coreboot-kgpe-d16/src/lib/selfboot.c
Aaron Durbin ebf142a12c boot: add disable_cache_rom() function
On certain architectures such as x86 the bootstrap processor
does most of the work. When CACHE_ROM is employed it's appropriate
to ensure that the caching enablement of the ROM is disabled so that
the caching settings are symmetric before booting the payload or OS.

Tested this on an x86 machine that turned on ROM caching. Linux did not
complain about asymmetric MTRR settings nor did the ROM show up as
cached in the MTRR settings.

Change-Id: Ia32ff9fdb1608667a0e9a5f23b9c8af27d589047
Signed-off-by: Aaron Durbin <adurbin@chromium.org>
Reviewed-on: http://review.coreboot.org/2980
Tested-by: build bot (Jenkins)
Reviewed-by: Stefan Reinauer <stefan.reinauer@coreboot.org>
2013-04-01 23:29:11 +02:00

559 lines
16 KiB
C

/*
* This file is part of the coreboot project.
*
* Copyright (C) 2003 Eric W. Biederman <ebiederm@xmission.com>
* Copyright (C) 2009 Ron Minnich <rminnich@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <arch/byteorder.h>
#include <console/console.h>
#include <cpu/cpu.h>
#include <fallback.h>
#include <boot/elf.h>
#include <boot/elf_boot.h>
#include <boot/coreboot_tables.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <cbfs.h>
#include <lib.h>
#if CONFIG_COLLECT_TIMESTAMPS
#include <timestamp.h>
#endif
#include <coverage.h>
/* Maximum physical address we can use for the coreboot bounce buffer. */
#ifndef MAX_ADDR
#define MAX_ADDR -1UL
#endif
/* from coreboot_ram.ld: */
extern unsigned char _ram_seg;
extern unsigned char _eram_seg;
static const unsigned long lb_start = (unsigned long)&_ram_seg;
static const unsigned long lb_end = (unsigned long)&_eram_seg;
struct segment {
struct segment *next;
struct segment *prev;
unsigned long s_dstaddr;
unsigned long s_srcaddr;
unsigned long s_memsz;
unsigned long s_filesz;
int compression;
};
/* The problem:
* Static executables all want to share the same addresses
* in memory because only a few addresses are reliably present on
* a machine, and implementing general relocation is hard.
*
* The solution:
* - Allocate a buffer the size of the coreboot image plus additional
* required space.
* - Anything that would overwrite coreboot copy into the lower part of
* the buffer.
* - After loading an ELF image copy coreboot to the top of the buffer.
* - Then jump to the loaded image.
*
* Benefits:
* - Nearly arbitrary standalone executables can be loaded.
* - Coreboot is preserved, so it can be returned to.
* - The implementation is still relatively simple,
* and much simpler than the general case implemented in kexec.
*/
static unsigned long bounce_size, bounce_buffer;
#if CONFIG_RELOCATABLE_RAMSTAGE
static void get_bounce_buffer(struct lb_memory *mem, unsigned long req_size)
{
/* When the ramstage is relocatable there is no need for a bounce
* buffer. All payloads should not overlap the ramstage.
*/
bounce_buffer = ~0UL;
bounce_size = 0;
}
#else
static void get_bounce_buffer(struct lb_memory *mem, unsigned long req_size)
{
unsigned long lb_size;
unsigned long mem_entries;
unsigned long buffer;
int i;
lb_size = lb_end - lb_start;
/* Plus coreboot size so I have somewhere
* to place a copy to return to.
*/
lb_size = req_size + lb_size;
mem_entries = (mem->size - sizeof(*mem)) / sizeof(mem->map[0]);
buffer = 0;
for(i = 0; i < mem_entries; i++) {
unsigned long mstart, mend;
unsigned long msize;
unsigned long tbuffer;
if (mem->map[i].type != LB_MEM_RAM)
continue;
if (unpack_lb64(mem->map[i].start) > MAX_ADDR)
continue;
if (unpack_lb64(mem->map[i].size) < lb_size)
continue;
mstart = unpack_lb64(mem->map[i].start);
msize = MAX_ADDR - mstart +1;
if (msize > unpack_lb64(mem->map[i].size))
msize = unpack_lb64(mem->map[i].size);
mend = mstart + msize;
tbuffer = mend - lb_size;
if (tbuffer < buffer)
continue;
buffer = tbuffer;
}
bounce_buffer = buffer;
bounce_size = req_size;
}
#endif /* CONFIG_RELOCATABLE_RAMSTAGE */
static int valid_area(struct lb_memory *mem, unsigned long buffer,
unsigned long start, unsigned long len)
{
/* Check through all of the memory segments and ensure
* the segment that was passed in is completely contained
* in RAM.
