d67c6876b5
This patch allows the CBMEM console to persist across reboots, which should greatly help post factum debugging of issues involving multiple reboots. In order to prevent the console from filling up, it will instead operate as a ring buffer that continues to evict the oldest lines once full. (This means that if even a single boot doesn't fit into the buffer, we will now drop the oldest lines whereas previous code would've dropped the newest lines instead.) The console control structure is modified in a sorta backwards-compatible way, so that new readers can continue to work with old console buffers and vice versa. When an old reader reads a new buffer that has already once overflowed (i.e. is operating in true ring buffer mode) it will print lines out of order, but it will at least still print out the whole console content and not do any illegal memory accesses (assuming it correctly implemented cursor overflow as it was already possible before this patch). BUG=chromium:651966 TEST=Rebooted and confirmed output repeatedly on a Kevin and a Falco. Also confirmed correct behavior across suspend/resume for the latter. Change-Id: Ifcbf59d58e1ad20995b98d111c4647281fbb45ff Signed-off-by: Julius Werner <jwerner@chromium.org> Reviewed-on: https://review.coreboot.org/18301 Tested-by: build bot (Jenkins) Reviewed-by: Aaron Durbin <adurbin@chromium.org>
1233 lines
28 KiB
C
1233 lines
28 KiB
C
/*
|
|
* This file is part of the coreboot project.
|
|
*
|
|
* Copyright 2012 Google Inc.
|
|
* Copyright (C) 2015 Timothy Pearson <tpearson@raptorengineeringinc.com>, Raptor Engineering
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; version 2 of the License.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <inttypes.h>
|
|
#include <getopt.h>
|
|
#include <dirent.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <ctype.h>
|
|
#include <arpa/inet.h>
|
|
#include <sys/types.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/mman.h>
|
|
#include <libgen.h>
|
|
#include <assert.h>
|
|
#include <commonlib/cbmem_id.h>
|
|
#include <commonlib/timestamp_serialized.h>
|
|
#include <commonlib/coreboot_tables.h>
|
|
|
|
#ifdef __OpenBSD__
|
|
#include <sys/param.h>
|
|
#include <sys/sysctl.h>
|
|
#endif
|
|
|
|
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
|
|
#define MAP_BYTES (1024*1024)
|
|
|
|
typedef uint8_t u8;
|
|
typedef uint16_t u16;
|
|
typedef uint32_t u32;
|
|
typedef uint64_t u64;
|
|
|
|
#define CBMEM_VERSION "1.1"
|
|
|
|
/* verbose output? */
|
|
static int verbose = 0;
|
|
#define debug(x...) if(verbose) printf(x)
|
|
|
|
/* File handle used to access /dev/mem */
|
|
static int mem_fd;
|
|
|
|
static uint64_t lbtable_address;
|
|
static size_t lbtable_size;
|
|
|
|
/*
|
|
* Some architectures map /dev/mem memory in a way that doesn't support
|
|
* unaligned accesses. Most normal libc memcpy()s aren't safe to use in this
|
|
* case, so build our own which makes sure to never do unaligned accesses on
|
|
* *src (*dest is fine since we never map /dev/mem for writing).
|
|
*/
|
|
static void *aligned_memcpy(void *dest, const void *src, size_t n)
|
|
{
|
|
u8 *d = dest;
|
|
const volatile u8 *s = src; /* volatile to prevent optimization */
|
|
|
|
while ((uintptr_t)s & (sizeof(size_t) - 1)) {
|
|
if (n-- == 0)
|
|
return dest;
|
|
*d++ = *s++;
|
|
}
|
|
|
|
while (n >= sizeof(size_t)) {
|
|
*(size_t *)d = *(const volatile size_t *)s;
|
|
d += sizeof(size_t);
|
|
s += sizeof(size_t);
|
|
n -= sizeof(size_t);
|
|
}
|
|
|
|
while (n-- > 0)
|
|
*d++ = *s++;
|
|
|
|
return dest;
|
|
}
|
|
|
|
/*
|
|
* calculate ip checksum (16 bit quantities) on a passed in buffer. In case
|
|
* the buffer length is odd last byte is excluded from the calculation
|
|
*/
|
|
static u16 ipchcksum(const void *addr, unsigned size)
|
|
{
|
|
const u16 *p = addr;
|
|
unsigned i, n = size / 2; /* don't expect odd sized blocks */
|
|
u32 sum = 0;
|
|
|
|
for (i = 0; i < n; i++)
|
|
sum += p[i];
|
|
|
|
sum = (sum >> 16) + (sum & 0xffff);
|
|
sum += (sum >> 16);
|
|
sum = ~sum & 0xffff;
|
|
return (u16) sum;
|
|
}
|
|
|
|
/*
|
|
* Functions to map / unmap physical memory into virtual address space. These
|
|
* functions always maps 1MB at a time and can only map one area at once.
