_t (*pt)[512];
uint64_t pte;
pde = (*pd)[(base >> PDE_IDX_SHIFT) & PDE_IDX_MASK];
/* No page table page allocation. */
if (!(pde & PDE_PRES)) {
printk(BIOS_ERR, "Cannot allocate page table for pde %p\n",
(void *)base);
return -1;
}
/* No splitting pages */
if (pde & PDE_PS) {
printk(BIOS_ERR, "Cannot split pde %p\n", (void *)base);
return -1;
}
if (!commit)
return 0;
pt = (void *)(uintptr_t)(pde & PDE_ADDR_MASK);
pte = base;
pte |= pte_page_flags(pat);
(*pt)[(base >> PTE_IDX_SHIFT) & PTE_IDX_MASK] = pte;
return 0;
}
return -1;
}
static int _paging_identity_map_addr(uintptr_t base, size_t size, int pat,
int commit)
{
while (size != 0) {
size_t map_size;
map_size = IS_ALIGNED(base, s2MiB) ? s2MiB : s4KiB;
map_size = MIN(size, map_size);
if (identity_map_one_page(base, map_size, pat, commit) < 0)
return -1;
base += map_size;
size -= map_size;
}
return 0;
}
static int paging_is_enabled(void)
{
return !!(read_cr0() & CR0_PG);
}
int paging_identity_map_addr(uintptr_t base, size_t size, int pat)
{
if (!paging_is_enabled()) {
printk(BIOS_ERR, "Paging is not enabled.\n");
return -1;
}
if (!IS_ALIGNED(base, s2MiB) && !IS_ALIGNED(base, s4KiB)) {
printk(BIOS_ERR, "base %p is not aligned.\n", (void *)base);
return -1;
}
if (!IS_ALIGNED(size, s2MiB) && !IS_ALIGNED(size, s4KiB)) {
printk(BIOS_ERR, "size %zx is not aligned.\n", size);
return -1;
}
/* First try without committing. If success commit. */
if (_paging_identity_map_addr(base, size, pat, 0))
return -1;
return _paging_identity_map_addr(base, size, pat, 1);
}