*/
int i;
unsigned long end = start + len;
unsigned long mem_entries = (mem->size - sizeof(*mem)) /
sizeof(mem->map[0]);
/* See if I conflict with the bounce buffer */
if (end >= buffer) {
return 0;
}
/* Walk through the table of valid memory ranges and see if I
* have a match.
*/
for(i = 0; i < mem_entries; i++) {
uint64_t mstart, mend;
uint32_t mtype;
mtype = mem->map[i].type;
mstart = unpack_lb64(mem->map[i].start);
mend = mstart + unpack_lb64(mem->map[i].size);
if ((mtype == LB_MEM_RAM) && (start >= mstart) && (end < mend)) {
break;
}
if ((mtype == LB_MEM_TABLE) && (start >= mstart) && (end < mend)) {
printk(BIOS_ERR, "Payload is overwriting coreboot tables.\n");
break;
}
}
if (i == mem_entries) {
if (start < (1024*1024) && end <=(1024*1024)) {
printk(BIOS_DEBUG, "Payload (probably SeaBIOS) loaded"
" into a reserved area in the lower 1MB\n");
return 1;
}
printk(BIOS_ERR, "No matching ram area found for range:\n");
printk(BIOS_ERR, " [0x%016lx, 0x%016lx)\n", start, end);
printk(BIOS_ERR, "Ram areas\n");
for(i = 0; i < mem_entries; i++) {
uint64_t mstart, mend;
uint32_t mtype;
mtype = mem->map[i].type;
mstart = unpack_lb64(mem->map[i].start);
mend = mstart + unpack_lb64(mem->map[i].size);
printk(BIOS_ERR, " [0x%016lx, 0x%016lx) %s\n",
(unsigned long)mstart,
(unsigned long)mend,
(mtype == LB_MEM_RAM)?"RAM":"Reserved");
}
return 0;
}
return 1;
}
static int overlaps_coreboot(struct segment *seg)
{
unsigned long start, end;
start = seg->s_dstaddr;
end = start + seg->s_memsz;
return !((end <= lb_start) || (start >= lb_end));
}
static int relocate_segment(unsigned long buffer, struct segment *seg)
{
/* Modify all segments that want to load onto coreboot
* to load onto the bounce buffer instead.
*/
/* ret: 1 : A new segment is inserted before the seg.
* 0 : A new segment is inserted after the seg, or no new one.
*/
unsigned long start, middle, end, ret = 0;
printk(BIOS_SPEW, "lb: [0x%016lx, 0x%016lx)\n",
lb_start, lb_end);
/* I don't conflict with coreboot so get out of here */
if (!overlaps_coreboot(seg))
return 0;
start = seg->s_dstaddr;
middle = start + seg->s_filesz;
end = start + seg->s_memsz;
printk(BIOS_SPEW, "segment: [0x%016lx, 0x%016lx, 0x%016lx)\n",
start, middle, end);
if (seg->compression == CBFS_COMPRESS_NONE) {
/* Slice off a piece at the beginning
* that doesn't conflict with coreboot.
*/
if (start < lb_start) {
struct segment *new;
unsigned long len = lb_start - start;
new = malloc(sizeof(*new));
*new = *seg;
new->s_memsz = len;
seg->s_memsz -= len;
seg->s_dstaddr += len;
seg->s_srcaddr += len;
if (seg->s_filesz > len) {
new->s_filesz = len;
seg->s_filesz -= len;
} else {
seg->s_filesz = 0;
}
/* Order by stream offset */
new->next = seg;
new->prev = seg->prev;
seg->prev->next = new;
seg->prev = new;
/* compute the new value of start */
start = seg->s_dstaddr;
printk(BIOS_SPEW, " early: [0x%016lx, 0x%016lx, 0x%016lx)\n",
new->s_dstaddr,
new->s_dstaddr + new->s_filesz,
new->s_dstaddr + new->s_memsz);
ret = 1;
}
/* Slice off a piece at the end
* that doesn't conflict with coreboot
*/
if (end > lb_end) {
unsigned long len = lb_end - start;
struct segment *new;
new = malloc(sizeof(*new));
*new = *seg;
seg->s_memsz = len;
new->s_memsz -= len;
new->s_dstaddr += len;
new->s_srcaddr += len;
if (seg->s_filesz > len) {
seg->s_filesz = len;
new->s_filesz -= len;
} else {
new->s_filesz = 0;
}
/* Order by stream offset */
new->next = seg->next;
new->prev = seg;
seg->next->prev = new;
seg->next = new;
printk(BIOS_SPEW, " late: [0x%016lx, 0x%016lx, 0x%016lx)\n",
new->s_dstaddr,
new->s_dstaddr + new->s_filesz,
new->s_dstaddr + new->s_memsz);
}
}
/* Now retarget this segment onto the bounce buffer */
/* sort of explanation: the buffer is a 1:1 mapping to coreboot.