|
|
*/
|
|
static void *mapped_virtual;
|
|
static size_t mapped_size;
|
|
|
|
static inline size_t size_to_mib(size_t sz)
|
|
{
|
|
return sz >> 20;
|
|
}
|
|
|
|
static void unmap_memory(void)
|
|
{
|
|
if (mapped_virtual == NULL) {
|
|
fprintf(stderr, "Error unmapping memory\n");
|
|
return;
|
|
}
|
|
if (size_to_mib(mapped_size) == 0) {
|
|
debug("Unmapping %zuMB of virtual memory at %p.\n",
|
|
size_to_mib(mapped_size), mapped_virtual);
|
|
} else {
|
|
debug("Unmapping %zuMB of virtual memory at %p.\n",
|
|
size_to_mib(mapped_size), mapped_virtual);
|
|
}
|
|
munmap(mapped_virtual, mapped_size);
|
|
mapped_virtual = NULL;
|
|
mapped_size = 0;
|
|
}
|
|
|
|
static void *map_memory_size(u64 physical, size_t size, uint8_t abort_on_failure)
|
|
{
|
|
void *v;
|
|
off_t p;
|
|
u64 page = getpagesize();
|
|
size_t padding;
|
|
|
|
if (mapped_virtual != NULL)
|
|
unmap_memory();
|
|
|
|
/* Mapped memory must be aligned to page size */
|
|
p = physical & ~(page - 1);
|
|
padding = physical & (page-1);
|
|
size += padding;
|
|
|
|
if (size_to_mib(size) == 0) {
|
|
debug("Mapping %zuB of physical memory at 0x%jx (requested 0x%jx).\n",
|
|
size, (intmax_t)p, (intmax_t)physical);
|
|
} else {
|
|
debug("Mapping %zuMB of physical memory at 0x%jx (requested 0x%jx).\n",
|
|
size_to_mib(size), (intmax_t)p, (intmax_t)physical);
|
|
}
|
|
|
|
v = mmap(NULL, size, PROT_READ, MAP_SHARED, mem_fd, p);
|
|
|
|
if (v == MAP_FAILED) {
|
|
/* The mapped area may have overrun the upper cbmem boundary when trying to
|
|
* align to the page size. Try growing down instead of up...
|
|
*/
|
|
p -= page;
|
|
padding += page;
|
|
size &= ~(page - 1);
|
|
size = size + (page - 1);
|
|
v = mmap(NULL, size, PROT_READ, MAP_SHARED, mem_fd, p);
|
|
debug(" ... failed. Mapping %zuB of physical memory at 0x%jx.\n",
|
|
size, (intmax_t)p);
|
|
}
|
|
|
|
if (v == MAP_FAILED) {
|
|
if (abort_on_failure) {
|
|
fprintf(stderr, "Failed to mmap /dev/mem: %s\n",
|
|
strerror(errno));
|
|
exit(1);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Remember what we actually mapped ... */
|
|
mapped_virtual = v;
|
|
mapped_size = size;
|
|
|
|
/* ... but return address to the physical memory that was requested */
|
|
if (padding)
|
|
debug(" ... padding virtual address with 0x%zx bytes.\n",
|
|
padding);
|
|
v += padding;
|
|
|
|
return v;
|
|
}
|
|
|
|
static void *map_lbtable(void)
|
|
{
|
|
if (lbtable_address == 0 || lbtable_size == 0) {
|
|
fprintf(stderr, "No coreboot table area found!\n");
|
|
return NULL;
|
|
}
|
|
|
|
return map_memory_size(lbtable_address, lbtable_size, 1);
|
|
}
|
|
|
|
static void unmap_lbtable(void)
|
|
{
|
|
unmap_memory();
|
|
}
|
|
|
|
/* Find the first cbmem entry filling in the details. */
|
|
static int find_cbmem_entry(uint32_t id, uint64_t *addr, size_t *size)
|
|
{
|
|
uint8_t *table;
|
|
size_t offset;
|
|
int ret = -1;
|
|
|
|
table = map_lbtable();
|
|
|
|
if (table == NULL)
|
|
return -1;
|
|
|
|
offset = 0;
|
|
|
|
while (offset < lbtable_size) {
|
|
struct lb_record *lbr;
|
|
struct lb_cbmem_entry *lbe;
|
|
|
|
lbr = (void *)(table + offset);
|
|
offset += lbr->size;
|
|
|
|
if (lbr->tag != LB_TAG_CBMEM_ENTRY)
|
|
continue;
|
|
|
|
lbe = (void *)lbr;
|
|
if (lbe->id != id)
|
|
continue;
|
|
|
|
*addr = lbe->address;
|
|
*size = lbe->entry_size;
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
unmap_lbtable();
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Try finding the timestamp table and coreboot cbmem console starting from the
|
|
* passed in memory offset. Could be called recursively in case a forwarding
|
|
* entry is found.
|
|
*
|
|
* Returns pointer to a memory buffer containg the timestamp table or zero if
|
|
* none found.
|
|
*/
|
|
|
|
static struct lb_cbmem_ref timestamps;
|
|
static struct lb_cbmem_ref console;
|
|
static struct lb_memory_range cbmem;
|
|
|
|
/* This is a work-around for a nasty problem introduced by initially having
|
|
* pointer sized entries in the lb_cbmem_ref structures. This caused problems
|
|
* on 64bit x86 systems because coreboot is 32bit on those systems.
|
|
* When the problem was found, it was corrected, but there are a lot of
|
|
* systems out there with a firmware that does not produce the right
|
|
* lb_cbmem_ref structure. Hence we try to autocorrect this issue here.
