08938a9be3
This commit adds support for the Chrome OS Zero-Touch Enrollment related spaces. For TPM 2.0 devices which don't use Cr50, coreboot will define the RMA+SN Bits, Board ID, and RMA Bytes counter spaces. The RMA+SN Bits space is 16 bytes initialized to all 0xFFs. The Board ID space is 12 bytes initialized to all 0xFFs. The RMA Bytes counter space is 8 bytes intialized to 0. BUG=b:184676425 BRANCH=None TEST=Build and flash lalala, verify that the ZTE spaces are created successfully by undefining the firmware antirollback space in the TPM such that the TPM undergoes factory initialization in coreboot. Reboot the DUT. Boot to CrOS and run `tpm_manager_client list_spaces` and verify that the ZTE spaces are listed. Run `tpm_manager_client read_space` with the various indices and verify that the sizes and initial values of the spaces are correct. TEST=Attempt to undefine the ZTE spaces and verify that it fails due to the unsatisfiable policy. Signed-off-by: Aseda Aboagye <aaboagye@google.com> Change-Id: I97e3ae7e18fc9ee9a02afadbbafeb226b41af0eb Reviewed-on: https://review.coreboot.org/c/coreboot/+/55242 Reviewed-by: Julius Werner <jwerner@chromium.org> Tested-by: build bot (Jenkins) <no-reply@coreboot.org>
612 lines
18 KiB
C
612 lines
18 KiB
C
/* SPDX-License-Identifier: BSD-3-Clause */
|
|
|
|
/*
|
|
* Functions for querying, manipulating and locking rollback indices
|
|
* stored in the TPM NVRAM.
|
|
*/
|
|
|
|
#include <security/vboot/antirollback.h>
|
|
#include <security/vboot/tpm_common.h>
|
|
#include <security/tpm/tspi.h>
|
|
#include <security/tpm/tss.h>
|
|
#include <security/tpm/tss/tcg-1.2/tss_structures.h>
|
|
#include <security/tpm/tss/tcg-2.0/tss_structures.h>
|
|
#include <vb2_api.h>
|
|
#include <console/console.h>
|
|
|
|
#define VBDEBUG(format, args...) \
|
|
printk(BIOS_INFO, "%s():%d: " format, __func__, __LINE__, ## args)
|
|
|
|
#define RETURN_ON_FAILURE(tpm_cmd) do { \
|
|
uint32_t result_; \
|
|
if ((result_ = (tpm_cmd)) != TPM_SUCCESS) { \
|
|
VBDEBUG("Antirollback: %08x returned by " #tpm_cmd \
|
|
"\n", (int)result_); \
|
|
return result_; \
|
|
} \
|
|
} while (0)
|
|
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length);
|
|
|
|
static uint32_t read_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_read(FIRMWARE_NV_INDEX,
|
|
ctx->secdata_firmware,
|
|
VB2_SECDATA_FIRMWARE_SIZE));
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_read_space_kernel(struct vb2_context *ctx)
|
|
{
|
|
if (!CONFIG(TPM2)) {
|
|
/*
|
|
* Before reading the kernel space, verify its permissions. If
|
|
* the kernel space has the wrong permission, we give up. This
|
|
* will need to be fixed by the recovery kernel. We will have
|
|
* to worry about this because at any time (even with PP turned
|
|
* off) the TPM owner can remove and redefine a PP-protected
|
|
* space (but not write to it).
