713 lines
20 KiB
C
713 lines
20 KiB
C
/*
|
|
*
|
|
* Copyright 2014 Google Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include <arch/mmu.h>
|
|
#include <arch/lib_helpers.h>
|
|
#include <arch/cache.h>
|
|
|
|
/* Maximum number of XLAT Tables available based on ttb buffer size */
|
|
static unsigned int max_tables;
|
|
/* Address of ttb buffer */
|
|
static uint64_t *xlat_addr;
|
|
|
|
static int free_idx;
|
|
static uint8_t ttb_buffer[TTB_DEFAULT_SIZE] __attribute__((aligned(GRANULE_SIZE)));
|
|
|
|
static const char * const tag_to_string[] = {
|
|
[TYPE_NORMAL_MEM] = "normal",
|
|
[TYPE_DEV_MEM] = "device",
|
|
[TYPE_DMA_MEM] = "uncached",
|
|
};
|
|
|
|
/*
|
|
* The usedmem_ranges is used to describe all the memory ranges that are
|
|
* actually used by payload i.e. _start -> _end in linker script and the
|
|
* coreboot tables. This is required for two purposes:
|
|
* 1) During the pre_sysinfo_scan_mmu_setup, these are the only ranges
|
|
* initialized in the page table as we do not know the entire memory map.
|
|
* 2) During the post_sysinfo_scan_mmu_setup, these ranges are used to check if
|
|
* the DMA buffer is being placed in a sane location and does not overlap any of
|
|
* the used mem ranges.
|
|
*/
|
|
static struct mmu_ranges usedmem_ranges;
|
|
|
|
static void __attribute__((noreturn)) mmu_error(void)
|
|
{
|
|
halt();
|
|
}
|
|
|
|
/* Func : get_block_attr
|
|
* Desc : Get block descriptor attributes based on the value of tag in memrange
|
|
* region
|
|
*/
|
|
static uint64_t get_block_attr(unsigned long tag)
|
|
{
|
|
uint64_t attr;
|
|
|
|
/* We should be in EL2(which is non-secure only) or EL1(non-secure) */
|
|
attr = BLOCK_NS;
|
|
|
|
/* Assuming whole memory is read-write */
|
|
attr |= BLOCK_AP_RW;
|
|
|
|
attr |= BLOCK_ACCESS;
|
|
|
|
switch (tag) {
|
|
|
|
case TYPE_NORMAL_MEM:
|
|
attr |= BLOCK_SH_INNER_SHAREABLE;
|
|
attr |= (BLOCK_INDEX_MEM_NORMAL << BLOCK_INDEX_SHIFT);
|
|
break;
|
|
case TYPE_DEV_MEM:
|
|
attr |= BLOCK_INDEX_MEM_DEV_NGNRNE << BLOCK_INDEX_SHIFT;
|
|
attr |= BLOCK_XN;
|
|
break;
|
|
case TYPE_DMA_MEM:
|
|
attr |= BLOCK_INDEX_MEM_NORMAL_NC << BLOCK_INDEX_SHIFT;
|
|
break;
|
|
}
|
|
|
|
return attr;
|
|
}
|
|
|
|
/* Func : table_desc_valid
|
|
* Desc : Check if a table entry contains valid desc
|
|
*/
|
|
static uint64_t table_desc_valid(uint64_t desc)
|
|
{
|
|
return((desc & TABLE_DESC) == TABLE_DESC);
|
|
}
|
|
|
|
/* Func : setup_new_table
|
|
* Desc : Get next free table from TTB and set it up to match old parent entry.