* so you will make the dstaddr be this buffer, and it will get copied
* later to where coreboot lives.
*/
seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start);
printk(BIOS_SPEW, " bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n",
seg->s_dstaddr,
seg->s_dstaddr + seg->s_filesz,
seg->s_dstaddr + seg->s_memsz);
return ret;
}
static int build_self_segment_list(
struct segment *head,
struct lb_memory *mem,
struct cbfs_payload *payload, u32 *entry)
{
struct segment *new;
struct segment *ptr;
struct cbfs_payload_segment *segment, *first_segment;
memset(head, 0, sizeof(*head));
head->next = head->prev = head;
first_segment = segment = &payload->segments;
while(1) {
printk(BIOS_DEBUG, "Loading segment from rom address 0x%p\n", segment);
switch(segment->type) {
case PAYLOAD_SEGMENT_PARAMS:
printk(BIOS_DEBUG, " parameter section (skipped)\n");
segment++;
continue;
case PAYLOAD_SEGMENT_CODE:
case PAYLOAD_SEGMENT_DATA:
printk(BIOS_DEBUG, " %s (compression=%x)\n",
segment->type == PAYLOAD_SEGMENT_CODE ? "code" : "data",
ntohl(segment->compression));
new = malloc(sizeof(*new));
new->s_dstaddr = ntohll(segment->load_addr);
new->s_memsz = ntohl(segment->mem_len);
new->compression = ntohl(segment->compression);
new->s_srcaddr = (u32) ((unsigned char *)first_segment)
+ ntohl(segment->offset);
new->s_filesz = ntohl(segment->len);
printk(BIOS_DEBUG, " New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n",
new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
/* Clean up the values */
if (new->s_filesz > new->s_memsz) {
new->s_filesz = new->s_memsz;
}
printk(BIOS_DEBUG, " (cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n",
new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
break;
case PAYLOAD_SEGMENT_BSS:
printk(BIOS_DEBUG, " BSS 0x%p (%d byte)\n", (void *)
(intptr_t)ntohll(segment->load_addr),
ntohl(segment->mem_len));
new = malloc(sizeof(*new));
new->s_filesz = 0;
new->s_dstaddr = ntohll(segment->load_addr);
new->s_memsz = ntohl(segment->mem_len);
break;
case PAYLOAD_SEGMENT_ENTRY:
printk(BIOS_DEBUG, " Entry Point 0x%p\n",
(void *)(intptr_t)ntohll(segment->load_addr));
*entry = ntohll(segment->load_addr);
/* Per definition, a payload always has the entry point
* as last segment. Thus, we use the occurence of the
* entry point as break condition for the loop.
* Can we actually just look at the number of section?
*/
return 1;
default:
/* We found something that we don't know about. Throw
* hands into the sky and run away!
*/
printk(BIOS_EMERG, "Bad segment type %x\n", segment->type);
return -1;
}
/* We have found another CODE, DATA or BSS segment */
segment++;
/* Find place where to insert our segment */
for(ptr = head->next; ptr != head; ptr = ptr->next) {
if (new->s_srcaddr < ntohll(segment->load_addr))
break;
}
/* Order by stream offset */
new->next = ptr;
new->prev = ptr->prev;
ptr->prev->next = new;
ptr->prev = new;
}
return 1;
}
static int load_self_segments(
struct segment *head,
struct lb_memory *mem,
struct cbfs_payload *payload)
{
struct segment *ptr;
unsigned long bounce_high = lb_end;
for(ptr = head->next; ptr != head; ptr = ptr->next) {
if (!overlaps_coreboot(ptr))
continue;
#if CONFIG_RELOCATABLE_RAMSTAGE
/* payloads are required to not overlap ramstage. */
return 0;
#else
if (ptr->s_dstaddr + ptr->s_memsz > bounce_high)
bounce_high = ptr->s_dstaddr + ptr->s_memsz;
#endif
}
get_bounce_buffer(mem, bounce_high - lb_start);
if (!bounce_buffer) {
printk(BIOS_ERR, "Could not find a bounce buffer...\n");
return 0;
}
for(ptr = head->next; ptr != head; ptr = ptr->next) {
/* Verify the memory addresses in the segment are valid */
if (!valid_area(mem, bounce_buffer, ptr->s_dstaddr, ptr->s_memsz))
return 0;
}
for(ptr = head->next; ptr != head; ptr = ptr->next) {
unsigned char *dest, *src;
printk(BIOS_DEBUG, "Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
/* Modify the segment to load onto the bounce_buffer if necessary.