|
|
*/
|
|
uint32_t perms;
|
|
|
|
RETURN_ON_FAILURE(tlcl_get_permissions(KERNEL_NV_INDEX,
|
|
&perms));
|
|
if (perms != TPM_NV_PER_PPWRITE) {
|
|
printk(BIOS_ERR,
|
|
"TPM: invalid secdata_kernel permissions\n");
|
|
return TPM_E_CORRUPTED_STATE;
|
|
}
|
|
}
|
|
|
|
uint8_t size = VB2_SECDATA_KERNEL_MIN_SIZE;
|
|
|
|
RETURN_ON_FAILURE(tlcl_read(KERNEL_NV_INDEX, ctx->secdata_kernel,
|
|
size));
|
|
|
|
if (vb2api_secdata_kernel_check(ctx, &size)
|
|
== VB2_ERROR_SECDATA_KERNEL_INCOMPLETE)
|
|
/* Re-read. vboot will run the check and handle errors. */
|
|
RETURN_ON_FAILURE(tlcl_read(KERNEL_NV_INDEX,
|
|
ctx->secdata_kernel, size));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
#if CONFIG(TPM2)
|
|
|
|
static uint32_t read_space_mrc_hash(uint32_t index, uint8_t *data)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_read(index, data,
|
|
HASH_NV_SIZE));
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* This is used to initialize the TPM space for recovery hash after defining
|
|
* it. Since there is no data available to calculate hash at the point where TPM
|
|
* space is defined, initialize it to all 0s.
|
|
*/
|
|
static const uint8_t mrc_hash_data[HASH_NV_SIZE] = { };
|
|
|
|
/*
|
|
* Different sets of NVRAM space attributes apply to the "ro" spaces,
|
|
* i.e. those which should not be possible to delete or modify once
|
|
* the RO exits, and the rest of the NVRAM spaces.
|
|
*/
|
|
static const TPMA_NV ro_space_attributes = {
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_WRITE_STCLEAR = 1,
|
|
.TPMA_NV_POLICY_DELETE = 1,
|
|
};
|
|
|
|
static const TPMA_NV rw_space_attributes = {
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
};
|
|
|
|
static const TPMA_NV fwmp_attr = {
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_OWNERWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_PPWRITE = 1,
|
|
};
|
|
|
|
/* Attributes for spaces that enable zero-touch enrollment (ZTE) */
|
|
static const TPMA_NV zte_attr = {
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_WRITEDEFINE = 1,
|
|
.TPMA_NV_AUTHWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_NO_DA = 1,
|
|
.TPMA_NV_POLICY_DELETE = 1,
|
|
};
|
|
|
|
static const TPMA_NV zte_rma_bytes_attr = {
|
|
.TPMA_NV_PLATFORMCREATE = 1,
|
|
.TPMA_NV_BITS = 1,
|
|
.TPMA_NV_AUTHWRITE = 1,
|
|
.TPMA_NV_AUTHREAD = 1,
|
|
.TPMA_NV_PPWRITE = 1,
|
|
.TPMA_NV_PPREAD = 1,
|
|
.TPMA_NV_NO_DA = 1,
|
|
.TPMA_NV_POLICY_DELETE = 1,
|
|
};
|
|
|
|
/*
|
|
* This policy digest was obtained using TPM2_PolicyOR on 3 digests
|
|
* corresponding to a sequence of
|
|
* -) TPM2_PolicyCommandCode(TPM_CC_NV_UndefineSpaceSpecial),
|
|
* -) TPM2_PolicyPCR(PCR0, <extended_value>).
|
|
* where <extended value> is
|
|
* 1) all zeros = initial, unextended state:
|
|
* - Value to extend to initial PCR0:
|
|
* <none>
|
|
* - Resulting PCR0:
|
|
* 0000000000000000000000000000000000000000000000000000000000000000
|
|
* - Policy digest for PolicyCommandCode + PolicyPCR:
|
|
* 4B44FC4192DB5AD7167E0135708FD374890A06BFB56317DF01F24F2226542A3F
|
|
* 2) result of extending (SHA1(0x00|0x01|0x00) | 00s to SHA256 size)
|
|
* - Value to extend to initial PCR0:
|
|
* 62571891215b4efc1ceab744ce59dd0b66ea6f73000000000000000000000000
|
|
* - Resulting PCR0:
|
|
* 9F9EA866D3F34FE3A3112AE9CB1FBABC6FFE8CD261D42493BC6842A9E4F93B3D
|
|
* - Policy digest for PolicyCommandCode + PolicyPCR:
|
|
* CB5C8014E27A5F7586AAE42DB4F9776A977BCBC952CA61E33609DA2B2C329418
|
|
* 3) result of extending (SHA1(0x01|0x01|0x00) | 00s to SHA256 size)
|
|
* - Value to extend to initial PCR0:
|
|
* 47ec8d98366433dc002e7721c9e37d5067547937000000000000000000000000
|
|
* - Resulting PCR0:
|
|
* 2A7580E5DA289546F4D2E0509CC6DE155EA131818954D36D49E027FD42B8C8F8
|
|
* - Policy digest for PolicyCommandCode + PolicyPCR:
|
|
* E6EF4F0296AC3EF0F53906480985B1BE8058E0E517E5F74A5B8A415EFE339D87
|
|
* Values #2 and #3 correspond to two forms of recovery mode as extended by
|
|
* vb2api_get_pcr_digest().