|
|
*/
|
|
static uint64_t *setup_new_table(uint64_t desc, size_t xlat_size)
|
|
{
|
|
uint64_t *new, *entry;
|
|
|
|
assert(free_idx < max_tables);
|
|
|
|
new = (uint64_t*)((unsigned char *)xlat_addr + free_idx * GRANULE_SIZE);
|
|
free_idx++;
|
|
|
|
if (!desc) {
|
|
memset(new, 0, GRANULE_SIZE);
|
|
} else {
|
|
/* Can reuse old parent entry, but may need to adjust type. */
|
|
if (xlat_size == L3_XLAT_SIZE)
|
|
desc |= PAGE_DESC;
|
|
|
|
for (entry = new; (u8 *)entry < (u8 *)new + GRANULE_SIZE;
|
|
entry++, desc += xlat_size)
|
|
*entry = desc;
|
|
}
|
|
|
|
return new;
|
|
}
|
|
|
|
/* Func : get_table_from_desc
|
|
* Desc : Get next level table address from table descriptor
|
|
*/
|
|
static uint64_t *get_table_from_desc(uint64_t desc)
|
|
{
|
|
uint64_t *ptr = (uint64_t*)(desc & XLAT_TABLE_MASK);
|
|
return ptr;
|
|
}
|
|
|
|
/* Func: get_next_level_table
|
|
* Desc: Check if the table entry is a valid descriptor. If not, initialize new
|
|
* table, update the entry and return the table addr. If valid, return the addr.
|
|
*/
|
|
static uint64_t *get_next_level_table(uint64_t *ptr, size_t xlat_size)
|
|
{
|
|
uint64_t desc = *ptr;
|
|
|
|
if (!table_desc_valid(desc)) {
|
|
uint64_t *new_table = setup_new_table(desc, xlat_size);
|
|
desc = ((uint64_t)new_table) | TABLE_DESC;
|
|
*ptr = desc;
|
|
}
|
|
return get_table_from_desc(desc);
|
|
}
|
|
|
|
/* Func : init_xlat_table
|
|
* Desc : Given a base address and size, it identifies the indices within
|
|
* different level XLAT tables which map the given base addr. Similar to table
|
|
* walk, except that all invalid entries during the walk are updated
|
|
* accordingly. On success, it returns the size of the block/page addressed by
|
|
* the final table.
|
|
*/
|
|
static uint64_t init_xlat_table(uint64_t base_addr,
|
|
uint64_t size,
|
|
uint64_t tag)
|
|
{
|
|
uint64_t l0_index = (base_addr & L0_ADDR_MASK) >> L0_ADDR_SHIFT;
|
|
uint64_t l1_index = (base_addr & L1_ADDR_MASK) >> L1_ADDR_SHIFT;
|
|
uint64_t l2_index = (base_addr & L2_ADDR_MASK) >> L2_ADDR_SHIFT;
|
|
uint64_t l3_index = (base_addr & L3_ADDR_MASK) >> L3_ADDR_SHIFT;
|
|
uint64_t *table = xlat_addr;
|
|
uint64_t desc;
|
|
uint64_t attr = get_block_attr(tag);
|
|
|
|
/* L0 entry stores a table descriptor (doesn't support blocks) */
|
|
table = get_next_level_table(&table[l0_index], L1_XLAT_SIZE);
|
|
|
|
/* L1 table lookup */
|
|
if ((size >= L1_XLAT_SIZE) &&
|
|
IS_ALIGNED(base_addr, (1UL << L1_ADDR_SHIFT))) {
|
|
/* If block address is aligned and size is greater than
|
|
* or equal to size addressed by each L1 entry, we can
|
|
* directly store a block desc */
|
|
desc = base_addr | BLOCK_DESC | attr;
|
|
table[l1_index] = desc;
|
|
/* L2 lookup is not required */
|
|
return L1_XLAT_SIZE;
|
|
}
|
|
|
|
/* L1 entry stores a table descriptor */
|
|
table = get_next_level_table(&table[l1_index], L2_XLAT_SIZE);
|
|
|
|
/* L2 table lookup */
|
|
if ((size >= L2_XLAT_SIZE) &&
|
|
IS_ALIGNED(base_addr, (1UL << L2_ADDR_SHIFT))) {
|
|
/* If block address is aligned and size is greater than
|
|
* or equal to size addressed by each L2 entry, we can
|
|
* directly store a block desc */
|
|
desc = base_addr | BLOCK_DESC | attr;
|
|
table[l2_index] = desc;
|
|
/* L3 lookup is not required */
|
|
return L2_XLAT_SIZE;
|
|
}
|
|
|
|
/* L2 entry stores a table descriptor */
|
|
table = get_next_level_table(&table[l2_index], L3_XLAT_SIZE);
|
|
|
|
/* L3 table lookup */
|
|
desc = base_addr | PAGE_DESC | attr;
|
|
table[l3_index] = desc;
|
|
return L3_XLAT_SIZE;
|
|
}
|
|
|
|
/* Func : sanity_check
|
|
* Desc : Check address/size alignment of a table or page.