|
|
*/
|
|
static struct lb_cbmem_ref parse_cbmem_ref(struct lb_cbmem_ref *cbmem_ref)
|
|
{
|
|
struct lb_cbmem_ref ret;
|
|
|
|
ret = *cbmem_ref;
|
|
|
|
if (cbmem_ref->size < sizeof(*cbmem_ref))
|
|
ret.cbmem_addr = (uint32_t)ret.cbmem_addr;
|
|
|
|
debug(" cbmem_addr = %" PRIx64 "\n", ret.cbmem_addr);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int parse_cbtable(u64 address, size_t table_size, uint8_t abort_on_failure)
|
|
{
|
|
int i, found = 0, ret = 0;
|
|
void *buf;
|
|
|
|
debug("Looking for coreboot table at %" PRIx64 " %zd bytes.\n",
|
|
address, table_size);
|
|
buf = map_memory_size(address, table_size, abort_on_failure);
|
|
if (!buf)
|
|
return -2;
|
|
|
|
/* look at every 16 bytes within 4K of the base */
|
|
|
|
for (i = 0; i < 0x1000; i += 0x10) {
|
|
struct lb_header *lbh;
|
|
struct lb_record* lbr_p;
|
|
void *lbtable;
|
|
int j;
|
|
|
|
lbh = (struct lb_header *)(buf + i);
|
|
if (memcmp(lbh->signature, "LBIO", sizeof(lbh->signature)) ||
|
|
!lbh->header_bytes ||
|
|
ipchcksum(lbh, sizeof(*lbh))) {
|
|
continue;
|
|
}
|
|
lbtable = buf + i + lbh->header_bytes;
|
|
|
|
if (ipchcksum(lbtable, lbh->table_bytes) !=
|
|
lbh->table_checksum) {
|
|
debug("Signature found, but wrong checksum.\n");
|
|
continue;
|
|
}
|
|
|
|
found = 1;
|
|
debug("Found!\n");
|
|
|
|
/* Keep reference to lbtable. */
|
|
lbtable_address = address;
|
|
lbtable_address += ((uint8_t *)lbtable - (uint8_t *)lbh);
|
|
lbtable_size = lbh->table_bytes;
|
|
|
|
for (j = 0; j < lbh->table_bytes; j += lbr_p->size) {
|
|
lbr_p = (struct lb_record*) ((char *)lbtable + j);
|
|
debug(" coreboot table entry 0x%02x\n", lbr_p->tag);
|
|
switch (lbr_p->tag) {
|
|
case LB_TAG_MEMORY: {
|
|
int i = 0;
|
|
debug(" Found memory map.\n");
|
|
struct lb_memory *memory =
|
|
(struct lb_memory *)lbr_p;
|
|
while ((char *)&memory->map[i] < ((char *)lbr_p
|
|
+ lbr_p->size)) {
|
|
if (memory->map[i].type == LB_MEM_TABLE) {
|
|
debug(" LB_MEM_TABLE found.\n");
|
|
/* The last one found is CBMEM */
|
|
cbmem = memory->map[i];
|
|
}
|
|
i++;
|
|
}
|
|
continue;
|
|
}
|
|
case LB_TAG_TIMESTAMPS: {
|
|
debug(" Found timestamp table.\n");
|
|
timestamps = parse_cbmem_ref((struct lb_cbmem_ref *) lbr_p);
|
|
continue;
|
|
}
|
|
case LB_TAG_CBMEM_CONSOLE: {
|
|
debug(" Found cbmem console.\n");
|
|
console = parse_cbmem_ref((struct lb_cbmem_ref *) lbr_p);
|
|
continue;
|
|
}
|
|
case LB_TAG_FORWARD: {
|
|
/*
|
|
* This is a forwarding entry - repeat the
|
|
* search at the new address.
|
|
*/
|
|
struct lb_forward lbf_p =
|
|
*(struct lb_forward *) lbr_p;
|
|
debug(" Found forwarding entry.\n");
|
|
unmap_memory();
|
|
ret = parse_cbtable(lbf_p.forward, table_size, 0);
|
|
if (ret == -2) {
|
|
/* try again with a smaller memory mapping request */
|
|
ret = parse_cbtable(lbf_p.forward, table_size / 2, 1);
|
|
if (ret == -2)
|
|
exit(1);
|
|
else
|
|
return ret;
|
|
} else {
|
|
return ret;
|
|
}
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
unmap_memory();
|
|
|
|
return found;
|
|
}
|
|
|
|
#if defined(linux) && (defined(__i386__) || defined(__x86_64__))
|
|
/*
|
|
* read CPU frequency from a sysfs file, return an frequency in Megahertz as
|
|
* an int or exit on any error.