|
|
* As a result, the digest allows deleting the space with UndefineSpaceSpecial
|
|
* at early RO stages (before extending PCR0) or from recovery mode.
|
|
*/
|
|
static const uint8_t pcr0_allowed_policy[] = {
|
|
0x44, 0x44, 0x79, 0x00, 0xCB, 0xB8, 0x3F, 0x5B, 0x15, 0x76, 0x56,
|
|
0x50, 0xEF, 0x96, 0x98, 0x0A, 0x2B, 0x96, 0x6E, 0xA9, 0x09, 0x04,
|
|
0x4A, 0x01, 0xB8, 0x5F, 0xA5, 0x4A, 0x96, 0xFC, 0x59, 0x84};
|
|
|
|
static const uint8_t unsatisfiable_policy[VB2_SHA256_DIGEST_SIZE] =
|
|
"hmwhat if RBR beat merc in 2021";
|
|
|
|
static uint32_t define_space(const char *name, uint32_t index, uint32_t length,
|
|
const TPMA_NV nv_attributes,
|
|
const uint8_t *nv_policy, size_t nv_policy_size)
|
|
{
|
|
uint32_t rv;
|
|
|
|
rv = tlcl_define_space(index, length, nv_attributes, nv_policy,
|
|
nv_policy_size);
|
|
if (rv == TPM_E_NV_DEFINED) {
|
|
/*
|
|
* Continue with writing: it may be defined, but not written
|
|
* to. In that case a subsequent tlcl_read() would still return
|
|
* TPM_E_BADINDEX on TPM 2.0. The cases when some non-firmware
|
|
* space is defined while the firmware space is not there
|
|
* should be rare (interrupted initialization), so no big harm
|
|
* in writing once again even if it was written already.
|
|
*/
|
|
VBDEBUG("%s: %s space already exists\n", __func__, name);
|
|
rv = TPM_SUCCESS;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/* Nothing special in the TPM2 path yet. */
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length)
|
|
{
|
|
return tlcl_write(index, data, length);
|
|
}
|
|
|
|
static uint32_t setup_space(const char *name, uint32_t index, const void *data,
|
|
uint32_t length, const TPMA_NV nv_attributes,
|
|
const uint8_t *nv_policy, size_t nv_policy_size)
|
|
{
|
|
uint32_t rv;
|
|
|
|
rv = define_space(name, index, length, nv_attributes, nv_policy,
|
|
nv_policy_size);
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
return safe_write(index, data, length);
|
|
}
|
|
|
|
static uint32_t setup_firmware_space(struct vb2_context *ctx)
|
|
{
|
|
uint32_t firmware_space_size = vb2api_secdata_firmware_create(ctx);
|
|
|
|
return setup_space("firmware", FIRMWARE_NV_INDEX,
|
|
ctx->secdata_firmware, firmware_space_size,
|
|
ro_space_attributes, pcr0_allowed_policy,
|
|
sizeof(pcr0_allowed_policy));
|
|
}
|
|
|
|
static uint32_t setup_fwmp_space(struct vb2_context *ctx)
|
|
{
|
|
uint32_t fwmp_space_size = vb2api_secdata_fwmp_create(ctx);
|
|
|
|
return setup_space("FWMP", FWMP_NV_INDEX, ctx->secdata_fwmp, fwmp_space_size,
|
|
fwmp_attr, NULL, 0);
|
|
}
|
|
|
|
static uint32_t setup_kernel_space(struct vb2_context *ctx)
|
|
{
|
|
uint32_t kernel_space_size = vb2api_secdata_kernel_create(ctx);
|
|
|
|
return setup_space("kernel", KERNEL_NV_INDEX, ctx->secdata_kernel,
|
|
kernel_space_size, rw_space_attributes, NULL, 0);