*/
if (relocate_segment(bounce_buffer, ptr)) {
ptr = (ptr->prev)->prev;
continue;
}
printk(BIOS_DEBUG, "Post relocation: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
/* Compute the boundaries of the segment */
dest = (unsigned char *)(ptr->s_dstaddr);
src = (unsigned char *)(ptr->s_srcaddr);
/* Copy data from the initial buffer */
if (ptr->s_filesz) {
unsigned char *middle, *end;
size_t len;
len = ptr->s_filesz;
switch(ptr->compression) {
case CBFS_COMPRESS_LZMA: {
printk(BIOS_DEBUG, "using LZMA\n");
len = ulzma(src, dest);
if (!len) /* Decompression Error. */
return 0;
break;
}
#if CONFIG_COMPRESSED_PAYLOAD_NRV2B
case CBFS_COMPRESS_NRV2B: {
printk(BIOS_DEBUG, "using NRV2B\n");
unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
unsigned long tmp;
len = unrv2b(src, dest, &tmp);
break;
}
#endif
case CBFS_COMPRESS_NONE: {
printk(BIOS_DEBUG, "it's not compressed!\n");
memcpy(dest, src, len);
break;
}
default:
printk(BIOS_INFO, "CBFS: Unknown compression type %d\n", ptr->compression);
return -1;
}
end = dest + ptr->s_memsz;
middle = dest + len;
printk(BIOS_SPEW, "[ 0x%08lx, %08lx, 0x%08lx) <- %08lx\n",
(unsigned long)dest,
(unsigned long)middle,
(unsigned long)end,
(unsigned long)src);
/* Zero the extra bytes between middle & end */
if (middle < end) {
printk(BIOS_DEBUG, "Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n",
(unsigned long)middle, (unsigned long)(end - middle));
/* Zero the extra bytes */
memset(middle, 0, end - middle);
}
/* Copy the data that's outside the area that shadows coreboot_ram */
printk(BIOS_DEBUG, "dest %p, end %p, bouncebuffer %lx\n", dest, end, bounce_buffer);
if ((unsigned long)end > bounce_buffer) {
if ((unsigned long)dest < bounce_buffer) {
unsigned char *from = dest;
unsigned char *to = (unsigned char*)(lb_start-(bounce_buffer-(unsigned long)dest));
unsigned long amount = bounce_buffer-(unsigned long)dest;
printk(BIOS_DEBUG, "move prefix around: from %p, to %p, amount: %lx\n", from, to, amount);
memcpy(to, from, amount);
}
if ((unsigned long)end > bounce_buffer + (lb_end - lb_start)) {
unsigned long from = bounce_buffer + (lb_end - lb_start);
unsigned long to = lb_end;
unsigned long amount = (unsigned long)end - from;
printk(BIOS_DEBUG, "move suffix around: from %lx, to %lx, amount: %lx\n", from, to, amount);
memcpy((char*)to, (char*)from, amount);
}
}
}
}
return 1;
}
int selfboot(struct lb_memory *mem, struct cbfs_payload *payload)
{
u32 entry=0;
struct segment head;
/* Preprocess the self segments */
if (!build_self_segment_list(&head, mem, payload, &entry))
goto out;
/* Load the segments */
if (!load_self_segments(&head, mem, payload))
goto out;
printk(BIOS_SPEW, "Loaded segments\n");
/* Reset to booting from this image as late as possible */
boot_successful();
printk(BIOS_DEBUG, "Jumping to boot code at %x\n", entry);
post_code(POST_ENTER_ELF_BOOT);
#if CONFIG_COLLECT_TIMESTAMPS
timestamp_add_now(TS_SELFBOOT_JUMP);
#endif
#if CONFIG_COVERAGE
coverage_exit();
#endif
/* Tear down the caching of the ROM. */
if (disable_cache_rom)
disable_cache_rom();
/* Before we go off to run the payload, see if
* we stayed within our bounds.
*/
checkstack(_estack, 0);
/* Jump to kernel */
jmp_to_elf_entry((void*)entry, bounce_buffer, bounce_size);
return 1;
out:
return 0;
}