|
|
*/
|
|
static unsigned long arch_tick_frequency(void)
|
|
{
|
|
FILE *cpuf;
|
|
char freqs[100];
|
|
int size;
|
|
char *endp;
|
|
u64 rv;
|
|
|
|
const char* freq_file =
|
|
"/sys/devices/system/cpu/cpu0/cpufreq/cpuinfo_max_freq";
|
|
|
|
cpuf = fopen(freq_file, "r");
|
|
if (!cpuf) {
|
|
fprintf(stderr, "Could not open %s: %s\n",
|
|
freq_file, strerror(errno));
|
|
exit(1);
|
|
}
|
|
|
|
memset(freqs, 0, sizeof(freqs));
|
|
size = fread(freqs, 1, sizeof(freqs), cpuf);
|
|
if (!size || (size == sizeof(freqs))) {
|
|
fprintf(stderr, "Wrong number of bytes(%d) read from %s\n",
|
|
size, freq_file);
|
|
exit(1);
|
|
}
|
|
fclose(cpuf);
|
|
rv = strtoull(freqs, &endp, 10);
|
|
|
|
if (*endp == '\0' || *endp == '\n')
|
|
/* cpuinfo_max_freq is in kHz. Convert it to MHz. */
|
|
return rv / 1000;
|
|
fprintf(stderr, "Wrong formatted value ^%s^ read from %s\n",
|
|
freqs, freq_file);
|
|
exit(1);
|
|
}
|
|
#elif defined(__OpenBSD__) && (defined(__i386__) || defined(__x86_64__))
|
|
static unsigned long arch_tick_frequency(void)
|
|
{
|
|
int mib[2] = { CTL_HW, HW_CPUSPEED };
|
|
static int value = 0;
|
|
size_t value_len = sizeof(value);
|
|
|
|
/* Return 1 MHz when sysctl fails. */
|
|
if ((value == 0) && (sysctl(mib, 2, &value, &value_len, NULL, 0) == -1))
|
|
return 1;
|
|
|
|
return value;
|
|
}
|
|
#else
|
|
static unsigned long arch_tick_frequency(void)
|
|
{
|
|
/* 1 MHz = 1us. */
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static unsigned long tick_freq_mhz;
|
|
|
|
static void timestamp_set_tick_freq(unsigned long table_tick_freq_mhz)
|
|
{
|
|
tick_freq_mhz = table_tick_freq_mhz;
|
|
|
|
/* Honor table frequency. */
|
|
if (tick_freq_mhz)
|
|
return;
|
|
|
|
tick_freq_mhz = arch_tick_frequency();
|
|
|
|
if (!tick_freq_mhz) {
|
|
fprintf(stderr, "Cannot determine timestamp tick frequency.\n");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
u64 arch_convert_raw_ts_entry(u64 ts)
|
|
{
|
|
return ts / tick_freq_mhz;
|
|
}
|
|
|
|
/*
|
|
* Print an integer in 'normalized' form - with commas separating every three
|
|
* decimal orders.
|
|
*/
|
|
static void print_norm(u64 v)
|
|
{
|
|
if (v >= 1000) {
|
|
/* print the higher order sections first */
|
|
print_norm(v / 1000);
|
|
printf(",%3.3u", (u32)(v % 1000));
|
|
} else {
|
|
printf("%u", (u32)(v % 1000));
|
|
}
|
|
}
|
|
|
|
static const char *timestamp_name(uint32_t id)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(timestamp_ids); i++) {
|
|
if (timestamp_ids[i].id == id)
|
|
return timestamp_ids[i].name;
|
|
}
|
|
return "<unknown>";
|
|
}
|
|
|
|
static uint64_t timestamp_print_parseable_entry(uint32_t id, uint64_t stamp,
|
|
uint64_t prev_stamp)
|
|
{
|
|
const char *name;
|
|
uint64_t step_time;
|
|
|
|
name = timestamp_name(id);
|
|
|
|
step_time = arch_convert_raw_ts_entry(stamp - prev_stamp);
|
|
|
|
/* ID<tab>absolute time<tab>relative time<tab>description */
|
|
printf("%d\t", id);
|
|
printf("%llu\t", (long long)arch_convert_raw_ts_entry(stamp));
|
|
printf("%llu\t", (long long)step_time);
|
|
printf("%s\n", name);
|
|
|
|
return step_time;
|
|
}
|
|
|
|
uint64_t timestamp_print_entry(uint32_t id, uint64_t stamp, uint64_t prev_stamp)
|
|
{
|
|
const char *name;
|
|
uint64_t step_time;
|
|
|
|
name = timestamp_name(id);
|
|
|
|
printf("%4d:", id);
|
|
printf("%-50s", name);
|
|
print_norm(arch_convert_raw_ts_entry(stamp));
|
|
step_time = arch_convert_raw_ts_entry(stamp - prev_stamp);
|
|
if (prev_stamp) {
|
|
printf(" (");
|
|
print_norm(step_time);
|
|
printf(")");
|
|
}
|
|
printf("\n");
|
|
|
|
return step_time;
|
|
}
|
|
|
|
/* dump the timestamp table */
|
|
static void dump_timestamps(int mach_readable)
|
|
{
|
|
int i;
|
|
struct timestamp_table *tst_p;
|
|
size_t size;
|
|
uint64_t prev_stamp;
|
|
uint64_t total_time;
|
|
|
|
if (timestamps.tag != LB_TAG_TIMESTAMPS) {
|
|
fprintf(stderr, "No timestamps found in coreboot table.\n");
|
|
return;
|
|
}
|
|
|
|
size = sizeof(*tst_p);
|
|
tst_p = map_memory_size((unsigned long)timestamps.cbmem_addr, size, 1);
|
|
|
|
timestamp_set_tick_freq(tst_p->tick_freq_mhz);
|
|
|
|
if (!mach_readable)
|
|