|
|
*/
|
|
static void sanity_check(uint64_t addr, uint64_t size)
|
|
{
|
|
assert(!(addr & GRANULE_SIZE_MASK) &&
|
|
!(size & GRANULE_SIZE_MASK) &&
|
|
(addr + size < (1UL << BITS_PER_VA)) &&
|
|
size >= GRANULE_SIZE);
|
|
}
|
|
|
|
/* Func : mmu_config_range
|
|
* Desc : This function repeatedly calls init_xlat_table with the base
|
|
* address. Based on size returned from init_xlat_table, base_addr is updated
|
|
* and subsequent calls are made for initializing the xlat table until the whole
|
|
* region is initialized.
|
|
*/
|
|
void mmu_config_range(void *start, size_t size, uint64_t tag)
|
|
{
|
|
uint64_t base_addr = (uintptr_t)start;
|
|
uint64_t temp_size = size;
|
|
|
|
assert(tag < ARRAY_SIZE(tag_to_string));
|
|
printf("Libpayload: ARM64 MMU: Mapping address range [%p:%p) as %s\n",
|
|
start, start + size, tag_to_string[tag]);
|
|
sanity_check(base_addr, temp_size);
|
|
|
|
while (temp_size)
|
|
temp_size -= init_xlat_table(base_addr + (size - temp_size),
|
|
temp_size, tag);
|
|
|
|
/* ARMv8 MMUs snoop L1 data cache, no need to flush it. */
|
|
dsb();
|
|
tlbiall_el2();
|
|
dsb();
|
|
isb();
|
|
}
|
|
|
|
/* Func : mmu_init
|
|
* Desc : Initialize mmu based on the mmu_memrange passed. ttb_buffer is used as
|
|
* the base address for xlat tables. TTB_DEFAULT_SIZE defines the max number of
|
|
* tables that can be used
|
|
* Assuming that memory 0-4GiB is device memory.
|
|
*/
|
|
uint64_t mmu_init(struct mmu_ranges *mmu_ranges)
|
|
{
|
|
int i = 0;
|
|
|
|
xlat_addr = (uint64_t *)&ttb_buffer;
|
|
|
|
memset((void*)xlat_addr, 0, GRANULE_SIZE);
|
|
max_tables = (TTB_DEFAULT_SIZE >> GRANULE_SIZE_SHIFT);
|
|
free_idx = 1;
|
|
|
|
printf("Libpayload ARM64: TTB_BUFFER: %p Max Tables: %d\n",
|
|
(void*)xlat_addr, max_tables);
|
|
|
|
/*
|
|
* To keep things simple we start with mapping the entire base 4GB as
|
|
* device memory. This accommodates various architectures' default
|
|
* settings (for instance rk3399 mmio starts at 0xf8000000); it is
|
|
* fine tuned (e.g. mapping DRAM areas as write-back) later in the
|
|
* boot process.
