62cd5e8603
Being divided by 1000 causes data loss and the loss is expand by muliplication. So we just set a lower divisor before muliplication. BUG=b:185922528 Change-Id: Ib43103cc62c18debea3fd2c23d9c30fb0ecd781b Signed-off-by: Zheng Bao <fishbaozi@gmail.com> Reviewed-on: https://review.coreboot.org/c/coreboot/+/67050 Tested-by: build bot (Jenkins) <no-reply@coreboot.org> Reviewed-by: Matt DeVillier <matt.devillier@amd.corp-partner.google.com> Reviewed-by: Raul Rangel <rrangel@chromium.org> Reviewed-by: Felix Held <felix-coreboot@felixheld.de>
369 lines
10 KiB
C
369 lines
10 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
|
|
/* TODO: Check if this is still correct */
|
|
|
|
/* ACPI - create the Fixed ACPI Description Tables (FADT) */
|
|
|
|
#include <acpi/acpi.h>
|
|
#include <acpi/acpigen.h>
|
|
#include <amdblocks/acpi.h>
|
|
#include <amdblocks/cppc.h>
|
|
#include <amdblocks/cpu.h>
|
|
#include <amdblocks/acpimmio.h>
|
|
#include <amdblocks/ioapic.h>
|
|
#include <arch/ioapic.h>
|
|
#include <arch/smp/mpspec.h>
|
|
#include <console/console.h>
|
|
#include <cpu/amd/cpuid.h>
|
|
#include <cpu/amd/msr.h>
|
|
#include <cpu/x86/smm.h>
|
|
#include <soc/acpi.h>
|
|
#include <soc/iomap.h>
|
|
#include <soc/msr.h>
|
|
#include <types.h>
|
|
#include "chip.h"
|
|
|
|
unsigned long acpi_fill_madt(unsigned long current)
|
|
{
|
|
/* create all subtables for processors */
|
|
current = acpi_create_madt_lapics(current);
|
|
|
|
current += acpi_create_madt_ioapic((acpi_madt_ioapic_t *)current,
|
|
FCH_IOAPIC_ID, IO_APIC_ADDR, 0);
|
|
|
|
current += acpi_create_madt_ioapic((acpi_madt_ioapic_t *)current,
|
|
GNB_IOAPIC_ID, GNB_IO_APIC_ADDR, IO_APIC_INTERRUPTS);
|
|
|
|
/* PIT is connected to legacy IRQ 0, but IOAPIC GSI 2 */
|
|
current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)current,
|
|
MP_BUS_ISA, 0, 2,
|
|
MP_IRQ_TRIGGER_DEFAULT | MP_IRQ_POLARITY_DEFAULT);
|
|
/* SCI IRQ type override */
|
|
current += acpi_create_madt_irqoverride((acpi_madt_irqoverride_t *)current,
|
|
MP_BUS_ISA, ACPI_SCI_IRQ, ACPI_SCI_IRQ,
|
|
MP_IRQ_TRIGGER_LEVEL | MP_IRQ_POLARITY_LOW);
|
|
current = acpi_fill_madt_irqoverride(current);
|
|
|
|
/* create all subtables for processors */
|
|
current += acpi_create_madt_lapic_nmi((acpi_madt_lapic_nmi_t *)current,
|
|
ACPI_MADT_LAPIC_NMI_ALL_PROCESSORS,
|
|
MP_IRQ_TRIGGER_EDGE | MP_IRQ_POLARITY_HIGH,
|
|
1 /* 1: LINT1 connect to NMI */);
|
|
|
|
return current;
|
|
}
|
|
|
|
/*
|
|
* Reference section 5.2.9 Fixed ACPI Description Table (FADT)
|
|
* in the ACPI 3.0b specification.