|
|
}
|
|
|
|
static uint32_t set_mrc_hash_space(uint32_t index, const uint8_t *data)
|
|
{
|
|
if (index == MRC_REC_HASH_NV_INDEX) {
|
|
return setup_space("RO MRC Hash", index, data, HASH_NV_SIZE,
|
|
ro_space_attributes, pcr0_allowed_policy,
|
|
sizeof(pcr0_allowed_policy));
|
|
} else {
|
|
return setup_space("RW MRC Hash", index, data, HASH_NV_SIZE,
|
|
rw_space_attributes, NULL, 0);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Set up the Zero-Touch Enrollment(ZTE) related spaces.
|
|
*
|
|
* These spaces are not used by firmware, but we do need to initialize them.
|
|
*/
|
|
static uint32_t setup_zte_spaces(void)
|
|
{
|
|
uint32_t rv;
|
|
uint64_t rma_bytes_counter_default = 0;
|
|
uint8_t rma_sn_bits_default[16];
|
|
uint8_t board_id_default[12];
|
|
|
|
/* Initialize defaults: Board ID and RMA+SN Bits must be initialized
|
|
to all 0xFFs. */
|
|
memset(rma_sn_bits_default, 0xFF, ARRAY_SIZE(rma_sn_bits_default));
|
|
memset(board_id_default, 0xFF, ARRAY_SIZE(board_id_default));
|
|
|
|
/* Set up RMA + SN Bits */
|
|
rv = setup_space("RMA + SN Bits", ZTE_RMA_SN_BITS_INDEX,
|
|
rma_sn_bits_default, sizeof(rma_sn_bits_default),
|
|
zte_attr,
|
|
unsatisfiable_policy, sizeof(unsatisfiable_policy));
|
|
if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("%s: Failed to set up RMA + SN Bits space\n", __func__);
|
|
return rv;
|
|
}
|
|
|
|
rv = setup_space("Board ID", ZTE_BOARD_ID_NV_INDEX,
|
|
board_id_default, sizeof(board_id_default),
|
|
zte_attr,
|
|
unsatisfiable_policy, sizeof(unsatisfiable_policy));
|
|
if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("%s: Failed to set up Board ID space\n", __func__);
|
|
return rv;
|
|
}
|
|
|
|
/* Set up RMA Bytes counter */
|
|
rv = define_space("RMA Bytes Counter", ZTE_RMA_BYTES_COUNTER_INDEX,
|
|
sizeof(rma_bytes_counter_default),
|
|
zte_rma_bytes_attr,
|
|
unsatisfiable_policy, sizeof(unsatisfiable_policy));
|
|
if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("%s: Failed to define RMA Bytes space\n", __func__);
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Since the RMA counter has the BITS attribute, we need to call
|
|
* TPM2_NV_SetBits() in order to initialize it.
|
|
*/
|
|
rv = tlcl_set_bits(ZTE_RMA_BYTES_COUNTER_INDEX,
|
|
rma_bytes_counter_default);
|
|
if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("%s: Failed to init RMA Bytes counter space\n",
|
|
__func__);
|
|
return rv;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static uint32_t _factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
RETURN_ON_FAILURE(tlcl_force_clear());
|
|
|
|
/*
|
|
* Of all NVRAM spaces defined by this function the firmware space
|
|
* must be defined last, because its existence is considered an
|
|
* indication that TPM factory initialization was successfully
|
|
* completed.