|
|
*/
|
|
mmu_config_range(NULL, 0x100000000, TYPE_DEV_MEM);
|
|
|
|
for (; i < mmu_ranges->used; i++)
|
|
mmu_config_range((void *)mmu_ranges->entries[i].base,
|
|
mmu_ranges->entries[i].size,
|
|
mmu_ranges->entries[i].type);
|
|
|
|
printf("Libpayload ARM64: MMU init done\n");
|
|
return 0;
|
|
}
|
|
|
|
static uint32_t is_mmu_enabled(void)
|
|
{
|
|
uint32_t sctlr;
|
|
|
|
sctlr = raw_read_sctlr_el2();
|
|
|
|
return (sctlr & SCTLR_M);
|
|
}
|
|
|
|
/*
|
|
* Func: mmu_enable
|
|
* Desc: Initialize MAIR, TCR, TTBR and enable MMU by setting appropriate bits
|
|
* in SCTLR
|
|
*/
|
|
void mmu_enable(void)
|
|
{
|
|
uint32_t sctlr;
|
|
|
|
/* Initialize MAIR indices */
|
|
raw_write_mair_el2(MAIR_ATTRIBUTES);
|
|
|
|
/* Invalidate TLBs */
|
|
tlbiall_el2();
|
|
|
|
/* Initialize TCR flags */
|
|
raw_write_tcr_el2(TCR_TOSZ | TCR_IRGN0_NM_WBWAC | TCR_ORGN0_NM_WBWAC |
|
|
TCR_SH0_IS | TCR_TG0_4KB | TCR_PS_256TB |
|
|
TCR_TBI_USED);
|
|
|
|
/* Initialize TTBR */
|
|
raw_write_ttbr0_el2((uintptr_t)xlat_addr);
|
|
|
|
/* Ensure system register writes are committed before enabling MMU */
|
|
isb();
|
|
|
|
/* Enable MMU */
|
|
sctlr = raw_read_sctlr_el2();
|
|
sctlr |= SCTLR_C | SCTLR_M | SCTLR_I;
|
|
raw_write_sctlr_el2(sctlr);
|
|
|
|
isb();
|
|
|
|
if(is_mmu_enabled())
|
|
printf("ARM64: MMU enable done\n");
|
|
else
|
|
printf("ARM64: MMU enable failed\n");
|
|
}
|
|
|
|
/*
|
|
* Func: mmu_add_memrange
|
|
* Desc: Adds a new memory range
|
|
*/
|
|
static struct mmu_memrange *mmu_add_memrange(struct mmu_ranges *r,
|
|
uint64_t base, uint64_t size,
|
|
uint64_t type)
|
|
{
|
|
struct mmu_memrange *curr = NULL;
|
|
int i = r->used;
|
|
|
|
if (i < ARRAY_SIZE(r->entries)) {
|
|
curr = &r->entries[i];
|
|
curr->base = base;
|
|
curr->size = size;
|
|
curr->type = type;
|
|
|
|
r->used = i + 1;
|
|
}
|
|
|
|
return curr;
|
|
}
|
|
|
|
/* Structure to define properties of new memrange request */
|
|
struct mmu_new_range_prop {
|
|
/* Type of memrange */
|
|
uint64_t type;
|
|
/* Size of the range */
|
|
uint64_t size;
|
|
/*
|
|
* If any restrictions on the max addr limit(This addr is exclusive for
|
|
* the range), else 0
|
|
*/
|
|
uint64_t lim_excl;
|
|
/* If any restrictions on alignment of the range base, else 0 */
|
|
uint64_t align;
|
|
/*
|
|
* Function to test whether selected range is fine.
|
|
* NULL=any range is fine
|
|
* Return value 1=valid range, 0=otherwise
|
|
*/
|
|
int (*is_valid_range)(uint64_t, uint64_t);
|
|
/* From what type of source range should this range be extracted */
|
|
uint64_t src_type;
|
|
};
|
|
|
|
/*
|
|
* Func: mmu_is_range_free
|
|
* Desc: We need to ensure that the new range being allocated doesn't overlap
|
|
* with any used memory range. Basically:
|
|
* 1. Memory ranges used by the payload (usedmem_ranges)
|
|
* 2. Any area that falls below _end symbol in linker script (Kernel needs to be
|
|
* loaded in lower areas of memory, So, the payload linker script can have
|
|
* kernel memory below _start and _end. Thus, we want to make sure we do not
|
|
* step in those areas as well.
|
|
* Returns: 1 on success, 0 on error
|
|
* ASSUMPTION: All the memory used by payload resides below the program
|
|
* proper. If there is any memory used above the _end symbol, then it should be
|
|
* marked as used memory in usedmem_ranges during the presysinfo_scan.