printf("%d entries total:\n\n", tst_p->num_entries);
|
|
size += tst_p->num_entries * sizeof(tst_p->entries[0]);
|
|
|
|
unmap_memory();
|
|
tst_p = map_memory_size((unsigned long)timestamps.cbmem_addr, size, 1);
|
|
|
|
/* Report the base time within the table. */
|
|
prev_stamp = 0;
|
|
if (mach_readable)
|
|
timestamp_print_parseable_entry(0, tst_p->base_time,
|
|
prev_stamp);
|
|
else
|
|
timestamp_print_entry(0, tst_p->base_time, prev_stamp);
|
|
prev_stamp = tst_p->base_time;
|
|
|
|
total_time = 0;
|
|
for (i = 0; i < tst_p->num_entries; i++) {
|
|
uint64_t stamp;
|
|
const struct timestamp_entry *tse = &tst_p->entries[i];
|
|
|
|
/* Make all timestamps absolute. */
|
|
stamp = tse->entry_stamp + tst_p->base_time;
|
|
if (mach_readable)
|
|
total_time +=
|
|
timestamp_print_parseable_entry(tse->entry_id,
|
|
stamp, prev_stamp);
|
|
else
|
|
total_time += timestamp_print_entry(tse->entry_id,
|
|
stamp, prev_stamp);
|
|
prev_stamp = stamp;
|
|
}
|
|
|
|
if (!mach_readable) {
|
|
printf("\nTotal Time: ");
|
|
print_norm(total_time);
|
|
printf("\n");
|
|
}
|
|
|
|
unmap_memory();
|
|
}
|
|
|
|
struct cbmem_console {
|
|
u32 size;
|
|
u32 cursor;
|
|
u8 body[0];
|
|
} __attribute__ ((__packed__));
|
|
|
|
#define CBMC_CURSOR_MASK ((1 << 28) - 1)
|
|
#define CBMC_OVERFLOW (1 << 31)
|
|
|
|
/* dump the cbmem console */
|
|
static void dump_console(void)
|
|
{
|
|
struct cbmem_console *console_p;
|
|
char *console_c;
|
|
size_t size, cursor;
|
|
|
|
if (console.tag != LB_TAG_CBMEM_CONSOLE) {
|
|
fprintf(stderr, "No console found in coreboot table.\n");
|
|
return;
|
|
}
|
|
|
|
size = sizeof(*console_p);
|
|
console_p = map_memory_size((unsigned long)console.cbmem_addr, size, 1);
|
|
cursor = console_p->cursor & CBMC_CURSOR_MASK;
|
|
if (!(console_p->cursor & CBMC_OVERFLOW) && cursor < console_p->size)
|
|
size = cursor;
|
|
else
|
|
size = console_p->size;
|
|
unmap_memory();
|
|
|
|
console_c = malloc(size + 1);
|
|
if (!console_c) {
|
|
fprintf(stderr, "Not enough memory for console.\n");
|
|
exit(1);
|
|
}
|
|
console_c[size] = '\0';
|
|
|
|
console_p = map_memory_size((unsigned long)console.cbmem_addr,
|
|
size + sizeof(*console_p), 1);
|
|
if (console_p->cursor & CBMC_OVERFLOW) {
|
|
if (cursor >= size) {
|
|
printf("cbmem: ERROR: CBMEM console struct is illegal, "
|
|
"output may be corrupt or out of order!\n\n");
|
|
cursor = 0;
|
|
}
|
|
aligned_memcpy(console_c, console_p->body + cursor,
|
|
size - cursor);
|
|
aligned_memcpy(console_c + size - cursor,
|
|
console_p->body, cursor);
|
|
} else {
|
|
aligned_memcpy(console_c, console_p->body, size);
|
|
}
|
|
|
|
/* Slight memory corruption may occur between reboots and give us a few
|
|
unprintable characters like '\0'. Replace them with '?' on output. */
|
|
for (cursor = 0; cursor < size; cursor++)
|
|
if (!isprint(console_c[cursor]) && !isspace(console_c[cursor]))
|
|
console_c[cursor] = '?';
|
|
printf("%s\n", console_c);
|
|
|
|
free(console_c);
|
|
unmap_memory();
|
|
}
|
|
|
|
static void hexdump(unsigned long memory, int length)
|
|
{
|
|
int i;
|
|
uint8_t *m;
|
|
int all_zero = 0;
|
|
|
|
m = map_memory_size((intptr_t)memory, length, 1);
|
|
|
|
if (length > MAP_BYTES) {
|
|
printf("Truncating hex dump from %d to %d bytes\n\n",
|
|
length, MAP_BYTES);
|
|
length = MAP_BYTES;
|
|
}
|
|
|
|
for (i = 0; i < length; i += 16) {
|
|
int j;
|
|
|
|
all_zero++;
|
|
for (j = 0; j < 16; j++) {
|
|
if(m[i+j] != 0) {
|
|
all_zero = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (all_zero < 2) {
|
|
printf("%08lx:", memory + i);
|
|
for (j = 0; j < 16; j++)
|
|
printf(" %02x", m[i+j]);
|
|
printf(" ");
|
|
for (j = 0; j < 16; j++)
|
|
printf("%c", isprint(m[i+j]) ? m[i+j] : '.');
|
|
printf("\n");
|
|
} else if (all_zero == 2) {
|
|
printf("...\n");
|
|
}
|
|
}
|
|
|
|
unmap_memory();
|
|
}
|
|
|
|
static void dump_cbmem_hex(void)
|
|
{
|
|
if (cbmem.type != LB_MEM_TABLE) {
|
|
fprintf(stderr, "No coreboot CBMEM area found!\n");
|
|
return;
|
|
}
|
|
|
|
hexdump(unpack_lb64(cbmem.start), unpack_lb64(cbmem.size));
|
|
}
|
|
|
|
void rawdump(uint64_t base, uint64_t size)
|
|
{
|
|