|
|
*/
|
|
void acpi_fill_fadt(acpi_fadt_t *fadt)
|
|
{
|
|
const struct soc_amd_mendocino_config *cfg = config_of_soc();
|
|
|
|
printk(BIOS_DEBUG, "pm_base: 0x%04x\n", ACPI_IO_BASE);
|
|
|
|
fadt->sci_int = ACPI_SCI_IRQ;
|
|
|
|
if (permanent_smi_handler()) {
|
|
fadt->smi_cmd = APM_CNT;
|
|
fadt->acpi_enable = APM_CNT_ACPI_ENABLE;
|
|
fadt->acpi_disable = APM_CNT_ACPI_DISABLE;
|
|
}
|
|
|
|
fadt->pstate_cnt = 0;
|
|
|
|
fadt->pm1a_evt_blk = ACPI_PM_EVT_BLK;
|
|
fadt->pm1a_cnt_blk = ACPI_PM1_CNT_BLK;
|
|
fadt->pm_tmr_blk = ACPI_PM_TMR_BLK;
|
|
fadt->gpe0_blk = ACPI_GPE0_BLK;
|
|
|
|
fadt->pm1_evt_len = 4; /* 32 bits */
|
|
fadt->pm1_cnt_len = 2; /* 16 bits */
|
|
fadt->pm_tmr_len = 4; /* 32 bits */
|
|
fadt->gpe0_blk_len = 8; /* 64 bits */
|
|
|
|
fadt->p_lvl2_lat = ACPI_FADT_C2_NOT_SUPPORTED;
|
|
fadt->p_lvl3_lat = ACPI_FADT_C3_NOT_SUPPORTED;
|
|
fadt->duty_offset = 0; /* Not supported */
|
|
fadt->duty_width = 0; /* Not supported */
|
|
fadt->day_alrm = RTC_DATE_ALARM;
|
|
fadt->mon_alrm = 0;
|
|
fadt->century = RTC_ALT_CENTURY;
|
|
fadt->iapc_boot_arch = cfg->common_config.fadt_boot_arch; /* legacy free default */
|
|
fadt->flags |= ACPI_FADT_WBINVD | /* See table 5-34 ACPI 6.3 spec */
|
|
ACPI_FADT_C1_SUPPORTED |
|
|
ACPI_FADT_S4_RTC_WAKE |
|
|
ACPI_FADT_32BIT_TIMER |
|
|
ACPI_FADT_PCI_EXPRESS_WAKE |
|
|
ACPI_FADT_PLATFORM_CLOCK |
|
|
ACPI_FADT_S4_RTC_VALID |
|
|
ACPI_FADT_REMOTE_POWER_ON;
|
|
if (cfg->s0ix_enable)
|
|
fadt->flags |= ACPI_FADT_LOW_PWR_IDLE_S0;
|
|
|
|
fadt->flags |= cfg->common_config.fadt_flags; /* additional board-specific flags */
|
|
|
|
fadt->x_pm1a_evt_blk.space_id = ACPI_ADDRESS_SPACE_IO;
|
|
fadt->x_pm1a_evt_blk.bit_width = 32;
|
|
fadt->x_pm1a_evt_blk.bit_offset = 0;
|
|
fadt->x_pm1a_evt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS;
|
|
fadt->x_pm1a_evt_blk.addrl = ACPI_PM_EVT_BLK;
|
|
fadt->x_pm1a_evt_blk.addrh = 0x0;
|
|
|
|
fadt->x_pm1a_cnt_blk.space_id = ACPI_ADDRESS_SPACE_IO;
|
|
fadt->x_pm1a_cnt_blk.bit_width = 16;
|
|
fadt->x_pm1a_cnt_blk.bit_offset = 0;
|
|
fadt->x_pm1a_cnt_blk.access_size = ACPI_ACCESS_SIZE_WORD_ACCESS;
|
|
fadt->x_pm1a_cnt_blk.addrl = ACPI_PM1_CNT_BLK;
|
|
fadt->x_pm1a_cnt_blk.addrh = 0x0;
|
|
|
|
fadt->x_pm_tmr_blk.space_id = ACPI_ADDRESS_SPACE_IO;
|
|
fadt->x_pm_tmr_blk.bit_width = 32;
|
|
fadt->x_pm_tmr_blk.bit_offset = 0;
|
|
fadt->x_pm_tmr_blk.access_size = ACPI_ACCESS_SIZE_DWORD_ACCESS;
|
|
fadt->x_pm_tmr_blk.addrl = ACPI_PM_TMR_BLK;