|
|
*/
|
|
static int mmu_is_range_free(uint64_t r_base,
|
|
uint64_t r_end)
|
|
{
|
|
uint64_t payload_end = (uint64_t)&_end;
|
|
uint64_t i;
|
|
struct mmu_memrange *r = &usedmem_ranges.entries[0];
|
|
|
|
/* Allocate memranges only above payload */
|
|
if ((r_base <= payload_end) || (r_end <= payload_end))
|
|
return 0;
|
|
|
|
for (i = 0; i < usedmem_ranges.used; i++) {
|
|
uint64_t start = r[i].base;
|
|
uint64_t end = start + r[i].size;
|
|
|
|
if ((start < r_end) && (end > r_base))
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Func: mmu_get_new_range
|
|
* Desc: Add a requested new memrange. We take as input set of all memranges and
|
|
* a structure to define the new memrange properties i.e. its type, size,
|
|
* max_addr it can grow upto, alignment restrictions, source type to take range
|
|
* from and finally a function pointer to check if the chosen range is valid.
|
|
*/
|
|
static struct mmu_memrange *mmu_get_new_range(struct mmu_ranges *mmu_ranges,
|
|
struct mmu_new_range_prop *new)
|
|
{
|
|
int i = 0;
|
|
struct mmu_memrange *r = &mmu_ranges->entries[0];
|
|
|
|
if (new->size == 0) {
|
|
printf("MMU Error: Invalid range size\n");
|
|
return NULL;
|
|
}
|
|
|
|
for (; i < mmu_ranges->used; i++) {
|
|
|
|
if ((r[i].type != new->src_type) ||
|
|
(r[i].size < new->size) ||
|
|
(new->lim_excl && (r[i].base >= new->lim_excl)))
|
|
continue;
|
|
|
|
uint64_t base_addr;
|
|
uint64_t range_end_addr = r[i].base + r[i].size;
|
|
uint64_t end_addr = range_end_addr;
|
|
|
|
/* Make sure we do not go above max if it is non-zero */
|
|
if (new->lim_excl && (end_addr >= new->lim_excl))
|
|
end_addr = new->lim_excl;
|
|
|
|
while (1) {
|
|
/*
|
|
* In case of alignment requirement,
|
|
* if end_addr is aligned, then base_addr will be too.
|
|
*/
|
|
if (new->align)
|
|
end_addr = ALIGN_DOWN(end_addr, new->align);
|
|
|
|
base_addr = end_addr - new->size;
|
|
|
|
if (base_addr < r[i].base)
|
|
break;
|
|
|
|
/*
|
|
* If the selected range is not used and valid for the
|
|
* user, move ahead with it
|
|
*/
|
|
if (mmu_is_range_free(base_addr, end_addr) &&
|
|
((new->is_valid_range == NULL) ||
|
|
new->is_valid_range(base_addr, end_addr)))
|
|
break;
|
|
|
|
/* Drop to the next address. */
|
|
end_addr -= 1;
|
|
}
|
|
|
|
if (base_addr < r[i].base)
|
|
continue;
|
|
|
|
if (end_addr != range_end_addr) {
|
|
/* Add a new memrange since we split up one
|
|
* range crossing the 4GiB boundary or doing an
|
|
* ALIGN_DOWN on end_addr.
|
|
*/
|
|
r[i].size -= (range_end_addr - end_addr);
|
|
if (mmu_add_memrange(mmu_ranges, end_addr,
|
|
range_end_addr - end_addr,
|
|
r[i].type) == NULL)
|
|
mmu_error();
|
|
}
|
|
|
|
if (r[i].size == new->size) {
|
|
r[i].type = new->type;
|
|
return &r[i];
|
|
}
|
|
|
|
r[i].size -= new->size;
|
|
|
|
r = mmu_add_memrange(mmu_ranges, base_addr, new->size,
|
|
new->type);
|
|
|
|
if (r == NULL)
|
|
mmu_error();
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Should never reach here if everything went fine */
|
|
printf("ARM64 ERROR: No region allocated\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Func: mmu_alloc_range
|
|
* Desc: Call get_new_range to get a new memrange which is unused and mark it as
|
|
* used to avoid same range being allocated for different purposes.