int i;
|
|
uint8_t *m;
|
|
|
|
m = map_memory_size((intptr_t)base, size, 1);
|
|
if (!m) {
|
|
fprintf(stderr, "Failed to map memory");
|
|
return;
|
|
}
|
|
|
|
for (i = 0 ; i < size; i++)
|
|
printf("%c", m[i]);
|
|
unmap_memory();
|
|
}
|
|
|
|
static void dump_cbmem_raw(unsigned int id)
|
|
{
|
|
uint8_t *table;
|
|
size_t offset;
|
|
uint64_t base = 0;
|
|
uint64_t size = 0;
|
|
|
|
table = map_lbtable();
|
|
|
|
if (table == NULL)
|
|
return;
|
|
|
|
offset = 0;
|
|
|
|
while (offset < lbtable_size) {
|
|
struct lb_record *lbr;
|
|
struct lb_cbmem_entry *lbe;
|
|
|
|
lbr = (void *)(table + offset);
|
|
offset += lbr->size;
|
|
|
|
if (lbr->tag != LB_TAG_CBMEM_ENTRY)
|
|
continue;
|
|
|
|
lbe = (void *)lbr;
|
|
if (lbe->id == id) {
|
|
debug("found id for raw dump %0x", lbe->id);
|
|
base = lbe->address;
|
|
size = lbe->entry_size;
|
|
break;
|
|
}
|
|
}
|
|
|
|
unmap_lbtable();
|
|
|
|
if (!base)
|
|
fprintf(stderr, "id %0x not found in cbtable\n", id);
|
|
else
|
|
rawdump(base, size);
|
|
}
|
|
|
|
struct cbmem_id_to_name {
|
|
uint32_t id;
|
|
const char *name;
|
|
};
|
|
static const struct cbmem_id_to_name cbmem_ids[] = { CBMEM_ID_TO_NAME_TABLE };
|
|
|
|
void cbmem_print_entry(int n, uint32_t id, uint64_t base, uint64_t size)
|
|
{
|
|
int i;
|
|
const char *name;
|
|
|
|
name = NULL;
|
|
for (i = 0; i < ARRAY_SIZE(cbmem_ids); i++) {
|
|
if (cbmem_ids[i].id == id) {
|
|
name = cbmem_ids[i].name;
|
|
break;
|
|
}
|
|
}
|
|
|
|
printf("%2d. ", n);
|
|
if (name == NULL)
|
|
printf("%08x ", id);
|
|
else
|
|
printf("%s\t%08x", name, id);
|
|
printf(" %08" PRIx64 " ", base);
|
|
printf(" %08" PRIx64 "\n", size);
|
|
}
|
|
|
|
static void dump_cbmem_toc(void)
|
|
{
|
|
int i;
|
|
uint8_t *table;
|
|
size_t offset;
|
|
|
|
table = map_lbtable();
|
|
|
|
if (table == NULL)
|
|
return;
|
|
|
|
printf("CBMEM table of contents:\n");
|
|
printf(" NAME ID START LENGTH\n");
|
|
|
|
i = 0;
|
|
offset = 0;
|
|
|
|
while (offset < lbtable_size) {
|
|
struct lb_record *lbr;
|
|
struct lb_cbmem_entry *lbe;
|
|
|
|
lbr = (void *)(table + offset);
|
|
offset += lbr->size;
|
|
|
|
if (lbr->tag != LB_TAG_CBMEM_ENTRY)
|
|
continue;
|
|
|
|
lbe = (void *)lbr;
|
|
cbmem_print_entry(i, lbe->id, lbe->address, lbe->entry_size);
|
|
i++;
|
|
}
|
|
|
|
unmap_lbtable();
|
|
}
|
|
|
|
#define COVERAGE_MAGIC 0x584d4153
|
|
struct file {
|
|
uint32_t magic;
|
|
uint32_t next;
|
|
uint32_t filename;
|
|
uint32_t data;
|
|
int offset;
|
|
int len;
|
|
};
|
|
|
|
static int mkpath(char *path, mode_t mode)
|
|
{
|
|
assert (path && *path);
|
|
char *p;
|
|
for (p = strchr(path+1, '/'); p; p = strchr(p + 1, '/')) {
|
|
*p = '\0';
|
|
if (mkdir(path, mode) == -1) {
|
|
if (errno != EEXIST) {
|
|
*p = '/';
|
|
return -1;
|
|
}
|
|
}
|
|
*p = '/';
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void dump_coverage(void)
|
|
{
|
|
uint64_t start;
|
|
size_t size;
|
|
void *coverage;
|
|
unsigned long phys_offset;
|
|
#define phys_to_virt(x) ((void *)(unsigned long)(x) + phys_offset)
|
|
|
|
if (find_cbmem_entry(CBMEM_ID_COVERAGE, &start, &size)) {
|
|
fprintf(stderr, "No coverage information found\n");
|
|
return;
|
|
}
|
|
|
|
/* Map coverage area */
|
|
coverage = map_memory_size(start, size, 1);
|
|
phys_offset = (unsigned long)coverage - (unsigned long)start;
|
|
|
|
printf("Dumping coverage data...\n");
|
|
|
|
struct file *file = (struct file *)coverage;
|
|
while (file && file->magic == COVERAGE_MAGIC) {
|
|
FILE *f;
|
|
char *filename;
|
|
|
|
debug(" -> %s\n", (char *)phys_to_virt(file->filename));
|
|
filename = strdup((char *)phys_to_virt(file->filename));
|
|
if (mkpath(filename, 0755) == -1) {
|
|
perror("Directory for coverage data could "
|
|
"not be created");
|
|
exit(1);
|
|
}
|
|
f = fopen(filename, "wb");
|
|
if (!f) {
|
|
printf("Could not open %s: %s\n",
|
|
filename, strerror(errno));
|
|
exit(1);
|
|
}
|
|
if (fwrite((void *)phys_to_virt(file->data),
|
|
file->len, 1, f) != 1) {
|
|
printf("Could not write to %s: %s\n",
|
|
filename, strerror(errno));
|
|
exit(1);
|
|
}
|
|
fclose(f);
|
|
free(filename);
|
|
|
|
if (file->next)
|
|