|
|
*/
|
|
RETURN_ON_FAILURE(setup_kernel_space(ctx));
|
|
|
|
/*
|
|
* Define and set rec hash space, if available. No need to
|
|
* create the RW hash space because we will definitely boot
|
|
* once in normal mode before shipping, meaning that the space
|
|
* will get created with correct permissions while still in
|
|
* our hands.
|
|
*/
|
|
if (CONFIG(VBOOT_HAS_REC_HASH_SPACE))
|
|
RETURN_ON_FAILURE(set_mrc_hash_space(MRC_REC_HASH_NV_INDEX, mrc_hash_data));
|
|
|
|
/* Define and write firmware management parameters space. */
|
|
RETURN_ON_FAILURE(setup_fwmp_space(ctx));
|
|
|
|
/*
|
|
* Define and write zero-touch enrollment (ZTE) spaces. For Cr50 devices,
|
|
* these are set up elsewhere via TPM vendor commands.
|
|
*/
|
|
if (CONFIG(CHROMEOS) && (!(CONFIG(MAINBOARD_HAS_SPI_TPM_CR50) ||
|
|
CONFIG(MAINBOARD_HAS_I2C_TPM_CR50))))
|
|
RETURN_ON_FAILURE(setup_zte_spaces());
|
|
|
|
RETURN_ON_FAILURE(setup_firmware_space(ctx));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_firmware(void)
|
|
{
|
|
return tlcl_lock_nv_write(FIRMWARE_NV_INDEX);
|
|
}
|
|
|
|
uint32_t antirollback_read_space_mrc_hash(uint32_t index, uint8_t *data, uint32_t size)
|
|
{
|
|
if (size != HASH_NV_SIZE) {
|
|
VBDEBUG("TPM: Incorrect buffer size for hash idx 0x%x. "
|
|
"(Expected=0x%x Actual=0x%x).\n", index, HASH_NV_SIZE,
|
|
size);
|
|
return TPM_E_READ_FAILURE;
|
|
}
|
|
return read_space_mrc_hash(index, data);
|
|
}
|
|
|
|
uint32_t antirollback_write_space_mrc_hash(uint32_t index, const uint8_t *data, uint32_t size)
|
|
{
|
|
uint8_t spc_data[HASH_NV_SIZE];
|
|
uint32_t rv;
|
|
|
|
if (size != HASH_NV_SIZE) {
|
|
VBDEBUG("TPM: Incorrect buffer size for hash idx 0x%x. "
|
|
"(Expected=0x%x Actual=0x%x).\n", index, HASH_NV_SIZE,
|
|
size);
|
|
return TPM_E_WRITE_FAILURE;
|
|
}
|
|
|
|
rv = read_space_mrc_hash(index, spc_data);
|
|
if (rv == TPM_E_BADINDEX) {
|
|
/*
|
|
* If space is not defined already for hash, define
|
|
* new space.
|
|
*/
|
|
VBDEBUG("TPM: Initializing hash space.\n");
|
|
return set_mrc_hash_space(index, data);
|
|
}
|
|
|
|
if (rv != TPM_SUCCESS)
|
|
return rv;
|
|
|
|
return safe_write(index, data, size);
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_mrc_hash(uint32_t index)
|
|
{
|
|
return tlcl_lock_nv_write(index);
|
|
}
|
|
|
|
#else
|
|
|
|
/**
|
|
* Like tlcl_write(), but checks for write errors due to hitting the 64-write
|
|
* limit and clears the TPM when that happens. This can only happen when the
|
|
* TPM is unowned, so it is OK to clear it (and we really have no choice).
|
|
* This is not expected to happen frequently, but it could happen.