|
|
*/
|
|
static struct mmu_memrange *mmu_alloc_range(struct mmu_ranges *mmu_ranges,
|
|
struct mmu_new_range_prop *p)
|
|
{
|
|
struct mmu_memrange *r = mmu_get_new_range(mmu_ranges, p);
|
|
|
|
if (r == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* Mark this memrange as used memory. Important since function
|
|
* can be called multiple times and we do not want to reuse some
|
|
* range already allocated.
|
|
*/
|
|
if (mmu_add_memrange(&usedmem_ranges, r->base, r->size, r->type)
|
|
== NULL)
|
|
mmu_error();
|
|
|
|
return r;
|
|
}
|
|
|
|
/*
|
|
* Func: mmu_add_dma_range
|
|
* Desc: Add a memrange for dma operations. This is special because we want to
|
|
* initialize this memory as non-cacheable. We have a constraint that the DMA
|
|
* buffer should be below 4GiB(32-bit only). So, we lookup a TYPE_NORMAL_MEM
|
|
* from the lowest available addresses and align it to page size i.e. 64KiB.
|
|
*/
|
|
static struct mmu_memrange *mmu_add_dma_range(struct mmu_ranges *mmu_ranges)
|
|
{
|
|
struct mmu_new_range_prop prop;
|
|
|
|
prop.type = TYPE_DMA_MEM;
|
|
/* DMA_DEFAULT_SIZE is multiple of GRANULE_SIZE */
|
|
assert((DMA_DEFAULT_SIZE % GRANULE_SIZE) == 0);
|
|
prop.size = DMA_DEFAULT_SIZE;
|
|
prop.lim_excl = (uint64_t)CONFIG_LP_DMA_LIM_EXCL * MiB;
|
|
prop.align = GRANULE_SIZE;
|
|
prop.is_valid_range = NULL;
|
|
prop.src_type = TYPE_NORMAL_MEM;
|
|
|
|
return mmu_alloc_range(mmu_ranges, &prop);
|
|
}
|
|
|
|
static struct mmu_memrange *_mmu_add_fb_range(
|
|
uint32_t size,
|
|
struct mmu_ranges *mmu_ranges)
|
|
{
|
|
struct mmu_new_range_prop prop;
|
|
|
|
prop.type = TYPE_DMA_MEM;
|
|
|
|
/* make sure to allocate a size of multiple of GRANULE_SIZE */
|
|
size = ALIGN_UP(size, GRANULE_SIZE);
|
|
prop.size = size;
|
|
prop.lim_excl = MIN_64_BIT_ADDR;
|
|
prop.align = MB_SIZE;
|
|
prop.is_valid_range = NULL;
|
|
prop.src_type = TYPE_NORMAL_MEM;
|
|
|
|
return mmu_alloc_range(mmu_ranges, &prop);
|
|
}
|
|
|
|
/*
|
|
* Func: mmu_extract_ranges
|
|
* Desc: Assumption is that coreboot tables have memranges in sorted
|
|
* order. So, if there is an opportunity to combine ranges, we do that as
|
|
* well. Memranges are initialized for both CB_MEM_RAM and CB_MEM_TABLE as
|
|
* TYPE_NORMAL_MEM.