file = (struct file *)phys_to_virt(file->next);
|
|
else
|
|
file = NULL;
|
|
}
|
|
unmap_memory();
|
|
}
|
|
|
|
static void print_version(void)
|
|
{
|
|
printf("cbmem v%s -- ", CBMEM_VERSION);
|
|
printf("Copyright (C) 2012 The ChromiumOS Authors. All rights reserved.\n\n");
|
|
printf(
|
|
"This program is free software: you can redistribute it and/or modify\n"
|
|
"it under the terms of the GNU General Public License as published by\n"
|
|
"the Free Software Foundation, version 2 of the License.\n\n"
|
|
"This program is distributed in the hope that it will be useful,\n"
|
|
"but WITHOUT ANY WARRANTY; without even the implied warranty of\n"
|
|
"MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n"
|
|
"GNU General Public License for more details.\n\n");
|
|
}
|
|
|
|
static void print_usage(const char *name, int exit_code)
|
|
{
|
|
printf("usage: %s [-cCltTxVvh?]\n", name);
|
|
printf("\n"
|
|
" -c | --console: print cbmem console\n"
|
|
" -C | --coverage: dump coverage information\n"
|
|
" -l | --list: print cbmem table of contents\n"
|
|
" -x | --hexdump: print hexdump of cbmem area\n"
|
|
" -r | --rawdump ID: print rawdump of specific ID (in hex) of cbtable\n"
|
|
" -t | --timestamps: print timestamp information\n"
|
|
" -T | --parseable-timestamps: print parseable timestamps\n"
|
|
" -V | --verbose: verbose (debugging) output\n"
|
|
" -v | --version: print the version\n"
|
|
" -h | --help: print this help\n"
|
|
"\n");
|
|
exit(exit_code);
|
|
}
|
|
|
|
#ifdef __arm__
|
|
static void dt_update_cells(const char *name, int *addr_cells_ptr,
|
|
int *size_cells_ptr)
|
|
{
|
|
if (*addr_cells_ptr >= 0 && *size_cells_ptr >= 0)
|
|
return;
|
|
|
|
int buffer;
|
|
size_t nlen = strlen(name);
|
|
char *prop = alloca(nlen + sizeof("/#address-cells"));
|
|
strcpy(prop, name);
|
|
|
|
if (*addr_cells_ptr < 0) {
|
|
strcpy(prop + nlen, "/#address-cells");
|
|
int fd = open(prop, O_RDONLY);
|
|
if (fd < 0 && errno != ENOENT) {
|
|
perror(prop);
|
|
} else if (fd >= 0) {
|
|
if (read(fd, &buffer, sizeof(int)) < 0)
|
|
perror(prop);
|
|
else
|
|
*addr_cells_ptr = ntohl(buffer);
|
|
close(fd);
|
|
}
|
|
}
|
|
|
|
if (*size_cells_ptr < 0) {
|
|
strcpy(prop + nlen, "/#size-cells");
|
|
int fd = open(prop, O_RDONLY);
|
|
if (fd < 0 && errno != ENOENT) {
|
|
perror(prop);
|
|
} else if (fd >= 0) {
|
|
if (read(fd, &buffer, sizeof(int)) < 0)
|
|
perror(prop);
|
|
else
|
|
*size_cells_ptr = ntohl(buffer);
|
|
close(fd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static char *dt_find_compat(const char *parent, const char *compat,
|
|
int *addr_cells_ptr, int *size_cells_ptr)
|
|
{
|
|
char *ret = NULL;
|
|
struct dirent *entry;
|
|
DIR *dir;
|
|
|
|
if (!(dir = opendir(parent))) {
|
|
perror(parent);
|
|
return NULL;
|
|
}
|
|
|
|
/* Loop through all files in the directory (DT node). */
|
|
while ((entry = readdir(dir))) {
|
|
/* We only care about compatible props or subnodes. */
|
|
if (entry->d_name[0] == '.' || !((entry->d_type & DT_DIR) ||
|
|
!strcmp(entry->d_name, "compatible")))
|
|
continue;
|
|
|
|
/* Assemble the file name (on the stack, for speed). */
|
|
size_t plen = strlen(parent);
|
|
char *name = alloca(plen + strlen(entry->d_name) + 2);
|
|
|
|
strcpy(name, parent);
|
|
name[plen] = '/';
|
|
strcpy(name + plen + 1, entry->d_name);
|
|
|
|
/* If it's a subnode, recurse. */
|
|
if (entry->d_type & DT_DIR) {
|
|
ret = dt_find_compat(name, compat, addr_cells_ptr,
|
|
size_cells_ptr);
|
|
|
|
/* There is only one matching node to find, abort. */
|
|
if (ret) {
|
|
/* Gather cells values on the way up. */
|
|
dt_update_cells(parent, addr_cells_ptr,
|
|
size_cells_ptr);
|
|
break;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* If it's a compatible string, see if it's the right one. */
|
|
int fd = open(name, O_RDONLY);
|
|
int clen = strlen(compat);
|
|
char *buffer = alloca(clen + 1);
|
|
|
|
if (fd < 0) {
|
|
perror(name);
|
|
continue;
|
|
}
|
|
|
|
if (read(fd, buffer, clen + 1) < 0) {
|
|
perror(name);
|
|
close(fd);
|
|
continue;
|
|
}
|
|
close(fd);
|
|
|
|
if (!strcmp(compat, buffer)) {
|
|
/* Initialize these to "unset" for the way up. */