|
|
fadt->x_pm_tmr_blk.addrh = 0x0;
|
|
|
|
fadt->x_gpe0_blk.space_id = ACPI_ADDRESS_SPACE_IO;
|
|
fadt->x_gpe0_blk.bit_width = 64;
|
|
fadt->x_gpe0_blk.bit_offset = 0;
|
|
fadt->x_gpe0_blk.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS;
|
|
fadt->x_gpe0_blk.addrl = ACPI_GPE0_BLK;
|
|
fadt->x_gpe0_blk.addrh = 0x0;
|
|
}
|
|
|
|
static uint32_t get_pstate_core_freq(msr_t pstate_def)
|
|
{
|
|
uint32_t core_freq, core_freq_mul, core_freq_div;
|
|
bool valid_freq_divisor;
|
|
|
|
/* Core frequency multiplier */
|
|
core_freq_mul = pstate_def.lo & PSTATE_DEF_LO_FREQ_MUL_MASK;
|
|
|
|
/* Core frequency divisor ID */
|
|
core_freq_div =
|
|
(pstate_def.lo & PSTATE_DEF_LO_FREQ_DIV_MASK) >> PSTATE_DEF_LO_FREQ_DIV_SHIFT;
|
|
|
|
if (core_freq_div == 0) {
|
|
return 0;
|
|
} else if ((core_freq_div >= PSTATE_DEF_LO_FREQ_DIV_MIN)
|
|
&& (core_freq_div <= PSTATE_DEF_LO_EIGHTH_STEP_MAX)) {
|
|
/* Allow 1/8 integer steps for this range */
|
|
valid_freq_divisor = 1;
|
|
} else if ((core_freq_div > PSTATE_DEF_LO_EIGHTH_STEP_MAX)
|
|
&& (core_freq_div <= PSTATE_DEF_LO_FREQ_DIV_MAX) && !(core_freq_div & 0x1)) {
|
|
/* Only allow 1/4 integer steps for this range */
|
|
valid_freq_divisor = 1;
|
|
} else {
|
|
valid_freq_divisor = 0;
|
|
}
|
|
|
|
if (valid_freq_divisor) {
|
|
/* 25 * core_freq_mul / (core_freq_div / 8) */
|
|
core_freq =
|
|
((PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul * 8) / (core_freq_div));
|
|
} else {
|
|
printk(BIOS_WARNING, "Undefined core_freq_div %x used. Force to 1.\n",
|
|
core_freq_div);
|
|
core_freq = (PSTATE_DEF_LO_CORE_FREQ_BASE * core_freq_mul);
|
|
}
|
|
return core_freq;
|
|
}
|
|
|
|
static uint32_t get_pstate_core_power(msr_t pstate_def)
|
|
{
|
|
uint32_t voltage_in_uvolts, core_vid, current_value_amps, current_divisor, power_in_mw;
|
|
|
|
/* Core voltage ID */
|
|
core_vid =
|
|
(pstate_def.lo & PSTATE_DEF_LO_CORE_VID_MASK) >> PSTATE_DEF_LO_CORE_VID_SHIFT;
|
|
|
|
/* Current value in amps */
|
|
current_value_amps =
|
|
(pstate_def.lo & PSTATE_DEF_LO_CUR_VAL_MASK) >> PSTATE_DEF_LO_CUR_VAL_SHIFT;
|
|
|
|
/* Current divisor */
|
|
current_divisor =
|
|
(pstate_def.lo & PSTATE_DEF_LO_CUR_DIV_MASK) >> PSTATE_DEF_LO_CUR_DIV_SHIFT;
|
|
|
|
/* Voltage */
|
|
if (core_vid == 0x00) {
|
|
/* Voltage off for VID code 0x00 */
|
|
voltage_in_uvolts = 0;
|
|
} else {
|
|
voltage_in_uvolts =
|
|
SERIAL_VID_BASE_MICROVOLTS + (SERIAL_VID_DECODE_MICROVOLTS * core_vid);