|
|
*/
|
|
static void mmu_extract_ranges(struct memrange *cb_ranges,
|
|
uint64_t ncb,
|
|
struct mmu_ranges *mmu_ranges)
|
|
{
|
|
int i = 0;
|
|
struct mmu_memrange *prev_range = NULL;
|
|
|
|
/* Extract memory ranges to be mapped */
|
|
for (; i < ncb; i++) {
|
|
switch (cb_ranges[i].type) {
|
|
case CB_MEM_RAM:
|
|
case CB_MEM_TABLE:
|
|
if (prev_range && (prev_range->base + prev_range->size
|
|
== cb_ranges[i].base)) {
|
|
prev_range->size += cb_ranges[i].size;
|
|
} else {
|
|
prev_range = mmu_add_memrange(mmu_ranges,
|
|
cb_ranges[i].base,
|
|
cb_ranges[i].size,
|
|
TYPE_NORMAL_MEM);
|
|
if (prev_range == NULL)
|
|
mmu_error();
|
|
}
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void mmu_add_fb_range(struct mmu_ranges *mmu_ranges)
|
|
{
|
|
struct mmu_memrange *fb_range;
|
|
struct cb_framebuffer *framebuffer = &lib_sysinfo.framebuffer;
|
|
uint32_t fb_size;
|
|
|
|
/* Check whether framebuffer is needed */
|
|
fb_size = framebuffer->bytes_per_line * framebuffer->y_resolution;
|
|
if (!fb_size)
|
|
return;
|
|
|
|
/* framebuffer address has been set already, so just add it as DMA */
|
|
if (framebuffer->physical_address) {
|
|
if (mmu_add_memrange(mmu_ranges,
|
|
framebuffer->physical_address,
|
|
fb_size,
|
|
TYPE_DMA_MEM) == NULL)
|
|
mmu_error();
|
|
return;
|
|
}
|
|
|
|
/* Allocate framebuffer */
|
|
fb_range = _mmu_add_fb_range(fb_size, mmu_ranges);
|
|
if (fb_range == NULL)
|
|
mmu_error();
|
|
|
|
framebuffer->physical_address = fb_range->base;
|
|
}
|
|
|
|
/*
|
|
* Func: mmu_init_ranges
|
|
* Desc: Initialize mmu_memranges based on the memranges obtained from coreboot
|
|
* tables. Also, initialize dma memrange and xlat_addr for ttb buffer.
|
|
*/
|
|
struct mmu_memrange *mmu_init_ranges_from_sysinfo(struct memrange *cb_ranges,
|
|
uint64_t ncb,
|
|
struct mmu_ranges *mmu_ranges)
|
|
{
|
|
struct mmu_memrange *dma_range;
|
|
|
|
/* Initialize mmu_ranges to contain no entries. */
|
|
mmu_ranges->used = 0;
|
|
|
|
/* Extract ranges from memrange in lib_sysinfo */
|
|
mmu_extract_ranges(cb_ranges, ncb, mmu_ranges);
|
|
|
|
/* Get a range for dma */
|
|
dma_range = mmu_add_dma_range(mmu_ranges);
|
|
|
|
/* Get a range for framebuffer */
|
|
mmu_add_fb_range(mmu_ranges);
|
|
|
|
if (dma_range == NULL)
|
|
mmu_error();
|
|
|
|
return dma_range;
|
|
}
|
|
|
|
/*
|
|
* Func: mmu_presysinfo_memory_used
|
|
* Desc: Initializes all the memory used for presysinfo page table
|
|
* initialization and enabling of MMU. All these ranges are stored in
|
|
* usedmem_ranges. usedmem_ranges plays an important role in selecting the dma
|
|
* buffer as well since we check the dma buffer range against the used memory
|
|
* ranges to prevent any overstepping.
|
|
*/
|
|
void mmu_presysinfo_memory_used(uint64_t base, uint64_t size)
|
|
{
|
|
uint64_t range_base;
|
|
|
|
range_base = ALIGN_DOWN(base, GRANULE_SIZE);
|
|
|
|
size += (base - range_base);
|
|
size = ALIGN_UP(size, GRANULE_SIZE);
|
|
|
|
mmu_add_memrange(&usedmem_ranges, range_base, size, TYPE_NORMAL_MEM);
|
|
}
|
|
|
|
void mmu_presysinfo_enable(void)
|
|
{
|
|
mmu_init(&usedmem_ranges);
|
|
mmu_enable();
|
|
}
|
|
|
|
const struct mmu_ranges *mmu_get_used_ranges(void)
|
|
{
|
|
return &usedmem_ranges;
|
|
}
|