|
|
*addr_cells_ptr = *size_cells_ptr = -1;
|
|
|
|
/* Can't leave string on the stack or we'll lose it! */
|
|
ret = strdup(parent);
|
|
break;
|
|
}
|
|
}
|
|
|
|
closedir(dir);
|
|
return ret;
|
|
}
|
|
#endif /* __arm__ */
|
|
|
|
int main(int argc, char** argv)
|
|
{
|
|
int print_defaults = 1;
|
|
int print_console = 0;
|
|
int print_coverage = 0;
|
|
int print_list = 0;
|
|
int print_hexdump = 0;
|
|
int print_rawdump = 0;
|
|
int print_timestamps = 0;
|
|
int machine_readable_timestamps = 0;
|
|
unsigned int rawdump_id = 0;
|
|
|
|
int opt, option_index = 0;
|
|
static struct option long_options[] = {
|
|
{"console", 0, 0, 'c'},
|
|
{"coverage", 0, 0, 'C'},
|
|
{"list", 0, 0, 'l'},
|
|
{"timestamps", 0, 0, 't'},
|
|
{"parseable-timestamps", 0, 0, 'T'},
|
|
{"hexdump", 0, 0, 'x'},
|
|
{"rawdump", required_argument, 0, 'r'},
|
|
{"verbose", 0, 0, 'V'},
|
|
{"version", 0, 0, 'v'},
|
|
{"help", 0, 0, 'h'},
|
|
{0, 0, 0, 0}
|
|
};
|
|
while ((opt = getopt_long(argc, argv, "cCltTxVvh?r:",
|
|
long_options, &option_index)) != EOF) {
|
|
switch (opt) {
|
|
case 'c':
|
|
print_console = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'C':
|
|
print_coverage = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'l':
|
|
print_list = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'x':
|
|
print_hexdump = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'r':
|
|
print_rawdump = 1;
|
|
print_defaults = 0;
|
|
rawdump_id = strtoul(optarg, NULL, 16);
|
|
break;
|
|
case 't':
|
|
print_timestamps = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'T':
|
|
print_timestamps = 1;
|
|
machine_readable_timestamps = 1;
|
|
print_defaults = 0;
|
|
break;
|
|
case 'V':
|
|
verbose = 1;
|
|
break;
|
|
case 'v':
|
|
print_version();
|
|
exit(0);
|
|
break;
|
|
case 'h':
|
|
print_usage(argv[0], 0);
|
|
break;
|
|
case '?':
|
|
default:
|
|
print_usage(argv[0], 1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
mem_fd = open("/dev/mem", O_RDONLY, 0);
|
|
if (mem_fd < 0) {
|
|
fprintf(stderr, "Failed to gain memory access: %s\n",
|
|
strerror(errno));
|
|
return 1;
|
|
}
|
|
|
|
#ifdef __arm__
|
|
int addr_cells, size_cells;
|
|
char *coreboot_node = dt_find_compat("/proc/device-tree", "coreboot",
|
|
&addr_cells, &size_cells);
|
|
|
|
if (!coreboot_node) {
|
|
fprintf(stderr, "Could not find 'coreboot' compatible node!\n");
|
|
return 1;
|
|
}
|
|
|
|
if (addr_cells < 0) {
|
|
fprintf(stderr, "Warning: no #address-cells node in tree!\n");
|
|
addr_cells = 1;
|
|
}
|
|
|
|
int nlen = strlen(coreboot_node);
|
|
char *reg = alloca(nlen + sizeof("/reg"));
|
|
|
|
strcpy(reg, coreboot_node);
|
|
strcpy(reg + nlen, "/reg");
|
|
free(coreboot_node);
|
|
|
|
int fd = open(reg, O_RDONLY);
|
|
if (fd < 0) {
|
|
perror(reg);
|
|
return 1;
|
|
}
|
|
|
|
int i;
|
|
size_t size_to_read = addr_cells * 4 + size_cells * 4;
|
|
u8 *dtbuffer = alloca(size_to_read);
|
|
if (read(fd, dtbuffer, size_to_read) < 0) {
|
|
perror(reg);
|
|
return 1;
|
|
}
|
|
close(fd);
|
|
|
|
/* No variable-length byte swap function anywhere in C... how sad. */
|
|
u64 baseaddr = 0;
|
|
for (i = 0; i < addr_cells * 4; i++) {
|
|
baseaddr <<= 8;
|
|
baseaddr |= *dtbuffer;
|
|
dtbuffer++;
|
|
}
|
|
u64 cb_table_size = 0;
|
|
for (i = 0; i < size_cells * 4; i++) {
|
|
cb_table_size <<= 8;
|
|
cb_table_size |= *dtbuffer;
|
|
dtbuffer++;
|
|
}
|
|
|
|
parse_cbtable(baseaddr, cb_table_size, 1);
|
|
#else
|
|
int j;
|
|
static const int possible_base_addresses[] = { 0, 0xf0000 };
|
|
|
|
/* Find and parse coreboot table */
|
|
for (j = 0; j < ARRAY_SIZE(possible_base_addresses); j++) {
|
|
if (parse_cbtable(possible_base_addresses[j], MAP_BYTES, 1))
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
if (print_console)
|
|
dump_console();
|
|
|
|
if (print_coverage)
|
|
dump_coverage();
|
|
|
|
if (print_list)
|
|
dump_cbmem_toc();
|
|
|
|
if (print_hexdump)
|
|
dump_cbmem_hex();
|
|
|
|
if (print_rawdump)
|
|
dump_cbmem_raw(rawdump_id);
|
|
|
|
if (print_defaults || print_timestamps)
|
|
dump_timestamps(machine_readable_timestamps);
|
|
|
|
close(mem_fd);
|
|
return 0;
|
|
}
|