|
|
}
|
|
|
|
/* Power in mW */
|
|
power_in_mw = (voltage_in_uvolts) / 10 * current_value_amps;
|
|
|
|
switch (current_divisor) {
|
|
case 0:
|
|
power_in_mw = power_in_mw / 100L;
|
|
break;
|
|
case 1:
|
|
power_in_mw = power_in_mw / 1000L;
|
|
break;
|
|
case 2:
|
|
power_in_mw = power_in_mw / 10000L;
|
|
break;
|
|
case 3:
|
|
/* current_divisor is set to an undefined value.*/
|
|
printk(BIOS_WARNING, "Undefined current_divisor set for enabled P-state .\n");
|
|
power_in_mw = 0;
|
|
break;
|
|
}
|
|
|
|
return power_in_mw;
|
|
}
|
|
|
|
/*
|
|
* Populate structure describing enabled p-states and return count of enabled p-states.
|
|
*/
|
|
static size_t get_pstate_info(struct acpi_sw_pstate *pstate_values,
|
|
struct acpi_xpss_sw_pstate *pstate_xpss_values)
|
|
{
|
|
msr_t pstate_def;
|
|
size_t pstate_count, pstate;
|
|
uint32_t pstate_enable, max_pstate;
|
|
|
|
pstate_count = 0;
|
|
max_pstate = (rdmsr(PS_LIM_REG).lo & PS_LIM_MAX_VAL_MASK) >> PS_MAX_VAL_SHFT;
|
|
|
|
for (pstate = 0; pstate <= max_pstate; pstate++) {
|
|
pstate_def = rdmsr(PSTATE_0_MSR + pstate);
|
|
|
|
pstate_enable = (pstate_def.hi & PSTATE_DEF_HI_ENABLE_MASK)
|
|
>> PSTATE_DEF_HI_ENABLE_SHIFT;
|
|
if (!pstate_enable)
|
|
continue;
|
|
|
|
pstate_values[pstate_count].core_freq = get_pstate_core_freq(pstate_def);
|
|
pstate_values[pstate_count].power = get_pstate_core_power(pstate_def);
|
|
pstate_values[pstate_count].transition_latency = 0;
|
|
pstate_values[pstate_count].bus_master_latency = 0;
|
|
pstate_values[pstate_count].control_value = pstate;
|
|
pstate_values[pstate_count].status_value = pstate;
|
|
|
|
pstate_xpss_values[pstate_count].core_freq =
|
|
(uint64_t)pstate_values[pstate_count].core_freq;
|
|
pstate_xpss_values[pstate_count].power =
|
|
(uint64_t)pstate_values[pstate_count].power;
|
|
pstate_xpss_values[pstate_count].transition_latency = 0;
|
|
pstate_xpss_values[pstate_count].bus_master_latency = 0;
|
|
pstate_xpss_values[pstate_count].control_value = (uint64_t)pstate;
|
|
pstate_xpss_values[pstate_count].status_value = (uint64_t)pstate;
|
|
pstate_count++;
|
|
}
|
|
|
|
return pstate_count;
|
|
}
|
|
|
|
void generate_cpu_entries(const struct device *device)
|
|
{
|
|
int logical_cores;
|
|
size_t pstate_count, cpu, proc_blk_len;
|
|
struct acpi_sw_pstate pstate_values[MAX_PSTATES] = { {0} };
|
|
struct acpi_xpss_sw_pstate pstate_xpss_values[MAX_PSTATES] = { {0} };
|
|