|
|
*/
|
|
|
|
static uint32_t safe_write(uint32_t index, const void *data, uint32_t length)
|
|
{
|
|
uint32_t result = tlcl_write(index, data, length);
|
|
if (result == TPM_E_MAXNVWRITES) {
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
return tlcl_write(index, data, length);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Similarly to safe_write(), this ensures we don't fail a DefineSpace because
|
|
* we hit the TPM write limit. This is even less likely to happen than with
|
|
* writes because we only define spaces once at initialization, but we'd
|
|
* rather be paranoid about this.
|
|
*/
|
|
static uint32_t safe_define_space(uint32_t index, uint32_t perm, uint32_t size)
|
|
{
|
|
uint32_t result = tlcl_define_space(index, perm, size);
|
|
if (result == TPM_E_MAXNVWRITES) {
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
return tlcl_define_space(index, perm, size);
|
|
} else {
|
|
return result;
|
|
}
|
|
}
|
|
|
|
static uint32_t _factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
TPM_PERMANENT_FLAGS pflags;
|
|
uint32_t result;
|
|
|
|
vb2api_secdata_kernel_create_v0(ctx);
|
|
|
|
result = tlcl_get_permanent_flags(&pflags);
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
/*
|
|
* TPM may come from the factory without physical presence finalized.
|
|
* Fix if necessary.
|
|
*/
|
|
VBDEBUG("TPM: physicalPresenceLifetimeLock=%d\n",
|
|
pflags.physicalPresenceLifetimeLock);
|
|
if (!pflags.physicalPresenceLifetimeLock) {
|
|
VBDEBUG("TPM: Finalizing physical presence\n");
|
|
RETURN_ON_FAILURE(tlcl_finalize_physical_presence());
|
|
}
|
|
|
|
/*
|
|
* The TPM will not enforce the NV authorization restrictions until the
|
|
* execution of a TPM_NV_DefineSpace with the handle of
|
|
* TPM_NV_INDEX_LOCK. Here we create that space if it doesn't already
|
|
* exist. */
|
|
VBDEBUG("TPM: nvLocked=%d\n", pflags.nvLocked);
|
|
if (!pflags.nvLocked) {
|
|
VBDEBUG("TPM: Enabling NV locking\n");
|
|
RETURN_ON_FAILURE(tlcl_set_nv_locked());
|
|
}
|
|
|
|
/* Clear TPM owner, in case the TPM is already owned for some reason. */
|
|
VBDEBUG("TPM: Clearing owner\n");
|
|
RETURN_ON_FAILURE(tpm_clear_and_reenable());
|
|
|
|
/* Define and write secdata_kernel space. */
|
|
RETURN_ON_FAILURE(safe_define_space(KERNEL_NV_INDEX,
|
|
TPM_NV_PER_PPWRITE,
|
|
VB2_SECDATA_KERNEL_SIZE_V02));
|
|
RETURN_ON_FAILURE(safe_write(KERNEL_NV_INDEX,
|
|
ctx->secdata_kernel,
|
|
VB2_SECDATA_KERNEL_SIZE_V02));
|
|
|
|
/* Define and write secdata_firmware space. */
|
|
RETURN_ON_FAILURE(safe_define_space(FIRMWARE_NV_INDEX,
|
|
TPM_NV_PER_GLOBALLOCK |
|
|
TPM_NV_PER_PPWRITE,
|
|
VB2_SECDATA_FIRMWARE_SIZE));
|
|
RETURN_ON_FAILURE(safe_write(FIRMWARE_NV_INDEX,
|
|
ctx->secdata_firmware,
|
|
VB2_SECDATA_FIRMWARE_SIZE));
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_lock_space_firmware(void)
|
|
{
|
|
return tlcl_set_global_lock();
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Perform one-time initializations.
|
|
*
|
|
* Create the NVRAM spaces, and set their initial values as needed. Sets the
|
|
* nvLocked bit and ensures the physical presence command is enabled and
|
|
* locked.
|
|
*/
|
|
static uint32_t factory_initialize_tpm(struct vb2_context *ctx)
|
|
{
|
|
uint32_t result;
|
|
|
|
/*
|
|
* Set initial values of secdata_firmware space.
|
|
* kernel space is created in _factory_initialize_tpm().
|
|
*/
|
|
vb2api_secdata_firmware_create(ctx);
|
|
|
|
VBDEBUG("TPM: factory initialization\n");
|
|
|
|
/*
|
|
* Do a full test. This only happens the first time the device is
|
|
* turned on in the factory, so performance is not an issue. This is
|
|
* almost certainly not necessary, but it gives us more confidence
|
|
* about some code paths below that are difficult to
|
|
* test---specifically the ones that set lifetime flags, and are only
|
|
* executed once per physical TPM.
|
|
*/
|
|
result = tlcl_self_test_full();
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
result = _factory_initialize_tpm(ctx);
|
|
if (result != TPM_SUCCESS)
|
|
return result;
|
|
|
|
/* _factory_initialize_tpm() writes initial secdata values to TPM
|
|
immediately, so let vboot know that it's up to date now. */
|
|
ctx->flags &= ~(VB2_CONTEXT_SECDATA_FIRMWARE_CHANGED |
|
|
VB2_CONTEXT_SECDATA_KERNEL_CHANGED);
|
|
|
|
VBDEBUG("TPM: factory initialization successful\n");
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_read_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
uint32_t rv;
|
|
|
|
/* Read the firmware space. */
|
|
rv = read_space_firmware(ctx);
|
|
if (rv == TPM_E_BADINDEX) {
|
|
/* This seems the first time we've run. Initialize the TPM. */
|
|
VBDEBUG("TPM: Not initialized yet.\n");
|
|
RETURN_ON_FAILURE(factory_initialize_tpm(ctx));
|
|
} else if (rv != TPM_SUCCESS) {
|
|
VBDEBUG("TPM: Firmware space in a bad state; giving up.\n");
|
|
return TPM_E_CORRUPTED_STATE;
|
|
}
|
|
|
|
return TPM_SUCCESS;
|
|
}
|
|
|
|
uint32_t antirollback_write_space_firmware(struct vb2_context *ctx)
|
|
{
|
|
if (CONFIG(CR50_IMMEDIATELY_COMMIT_FW_SECDATA))
|
|
tlcl_cr50_enable_nvcommits();
|
|
return safe_write(FIRMWARE_NV_INDEX, ctx->secdata_firmware,
|
|
VB2_SECDATA_FIRMWARE_SIZE);
|
|
}
|
|
|
|
uint32_t antirollback_write_space_kernel(struct vb2_context *ctx)
|
|
{
|
|
/* Learn the expected size. */
|
|
uint8_t size = VB2_SECDATA_KERNEL_MIN_SIZE;
|
|
vb2api_secdata_kernel_check(ctx, &size);
|
|
|
|
/*
|
|
* Ensure that the TPM actually commits our changes to NVMEN in case
|
|
* there is a power loss or other unexpected event. The AP does not
|
|
* write to the TPM during normal boot flow; it only writes during
|
|
* recovery, software sync, or other special boot flows. When the AP
|
|
* wants to write, it is imporant to actually commit changes.
|
|
*/
|
|
if (CONFIG(CR50_IMMEDIATELY_COMMIT_FW_SECDATA))
|
|
tlcl_cr50_enable_nvcommits();
|
|
|
|
return safe_write(KERNEL_NV_INDEX, ctx->secdata_kernel, size);
|
|
}
|
|
|
|
vb2_error_t vb2ex_tpm_clear_owner(struct vb2_context *ctx)
|
|
{
|
|
uint32_t rv;
|
|
printk(BIOS_INFO, "Clearing TPM owner\n");
|
|
rv = tpm_clear_and_reenable();
|
|
if (rv)
|
|
return VB2_ERROR_EX_TPM_CLEAR_OWNER;
|
|
return VB2_SUCCESS;
|
|
}
|