uint32_t threads_per_core, proc_blk_addr;
|
|
uint32_t cstate_base_address =
|
|
rdmsr(MSR_CSTATE_ADDRESS).lo & MSR_CSTATE_ADDRESS_MASK;
|
|
|
|
const acpi_addr_t perf_ctrl = {
|
|
.space_id = ACPI_ADDRESS_SPACE_FIXED,
|
|
.bit_width = 64,
|
|
.addrl = PS_CTL_REG,
|
|
};
|
|
const acpi_addr_t perf_sts = {
|
|
.space_id = ACPI_ADDRESS_SPACE_FIXED,
|
|
.bit_width = 64,
|
|
.addrl = PS_STS_REG,
|
|
};
|
|
|
|
const acpi_cstate_t cstate_info[] = {
|
|
[0] = {
|
|
.ctype = 1,
|
|
.latency = 1,
|
|
.power = 0,
|
|
.resource = {
|
|
.space_id = ACPI_ADDRESS_SPACE_FIXED,
|
|
.bit_width = 2,
|
|
.bit_offset = 2,
|
|
.addrl = 0,
|
|
.addrh = 0,
|
|
},
|
|
},
|
|
[1] = {
|
|
.ctype = 2,
|
|
.latency = 0x12,
|
|
.power = 0,
|
|
.resource = {
|
|
.space_id = ACPI_ADDRESS_SPACE_IO,
|
|
.bit_width = 8,
|
|
.bit_offset = 0,
|
|
.addrl = cstate_base_address + 1,
|
|
.addrh = 0,
|
|
.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS,
|
|
},
|
|
},
|
|
[2] = {
|
|
.ctype = 3,
|
|
.latency = 350,
|
|
.power = 0,
|
|
.resource = {
|
|
.space_id = ACPI_ADDRESS_SPACE_IO,
|
|
.bit_width = 8,
|
|
.bit_offset = 0,
|
|
.addrl = cstate_base_address + 2,
|
|
.addrh = 0,
|
|
.access_size = ACPI_ACCESS_SIZE_BYTE_ACCESS,
|
|
},
|
|
},
|
|
};
|
|
|
|
threads_per_core = get_threads_per_core();
|
|
pstate_count = get_pstate_info(pstate_values, pstate_xpss_values);
|
|
logical_cores = get_cpu_count();
|
|
|
|
for (cpu = 0; cpu < logical_cores; cpu++) {
|
|
|
|
if (cpu == 0) {
|
|
/* BSP values for \_SB.Pxxx */
|
|
proc_blk_len = 6;
|
|
proc_blk_addr = ACPI_GPE0_BLK;
|
|
} else {
|
|
/* AP values for \_SB.Pxxx */
|
|
proc_blk_addr = 0;
|
|
proc_blk_len = 0;
|
|
}
|
|
|
|
acpigen_write_processor(cpu, proc_blk_addr, proc_blk_len);
|
|
|
|
acpigen_write_pct_package(&perf_ctrl, &perf_sts);
|
|
|
|
acpigen_write_pss_object(pstate_values, pstate_count);
|
|
|
|
acpigen_write_xpss_object(pstate_xpss_values, pstate_count);
|
|
|
|
if (CONFIG(ACPI_SSDT_PSD_INDEPENDENT))
|
|
acpigen_write_PSD_package(cpu / threads_per_core, threads_per_core,
|
|
HW_ALL);
|
|
else
|
|
acpigen_write_PSD_package(0, logical_cores, SW_ALL);
|
|
|
|
acpigen_write_PPC(0);
|
|
|
|
acpigen_write_CST_package(cstate_info, ARRAY_SIZE(cstate_info));
|
|
|
|
acpigen_write_CSD_package(cpu / threads_per_core, threads_per_core,
|
|
CSD_HW_ALL, 0);
|
|
|
|
generate_cppc_entries(cpu);
|
|
|
|
acpigen_pop_len();
|
|
}
|
|
|
|
acpigen_write_processor_package("PPKG", 0, logical_cores);
|
|
}
|